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Binary pulsars are ideal to test the foundations of general relativity, such as Lorentz symmetry, which
requires that experiments produce the same results in all free-falling (i.e. inertial) frames. We here break this
symmetry in the gravitational sector by specifying a preferred time direction, and thus a preferred frame, at
each spacetime point. We then examine the consequences of this gravitational Lorentz symmetry breaking
in the orbital evolution of binary pulsars, focusing on the dissipative effects. We find that Lorentz symmetry
breaking modifies these effects, and thus the orbital dynamics, in two different ways. First, it generically
causes the emission of dipolar radiation, which makes the orbital separation decrease faster than in general
relativity. Second, the quadrupole component of the emission is also modified. The orbital evolution
depends critically on the sensitivities of the stars, which measure how their binding energies depend on the
motion relative to the preferred frame. We calculate the sensitivities numerically and compute the predicted
orbital decay rate of binary pulsars in Lorentz-violating gravity. By testing these predictions against
observations, we place very stringent constraints on gravitational Lorentz violation.
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I. INTRODUCTION

The social scientist and epistemologist Karl Popper
believed that scientific hypotheses could never be proved
correct, but rather could only be disproved [1]. In his view,
the role of a scientist is to attempt to disprove the canonical
set of hypotheses of the day, the status quo, by whatever
means possible (experimental, observational or mathemati-
cal). These efforts are an important engine for scientific
progress—in particular to generate what Kuhn would later
call scientific revolutions that leap us forward in our
understanding of the Universe [2].
General relativity (GR) is today the status quo when it

comes to describing the gravitational interaction and the
motion of large bodies. As Popper suggested, scientists
have spent decades putting Einstein’s theory to the test,
essentially since its conception. Einstein himself would
repeatedly look for observational confirmation of the
predictions that his theory would make. Today, we have
an overwhelming amount of data that confirm GR to
incredible precision [3], and one may wonder why we
should bother with alternative theories.
Three reasons come immediately to mind. First, almost

all the existing tests of GR involve systems that are
governed by the weakly gravitating, mildly relativistic
regime of the Einstein equations. In the Solar System,
typical orbital velocities are much below 0.1% of the speed
of light, and curvatures are barely measurable. Stronger
tests of GR come from binary pulsars, e.g. from observa-
tions of their orbital decay rate or time-dilation effects when

photons from the secondary graze the surface of the
primary. The orbital velocity in observed pulsar binaries,
however, is not very different from velocities in the Solar
System. In fact, their shortest orbital periods are on the
order of hours, and thus orbital velocities are still ≲1%
the speed of light, although curvatures are much higher
inside pulsars than in the Solar System. Thus, the highly
relativistic and dynamical strong-field regime of Einstein’s
equations, i.e. the regime characterized by velocities
comparable to the speed of light, by large, dynamical
curvatures, has not yet been tested and could in principle
highlight large deviations from GR’s predictions (see e.g.
Refs. [4–7] and [8–11] for two theories of gravity that are
indistinguishable from GR with current Solar System and
binary pulsar observations but deviate from it in strong-
gravity systems). Tests of this highly relativistic strong-
field regime will probably have to wait for the detection of
gravitational waves (GWs) from merging neutron stars
(NSs) or black holes [5–7,12–14]. To understand how
much will be learned about gravitation from these obser-
vations, it is important to clarify the corresponding
predictions from GR and alternative theories [14].
Another reason why GR cannot be the final word for

gravitation in nature is its intrinsic incompatibility with
quantum mechanics and the presence of mathematical
pathologies, like singularities in gravitational collapse.
One may conjecture that the modifications to GR induced
by any approach addressing these issues will be suppressed
by a high-energy scale, e.g. the Planck mass MP ∼
1019 GeV where GR fails as an effective field theory.
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This would mean that no information about quantum
gravity could be obtained by any current or foreseen
experiment. However, such arguments hold only on the
very thin thread of dimensional analysis. In fact, they are
known to fail for existing candidates of quantum gravity,
such as models with large extra dimensions, where the scale
of suppression can be much lower [15], or in Hořava
gravity [16], where GR modifications can enter at
any scale.
Finally, cosmological observations [17,18] reveal a

model of the Universe (the ΛCDM model) that is not
completely satisfactory from a theoretical standpoint.
The most famous puzzle is the conflict between the
value of the energy density of the source behind the
current cosmological acceleration and the order of magni-
tude that would be expected based on naïve dimensional
arguments. Any explanation addressing this cosmological-
constant problem typically requires a modification of
gravitation at cosmological (and possibly smaller)
scales [19,20].

A. Lorentz-violating gravity

Lorentz symmetry has been put to the test in a variety of
circumstances. Particle physics experiments have strin-
gently done so in the matter sector [21–24]. A model-
independent formalism, the standard model extension
(SME) [25–27], has been devised to translate a wide
variety of observations into tests of Lorentz invariance.
This is very efficient for bounds on violations of Lorentz
symmetry primarily in the matter sector [22] or in the sector
coupling matter to gravity [28].
Given the previous constraints, one could question

the possibility of having observable effects in gravitation
from Lorentz violation. Indeed, one could argue that
any degree of gravitational Lorentz violation should
percolate into particle physics. Therefore, stringent
constraints from the matter sector would require that
Lorentz violation in gravity also be very small (and thus
undetectable with current observations). This argument,
however, is not watertight. Different mechanisms have
been put forward to justify the possibility of Lorentz
violation in gravity to a degree that is orders of magni-
tude larger than any violation in the matter sector (see
e.g. Ref. [29]).
A first possibility would be to assume that this happens

due to the finely tuned (small) value of the operators that
violate Lorentz invariance in the matter sector, as compared
to those in the gravity sector. More interestingly, Lorentz
invariance in the matter sector could be an emergent feature
at low energies [30], either due to a renormalization group
phenomenon [31,32] or to it being an accidental symmetry
[33]. Finally, it has been pointed out recently that two
sectors with different degrees of Lorentz violation can
easily coexist provided that the interaction between them is
suppressed by a high energy scale [34]. This could be the

case for the matter and gravity sectors, each with a very
different scale of Lorentz violation.
Thus, it is reasonable to seek for independent tests of

Lorentz invariance in gravity. These are neither as devel-
oped nor as stringent as for the matter sector. Gravitational
Lorentz invariance bounds in the context of the SME can be
found in Refs. [35–37]. More relevant for this work are the
bounds related to models where Lorentz invariance is
broken by the presence of a preferred timelike vector.
Those include constraints placed with Solar System
[3,38,39] and cosmological observations [39–41], but these
are rather weak. In the Solar System, observations can only
probe certain aspects of gravitational Lorentz violation,
namely leading-order post-Newtonian (PN) effects, i.e.
leading in the expansion in the ratio of the orbital velocity
to the speed of light. In cosmology, only the linear
perturbative regime over an expanding background has
been studied. Binary pulsar observations have also been
used to place constraints on gravitational Lorentz invari-
ance [39,42–44], but these concentrate only on preferred-
frame corrections to the conservative orbital dynamics,
neglecting dissipative effects.
In this paper, we will focus on theories that modify

GR by assuming the existence of a preferred time
direction (frame) at every spacetime point. This directly
implies the violation of boost symmetry and therefore
of Lorentz invariance. The preferred time direction will
be described by a timelike unit vector field Uμ (the
æther field), whose dynamics may be described by two
different theories: Einstein-æther [45] and khronometric
theory [46]. As we will argue in Sec. II, these are generic
theories that may arise from more fundamental theories at
low energies.
Einstein-æther theory is a Lorentz-violating, metric

theory of gravity where the æther field is generic.
The theory is characterized by the æther’s couplings
to gravity. A direct coupling of the æther field to
matter is absent, because that would have consequences
that are not observed experimentally; e.g. a fifth force
would arise in the matter interactions and the
weak equivalence principle (i.e. the universality of free
fall for weakly gravitating bodies) would not hold.
Einstein-æther theory can be thought of as representing
the low-energy description of some high-energy unknown
dynamics; i.e. it can be understood as an effective field
theory [47].
Einstein-æther theory passes all theoretical and phenom-

enological constraints in a certain region of the parameter
space of the æther’s couplings. Of particular importance are
the bounds related to Solar System observations, which
force the theory to depend on only two combinations of
coupling constants, cþ and c−, up to corrections of Oð10−4Þ
[3,48]. These two combinations, however, are currently
weakly constrained, mostly by requiring the linear stability
of Minkowski space (i.e. absence of tachyonic instabilities)
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and the absence of gravitational Cherenkov radiation [49]
(i.e. requiring the speeds of the gravitational modes be
larger than the speed of light, so that photons and high-
energy particles do not lose energy in a Cherenkov-like
process). An order of magnitude constraint [of about
Oð10−2Þ] was also obtained using the orbital decay rate
of binary pulsars [50], but this analysis is only valid in the
small coupling region (ci ≪ 1).
Khronometric theory is defined through the same action

as that of Einstein-æther theory, but with the additional
requirement that the æther field be hypersurface orthogo-
nal. This choice reduces the dynamical degrees of freedom
of the theory, and more importantly it forces the theory to
exactly coincide with the low-energy limit of Hořava
gravity [16]. Hořava gravity is a proposal for quantum
gravity where Lorentz invariance is broken by the existence
of a preferred foliation of spacetime into spacelike hyper-
surfaces and which provides a power-counting renormaliz-
able completion of GR in the ultraviolet regime. In this
work, we will focus on the version of this theory introduced
in Ref. [46], which has Minkowski spacetime as a ground
state and which reduces exactly to khronometric theory at
low energies.
As in Einstein-æther theory, any viable khronometric

theory is characterized by two coupling constants, β and λ,
after imposing constraints from Solar System observations.
As in Einstein-æther theory, β and λ are weakly constrained
by requiring linear stability of Minkowski space and
the absence of gravitational Cherenkov radiation [51,52].
However, unlike in Einstein-æther theory [39,40,53],
cosmological observations can place stringent bounds
on the couplings of khronometric theory [roughly
jβ; λj≲ Oð10−1Þ]. In particular, strong constraints can be
obtained by requiring that big bang nucleosynthesis (BBN)
in khronometric theory produces element abundances in
agreement with observations [41]. Cosmological con-
straints are instead much weaker in Einstein-æther theory
because, unlike in khronometric theory, the Newtonian
constant regulating the cosmological evolution coincides
with the locally measured constant to within Oð10−4Þ, once
Solar System constraints are imposed.

B. Executive summary

In this paper, we explain in detail and extend the analysis
of Ref. [54] to place very stringent constraints on Lorentz-
violating gravity, focusing on Einstein-æther and khrono-
metric theory. These constraints are obtained by comparing
the evolution of binary systems in these theories to binary
pulsar observations.
Let us first consider modifications to the dissipative

sector, which regulates how fast binary systems lose energy
and shrink, forcing the orbital period to decay. A generic
property of Einstein-æther and khronometric theory is the
excitation of propagating modes that are absent in GR and
which carry energy away from the system at dipole order

[38,50,55]. Since dipolar radiation is generally stronger
than GR’s quadrupole radiation, the binary’s separation
decreases much faster in Lorentz-violating gravity, leading
to a strong modification to the predicted evolution of the
orbital period. Furthermore, these extra modes and the
modification to the propagation speed of gravitons affect
the quadrupolar emission, which is important for systems
where dipolar radiation is suppressed. Since binary pulsar
observations of the orbital period’s decay rate agree with
GR’s predictions within the observational uncertainties,
they allow for stringent constraints to be placed on
Lorentz-violating gravity.
The modified orbital decay rate for NS binaries in

Lorentz-violating theories, and more in general the motion
of these systems, strongly depend on the sensitivities of the
stars [50].1 These quantities measure how much the binding
energy of an isolated star changes with its motion relative to
the preferred frame (i.e. relative to the æther). In order to
calculate the sensitivities, we therefore need to find
solutions describing NSs moving with respect to the
æther, as suggested in [56]. More specifically, we will
show that in order to extract the sensitivities, such solutions
are only needed at linear order in a perturbative expansion
in the velocity v; i.e. without loss of generality, we can
restrict attention to solutions of stationary, nonspinning NS
moving slowly with respect to the æther. We show that two
seemingly different definitions of the sensitivities, one
applicable in the weak-field regime and another in the
strong-field regime, lead to the same result.
To find these slowly moving solutions, we first write

down the most generic ansatz for the metric and æther field
at OðvÞ, ensuring compatibility with the symmetries of the
problem (stationarity and rotational invariance around
the motion’s direction). With this ansatz, we write down
the field equations at zeroth and first order in v. The
resulting system of partial differential equations is then
expanded in tensor spherical harmonics, leading to an
ordinary differential system that we solve numerically.
The equations must be solved twice (in the interior and

in the exterior of the star) and then matched. The matching
ensures that the potentials (defined in terms of the æther
and metric), which enter the equations through derivatives,
are continuous everywhere in the spacetime, are regular at
the center of the star, and produce an asymptotically flat
geometry at spatial infinity. The interior solution depends
on the equation of state (EoS) for the NS matter. We here
investigate a variety of EoS that are thought to represent
realistic NS configurations. We restrict attention to non-
rotating, cold (and thus old) NSs, as these are appropriate
simplifications for binary pulsar studies.

1Foster’s constraint on c� is only valid in the small coupling
regime, precisely because the sensitivities had not been calculated
until now.
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With this at hand, we use the numerical solutions that we
obtained to compute the sensitivities for isolated NSs for
the first time in the theories under consideration. We then
construct fitting functions that allow us to analytically
model the sensitivities as a function of the compactness of
the star and the coupling constants of the theory.
Once the sensitivities have been found, we calculate the

energy carried away by all propagating degrees of freedom
in Einstein-æther and khronometric theory. We show that
dipolar radiation is produced and generically constitutes the
dominant modification to the GR predictions [3]. Given the
energy flux carried away by the propagating modes, we use
conservation of energy and a balance law to compute the
rate of change of a binary’s binding energy, and from this,
the orbital decay rate.
We compare our predictions for the orbital decay rate to

observations of binary pulsars PSR J1141 − 6545 [57],
PSR J0348þ 0432 [58], and PSR J0737 − 3039 [59]. The
first two are pulsars on a 0.17-eccentricity, 4.74-h orbit and
on a Oð10−6Þ-eccentricity, 2.46-h orbit, respectively,
around a white dwarf companion. The third is the relativ-
istic double pulsar binary, on a 0.088-eccentricity and 2.45-
h orbit. These comparisons allow us to place constraints on
the coupling constants of the theory.
Another way to place constraints on Lorentz-violating

theories is to consider modifications to the conservative
sector, controlled by the Hamiltonian, which for example
affects the orbital shape and precession rate. Lorentz-
violating corrections to the Hamiltonian induce precession
of the spin and orbital angular momentum vectors. Since

such non-GR precession is not found in pulsar observa-
tions, one can then place constraints on Lorentz violation.
The constraints are cast in a model-independent language
by considering strong-field generalizations of the para-
metrized post-Newtonian (PPN) Hamiltonian. For exam-
ple, observations of PSR J1738þ 0333 [60] can be used to
constrain the strong-field PPN parameters associated with
preferred-frame effects. We here calculate these parameters
for Einstein-æther and khronometric theory and then
use PSR J1738þ 0333 [60] to place constraints on the
couplings.
Combining all of these constraints, we obtain the

allowed coupling parameter space shown in Fig. 1
(Einstein-æther theory in the left panel and khronometric
theory in the right panel). The colored regions are those
allowed after requiring stability and absence of gravita-
tional Cherenkov radiation [49,51,52] (light blue), BBN
constraints [39–41,53] (dark orange) and binary pulsar
constraints (dark purple). The red dashed line corresponds
to the values of the coupling constants for which the orbital
decay rate equals the GR prediction, assuming the sensi-
tivities vanish and working at leading order in a weak-field
expansion [48]. Observe that the new constraints obtained
here are much stronger than all other constraints. The
constraint found in this paper is consistent with the order of
magnitude estimate of Foster’s [50] in the small coupling
region, but the constraint on c− found here is slightly
stronger.
Binary pulsar constraints lead to regions of viable

coupling parameter space. This is because in deriving
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FIG. 1 (color online). Constraints on the ðcþ; c−Þ plane in æther theory (left) and ðλ; βÞ plane in khronometric theory (right) obtained
by combining constraints derived from observations of PSR J1141 − 6545 [57], PSR J0348þ 0432 [58], PSR J0737 − 3039 [59] and
PSR J1738þ 0333 [60]. The areas outside the (allowed) shaded regions are ruled out by stability or Cherenkov considerations (light
blue), BBN (dark orange) and the combined binary pulsar constraints (dark purple). The red dotted line corresponds to the values of the
coupling constants required for the orbital decay rate to agree with the GR prediction in the zero-sensitivity or weak-field limit. Observe
that the new constraints are much more stringent than all others.
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these constraints one has to allow for different values of the
coupling constants (within the Solar System constraints)
and the sensitivities (because of the different possible EoS)
and account for the observational error in the orbital decay
rate and the orbital period, as well as the error in the
inferred masses of the binary. The particular shape of these
viable regions is a result of the combination of the
constraints associated with different binary pulsars. For
example, dipole radiation is suppressed for double pulsar
binaries relative to pulsar-white dwarf systems, because
dipole radiation is proportional to the difference of the
sensitivities and NSs have similar sensitivities. Therefore,
for double pulsar systems quadrupolar radiation becomes
comparable to dipole radiation, which leads to a different
shape for the allowed region of coupling constants.

C. Layout and conventions

The remainder of this paper presents the details of the
calculations described above and is organized as follows:
Section II presents the basics of Einstein-æther and
khronometric theory, including the action, field equations
and current constraints from low-energy phenomenology.
Section III describes how Lorentz symmetry breaking leads
to violations of the strong equivalence principle, how this is
encoded in the sensitivities, and how it affects the motion of
compact objects. Sections IV and V are devoted to the
construction of slowly moving NS solutions to first order in
velocity, in both Einstein-æther and khronometric theory.
Section VI presents results derived by numerically solving
the modified field equations, focusing on the sensitivities.
Section VII presents constraints on Einstein-æther and
khronometric theory based on binary pulsar observations.
Section VIII concludes and points to future research.
Appendixes A, B and C present further mathematical
details.
Our conventions are as follows. We use natural units

where c ¼ 1 ¼ ℏ, where ℏ is the (reduced) Planck constant
and c is the speed of light. We restore powers of c when
presenting PN expressions. We use Greek letters in index
lists to denote spacetime components of tensors, while
Latin letters in the middle of the alphabet ði; j; k;…Þ denote
purely spatial components. We also employ the metric
signature ðþ;−;−;−Þ. Indices in spatial vectors are raised
and lowered with the Kronecker delta (except in Sec. II B,
where the 3-metric γij is used to raise and lower indices).
We use several gravitational constants, different masses,

and different velocities throughout the paper, which we list
here for convenience. Regarding gravitational constants:

(i) Gæ is the bare gravitational constant appearing in the
action [Eq. (1)];

(ii) GN is the “Newtonian” gravitational constant
measured locally by Cavendish-type experiments
[Eq. (3)];

(iii) GC is the “cosmological” gravitational constant that
appears in the Friedmann equations [Eq. (28)];

(iv) G is the “effective” gravitational constant in a binary
system [Eq. (88)].

Regarding the masses:
(i) ~mA is the gravitational mass of the Ath body in a

point-particle approximation [Eq. (31)];
(ii) mA is the “active” gravitational mass of the Ath body

in a point-particle approximation [Eq. (87)];
(iii) Mtot is the total gravitational mass of a star, which

includes the gravitational, æther and baryonic con-
tributions [Eq. (57)]; this mass generalizes ~mA to
regimes where the point-particle approximation does
not hold;

(iv) Mobs is the mass measured by Keplerian experi-
ments, which turns out to coincide with Mtot;

(v) M� ≡GNMtot ¼ GNMobs is the length scale asso-
ciated with the total mass Mtot ¼ Mobs;

(vi) MðrÞ is a function with dimension of length, defined
by Eq. (137) and approaching M� as r → þ∞;

(vii) m≡m1 þm2 is the total active mass of a binary
system in the point-particle approximation;

(viii) μ≡m1m2=m is the active reduced mass of a binary
system in the point-particle approximation.

Regarding the velocities:
(i) vi or viA are both the 3-velocity of an object relative

to the æther field;
(ii) vi12 ¼ vi1 − vi2 is the relative velocity of the two

bodies in a binary;
(iii) Vi

CM is the center-of-mass velocity of the binary
relative to the æther.

II. MODIFIED GRAVITY THEORIES

In this section, we define the theories we focus on. We
begin with a description of Einstein-æther theory and
follow with khronometric theory (the low-energy limit of
Hořava gravity). In both cases, we first introduce the action
that defines the theory and then describe its current
experimental constraints.

A. Einstein-æther theory

Einstein-æther theory describes gravity by means of a
metric gαβ and a unit-norm timelike dynamical vector field
Uα (the “æther field”). The latter locally defines a preferred
time direction, which breaks boost and therefore Lorentz
invariance. Up to total divergences, the most generic
covariant action that depends only on the fields and their
first derivatives, and is quadratic in the latter, is [39,45,61]

Sæ ¼ 1

16πGæ

Z
d4x

ffiffiffiffiffiffi
−g

p ð−R −Mαβ
μν∇αUμ∇βUνÞ; (1)

where g and R are the metric determinant and the Ricci
scalar, respectively, Uα satisfies the unit constraint
UαUα ¼ 1,
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Mαβ
μν ≡ c1gαβgμν þ c2δαμδ

β
ν þ c3δανδ

β
μ þ c4UαUβgμν (2)

(c1, c2, c3 and c4 being dimensionless coupling constants),
and the “bare” gravitational constant Gæ is related to the
“Newtonian” constant measured with Cavendish-type
experiments through [53]

GN ¼ 2Gæ

2 − ðc1 þ c4Þ
: (3)

In order to enforce the weak equivalence principle2 and
the absence of a fifth force in matter interactions, one has to
(minimally) couple the matter fields to the metric but not to
the æther. Collectively denoting the matter fields by ψ, one
can then write the total action as

S ¼ Sæ þ Smatðψ ; gμνÞ: (4)

The matter action is diffeomorphism invariant, which
implies the covariant conservation of the matter stress-
energy tensor Tμν

mat, i.e. ∇μT
μν
mat ¼ 0 [62], and as a conse-

quence test particles follow geodesics [63], thus satisfying
the weak equivalence principle. However, as we will show
in this paper, in Einstein-æther (and khronometric) theory,
strongly gravitating bodies follow trajectories that depend
on the ratio between the body’s binding energy and its total
mass. This effect (known as the Nördvedt effect [64,65])
generically appears when one introduces extra gravitational
degrees of freedom coupled nonminimally to the metric
(e.g. it is present also in scalar tensor theories [3]) and
amounts to a violation of the strong equivalence principle.
Its physical origin lies in the fact that the matter fields
couple to the extra gravitational fields through the metric,
and this coupling becomes important in strong-gravity
regimes.
The absence of a direct coupling of the matter fields to

Uα in Eq. (4) is also enforced by tests of Lorentz invariance
in particle physics. Indeed, if the matter fields were directly
coupled to Uα, this would generically produce Lorentz-
violating effects in the standard model of particle physics.
The bounds on these effects are very tight [22,23], which
means that for gravitational experiments it is reasonable to
put all the couplings between æther and matter to zero.3

Naturalness arguments seem to be at odds with this choice,
since they suggest that Lorentz violation may percolate
from the gravitational sector into the standard model, thus
producing big (and experimentally forbidden) effects.

However, this is not necessarily the case. As already
mentioned, different mechanisms have been put forth
leading to Lorentz-violating effects in gravity that can be
much larger than those in particle physics; see e.g. Ref. [29]
for a review, Ref. [32] for recent developments, and Sec. I A
for further details.
Variation of the action given in Eq. (4) with respect to the

metric and æther field [imposing the unit constraint
UαUα ¼ 1 directly or by means of a Lagrange multiplier
lðUμUμ − 1Þ in the action] provides a set of modified
Einstein equations

Eαβ ≡Gαβ − Tæ
αβ − 8πGæTmat

αβ ¼ 0 (5)

and the æther equations

æμ ≡ ð∇αJαν − c4 _Uα∇νUαÞðgμν −UμUνÞ ¼ 0: (6)

Here, Gαβ ¼ Rαβ − Rgαβ=2 is the Einstein tensor, and

Tæ
αβ ¼ ∇μðJμðαUβÞ − JμðαUβÞ − JðαβÞUμÞ

þ c1½ð∇μUαÞð∇μUβÞ − ð∇αUμÞð∇βUμÞ�
þ ½Uνð∇μJμνÞ − c4 _U

2�UαUβ þ c4 _Uα
_Uβ

þ 1

2
Mσρ

μν∇σUμ∇ρUνgαβ (7)

is the æther stress-energy tensor, where

Jαμ ≡Mαβ
μν∇βUν; _Uν ≡Uμ∇μUν: (8)

Finally, the matter stress-energy tensor is defined as
usual by

Tαβ
mat ≡ 2ffiffiffiffiffiffi−gp δSmat

δgαβ
: (9)

Experimental constraints and stability requirements
greatly reduce the viable parameter space for the four
couplings c1, c2, c3 and c4. At 1PN order,4 the dynamics of
Einstein-æther theory matches that of GR, with the excep-
tion of two “preferred-frame” parameters α1 and α2, which
are exactly zero in GR but not in Einstein-æther theory
[48]. In the weak field, Solar System observations constrain
these parameters to very small values jα1j≲ 10−4 and
jα2j ≲ 10−7 [3], using lunar laser ranging and solar align-
ment with the ecliptic. The strong-field counterparts of
these parameters (denoted here with an overhead hat) are
constrained through binary and isolated pulsar observations
also to very small values: jα̂1j≲ 10−5 and jα̂2j ≲ 10−9

[43,44]. We will discuss the Einstein-æther form of ðα1;α2Þ
in Sec. III A 2 and the relation to their strong-field
generalizations in Sec. VII C.

2This principle states that test particles, i.e. bodies that are not
strongly gravitating, follow trajectories independent of their mass
if given the same initial conditions. The same statement, but
applied to strongly gravitating bodies (i.e. ones with non-
negligible gravitational binding energy), constitutes the strong
equivalence principle.

3These couplings, however, may be significant for the
dark-matter sector [66]. 4A term proportional to ðv=cÞ2N is said to be of Nth PN order.
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Since current constraints force ðα1; α2Þ to be small
dimensionless numbers, we can expand the theory in these
quantities and shrink the parameter space to just two
parameters. In Einstein-æther theory, this implies [39,48]

c2 ¼
−2c21 − c1c3 þ c23

3c1
; (10)

c4 ¼ −
c23
c1

; (11)

to leading order in α1 and α2. The only free parameters in
Einstein-æther theory are then c� ≡ c1 � c3.
Further constraints on c� come from requiring that

perturbations about a Minkowski background are stable
and have positive energy [67] and that matter does not emit
gravitational Cherenkov radiation [49]. Such radiation
would be emitted if the speed of the æther’s and metric’s
propagating modes were smaller than the speed of light.
These requirements result in the bounds

0 ≤ cþ ≤ 1; (12)

0 ≤ c− ≤
cþ

3ð1 − cþÞ
; (13)

to leading order in α1 and α2. In addition to these, Foster
[50] estimated that roughly c� < Oð10−2Þ, assuming a
small-coupling approximation (ci ≪ 1) and using order-of-
magnitude information about the orbital decay of binary
pulsars.
For arbitrary ci, the dependence of the gravitational

constant GC appearing in the Friedmann equation on the
coupling constants is different than that of the gravitational
constantGN measurable via Cavendish-type experiments. For
generic values of the couplings, therefore, GN and GC differ.
This difference leads to deviations from the metal abundances
predicted by BBN [53] and to a modified growth of
cosmological perturbations that affects the cosmic microwave
background (CMB) and the distribution of matter at large
scales [41]. However, once Eqs. (10) and (11) are satisfied,
GN ≈GC up to terms of Oð10−4Þ, and thus, cosmological
observations do not significantly reduce the viable region
defined by Eqs. (12) and (13) [39,40]. Similarly, although
black hole solutions in Einstein-æther theory differ from GR
[52,68,69], current electromagnetic observations of black hole
candidates are still not accurate enough to provide constraints
competitive with current bounds (see e.g. Ref. [70]).

B. Khronometric theory and Hořava gravity

As mentioned in the previous section, Einstein-æther
theory breaks Lorentz invariance by locally specifying a
preferred time direction through an æther vector field Uα.
This vector field may appear from the existence of a global
preferred time. In this case, it will be orthogonal to the

hypersurfaces of constant preferred time, i.e. proportional
to the gradient of a foliation-defining scalar field T:

Uμ ¼
∂μTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gμν∂μT∂νT
p ; (14)

which satisfies normalization condition UαUα ¼ 1. The
æther vector field is timelike as a consequence of the scalar
defining a preferred time coordinate. The scalar T is often
referred to as the “khronon,”5 and a metric theory in which
Lorentz invariance is broken globally by such a scalar is
called “khronometric theory.”
The most generic action (quadratic in derivatives) for

khronometric theory is given by Eq. (1) with the definition
in Eq. (14) [51,73]. The condition in Eq. (14) allows one to
express one of the æther terms in the action in terms of the
other ones, and thus there are only three free independent
æther terms. In particular, we can absorb the c1 term into
the other three terms, by multiplying the second, third and
fourth term, respectively, by the new couplings

λ≡ c2; β≡ c3 þ c1; α≡ c4 þ c1: (15)

Another form for the action can be derived by choosing the
time coordinate to coincide with T ¼ const hypersurfaces.
In this gauge, Eq. (14) becomes

Uα ¼ ðgTTÞ−1=2δTα ¼ NδTα ; (16)

where N ¼ ðgTTÞ−1=2 is the lapse. The action in Eq. (1)
with the definition in Eq. (14) then becomes [74]

SK ¼ 1 − β

16πGæ

Z
dTd3xN

ffiffiffi
h

p �
KijKij −

1þ λ

1 − β
K2

þ 1

1 − β
ð3ÞRþ α

1 − β
aiai

�
þ Smatðψ ; gμνÞ; (17)

where Kij, ð3ÞR and hij are, respectively, the extrinsic
curvature, the 3-Ricci curvature and the 3-metric of the
T ¼ const hypersurfaces and where we have defined the
“acceleration” of the æther flow,6 ai ≡ ∂i lnN. Latin
indices are manipulated with the 3-metric of the T ¼
const hypersurfaces.
An additional motivation for khronometric theory is

that it coincides with the low-energy limit of a theory of
gravity that has remarkable properties at high energies. This
theory is known as Hořava gravity [16] and achieves
power-counting renormalizability by adding higher-order
derivative terms to the khronometric action [16,46]:

5From the Greek χρoνoς—time. The Romanization was
chosen to avoid confusion with previous uses of the prefix
“chrono,” e.g. [71,72], which are not related to the theories under
study here.

6This vector is related to the acceleration of æther congruence
by Uμ∇μUν ¼ aiδνi .
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SH ¼ 1 − β

16πGæ

Z
dTd3xN

ffiffiffi
h

p �
L2 þ

1

M2⋆
L4 þ

1

M4⋆
L6

�
;

(18)

where the L2 term corresponds to the gravitational
Lagrangian of khronometric theory [cf. Eq. (17)], while
L4 and L6 are terms that are suppressed by a suitable mass
scale M⋆. These terms are, respectively, of fourth and sixth
order in the spatial derivatives but contain no derivatives
with respect to T.
Let us stress that the experimentally viable range for the

mass scale M⋆ is rather broad. On the one hand, M⋆ is
bound from above (M⋆ ≲ 1016 GeV) to allow the theory to
remain perturbative at all scales [74–76], so that the power-
counting renormalizability arguments of Ref. [16] can be
applied. On the other hand, M⋆ is also bound from below
from tests of Lorentz invariance. That lower bound,
however, depends on the details of the percolation of
Lorentz violations from the gravity to the matter sector,
which is not yet completely understood [29,34,51,77–79].
Taking instead into account only the constraints from
Lorentz violation in the gravity sector, one gets the
relatively weak bound M⋆ ≳ 10−2 eV [3,51].
In this paper, we will only consider khronometric theory;

i.e. we will focus on the low-energy limit of Hořava gravity
and neglect the higher-order terms L4 and L6. Neglecting
these terms is, however, an excellent approximation as far
as astrophysical studies are concerned. In fact, on purely
dimensional grounds, the error introduced by the L4 and L6

terms on a NS solution of massMtot in khronometric theory
is of OðG−2

N M−2
totM−2⋆ Þ ¼ OðM4

Planck=ðMtotM⋆Þ2. Taking the
lowest conceivable value for M⋆, i.e. M⋆ ∼ 10−2 eV, one
gets an error of roughly 10−16ðM⊙=MtotÞ2 or smaller, when
neglecting L4 and L6 in binary pulsar systems, which is
clearly negligible.
The field equations for khronometric theory can be

obtained by varying the action in Eq. (1), with the definition
in Eq. (14) replaced in it before the variation. Varying with
respect to gαβ and T one finds

Eαβ − 2æðαUβÞ ¼ 0; (19)

∇μ

�
æμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∇αT∇αT

p
�

¼ 0; (20)

where Eαβ and æα are defined as in Einstein-æther theory
[cf. Eqs. (5) and (6)].
As can be seen, any hypersurface-orthogonal solution to

Einstein-æther theory is also a solution to khronometric
theory, but the converse is not necessarily true. It can be
shown that spherically symmetric, static, asymptotically
flat solutions are indeed the same in the two theories
[51,73,80,81]. However, the same is not true in more
general cases; for example, the sets of slowly rotating
black hole solutions of the two theories do not overlap

[69,81,82]. Note that because of the Bianchi identity,
Eq. (20) is actually implied by Eq. (19) and by the equa-
tions of motion of matter (which imply ∇νT

μν
mat ¼ 0Þ;

i.e. the only independent equations of khronometric theory
are actually the modified Einstein equations and the
equations of motion of matter [73].
Finally, let us discuss the current experimental bounds on

the coupling constants of khronometric theory. Like in the
case of Einstein-æther theory, Solar System tests require
α1 ≲ 10−4 and α2 ≲ 10−7, and similar stringent bounds are
imposed on ðα̂1; α̂2Þ by pulsar observations (see Sec. VII
for a detailed discussion). The fact that

α2 ¼
α1

8þ α1
01þ α1ð1þ β þ 2λÞ

4ðβ þ λÞ
�

(21)

for khronometric theory [38] yields two possible ways to
enforce the previous bounds. One way is to choose α1 to be
small enough so that both bounds are simultaneously
satisfied. This can be enforced by only one condition of
the form

jα1j ¼ 4

���� α − 2β

1 − β

����≲ 10−6
�
1þ α1ð1þ β þ 2λÞ

4ðβ þ λÞ
�
−1
; (22)

which leaves the coupling parameters λ and β uncon-
strained. Another way is to saturate both bounds for α1 and
α2, which leads to a smaller parameter space; i.e. one can
require

4

���� α − 2β

1 − β

����≲ 10−4; (23)

α − 2β

α − 2

�
1þ ðα − 2βÞð1þ β þ 2λÞ

ðβ − 1Þðβ þ λÞ
�
≲ 10−7: (24)

For our purposes, Eqs. (22) and (23) are equivalent, since
our bounds will certainly not be sensitive to differences
below Oð10−4Þ. Thus, the choice given by Eqs. (23) and
(24) is more restrictive, and without loss of generality we
can neglect it [as it merely selects a very small subset of the
parameter space allowed by Eq. (22) at leading order in α1
and α2]. We stress, however, that the formalism presented in
this paper is perfectly suited to the constraints of Eqs. (23)
and (24) as well, and we do investigate this choice in more
detail in a later section (see e.g. Fig. 6).
Requiring that the propagating modes are stable and

have positive energy in flat space, and not allowing
gravitational Cherenkov emission by matter, one finds
the conditions [49,51,52]

0 < β < 1=3; λ >
βðβ þ 1Þ
1 − 3β

; (25)
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0 < β < 1=3; λ < −
2þ β

3
; (26)

1=3 < β < 1;
βðβ þ 1Þ
1 − 3β

< λ < −
2þ β

3
: (27)

Unlike in Einstein-æther theory, cosmological constraints
are rather strong in khronometric theory. In fact, one has

GN

GC
¼ 2þ β þ 3λ

2ð1 − βÞ ; (28)

to leading order in α1. The agreement between observations
and the metal abundances predicted by BBN requires
jGC=GN − 1j ≲ 1=8. Once this bound is combined with
the stability or Cherenkov constraints of Eqs. (25)–(27), it
selects a rather limited region of the ðλ; βÞ plane (cf. the
orange region in Fig. 1). Finally, when Eqs. (23) and (24)
are imposed, the ratio GC=GN is almost one, and BBN
observations do not impose a new constraint, as in the case
in Einstein-æther theory.
Further constraints may come from observations of the

CMB and large scale structure of the Universe. As for
BBN, those constraints are expected to be efficient except
for the case β ¼ −λ. This has been demonstrated explicitly
in Ref. [41], which extended the action in Eq. (1) by
including a dynamical dark-energy component. However,
because dynamical dark-energy models affect the evolution
of cosmological perturbations, we will not consider the
bounds of Ref. [41] here. Also, like in the Einstein-æther
case, black hole solutions in khronometric theory differ
from the GR ones [52,68,69,80–82] and may in
principle allow one to test the theory in the future.
Finally, Ref. [83] recently found a relation between

khronometric theory and Einstein-æther theory at the level
of the solutions to the field equations. More precisely,
Ref. [83] showed that the solutions of khronometric theory
can be obtained from the Einstein-æther theory solutions in
the limit c1 − c3 → ∞ (with c1 þ c3, c2 and c1 þ c4 held
fixed). While we have not used this correspondence in this
paper to derive the solutions to the khronometric theory
field equations, we have used it to test the correctness of
our results.

III. VIOLATIONS OF THE STRONG
EQUIVALENCE PRINCIPLE AND THE

SENSITIVITY PARAMETERS

The prediction of observables in physical theories
requires knowledge of the solution to the field equations
for the system under consideration. However, when study-
ing compact binary systems, e.g. of pulsars, exact solutions
are not available in modified gravity theories or, for that
matter, in GR. One is then forced to rely on approxima-
tions, such as the PN scheme, where the system’s dynamics
is expanded in the ratio between the characteristic velocity

of the system and the speed of light. In this scheme,
compact objects are modeled effectively with point par-
ticles. Clearly, this approximation breaks down in the
strong-field regions near the compact objects, but this will
be irrelevant in this paper; the PN scheme is ideal to study
the orbital decay rate of binary pulsars.
As already mentioned in Sec. II, the strong equivalence

principle is violated in Einstein-æther and khronometric
theory because of the Nördvedt effect [64,65], i.e. because
an effective coupling between matter and the æther appears
in the strong-gravity regime. To model this effect, the point-
particle action used to describe compact objects must
depend on “æther charges” or “sensitivity parameters”
[84,85] coupling the particles to the æther. In this section,
we will explain how this comes about, what these param-
eters mean physically, and how they can be computed from
the PN metric tensor. We then proceed with a strong-field
definition of the sensitivities and conclude with a descrip-
tion of how the sensitivities percolate into observables, with
a particular focus on GW fluxes.

A. A post-Newtonian route to the sensitivities

1. Point-particle action for compact objects

In PN theory, one models the motion of compact objects
sufficiently far from each other effectively through point
particles. The way these particles couple to the different
fields of the theory encapsulates finite-size or strong-field
effects. For weakly gravitating objects (i.e. ones with
negligible binding energy compared to their total gravita-
tional mass), the point particles effectively describing them
in the PN scheme can only couple to the metric [cf. Eq. (4)
and discussion in Sec. II]. However, even though the matter
fields do not couple directly to the æther, the metric does so
nonminimally. Therefore, because matter couples to the
metric (although weakly) through gravity, an effective
coupling appears between the æther and the matter fields
when gravity is strong (i.e. when the metric perturbations
produced on the background by the presence of the object
are large, as in the case of NSs). The existence of this
effective coupling has long been known in the context of
scalar-tensor theories (where it is called the Nördvedt effect
[64,65]) and introduces deviations away from geodesic
motion for strongly gravitating objects, thus violating the
strong equivalence principle. The sensitivities will para-
metrize this effective coupling.
In order to clarify how violations of the strong equiv-

alence principle come about, let us briefly review the
physical meaning of the sensitivities in scalar-tensor
theories [84]. In those theories, the gravitational interaction
is mediated by the metric and by a gravitational scalar field
ϕ, coupled minimally to the matter but nonminimally to the
metric. The gravitational constant, and therefore the bind-
ing energy of a compact object, depend on the local value
of the scalar field ϕ. Because the binding energy
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contributes to the gravitational mass, one has to include an
explicit dependence of the gravitational mass ~m on the
scalar field ϕ when using a point-particle model to describe
compact objects, i.e. SppA ¼ −

R
dτA ~mAðϕÞ, with A the

object’s label. From this, it is clear that the strong
equivalence principle will be violated, because the scalar
field depends on position, the mass becomes position
dependent, and the variation of SppA does not yield the
geodesic equation.
We can parametrize deviations from geodesic motion by

exploiting the fact that in the PN regime all motion is slow
compared to the speed of light, and one expects that
changes in scalar field are also generally small and
slow. At leading PN order, it is sufficient to consider a
leading-order Taylor expansion of the mass ~mAðϕÞ and
parametrize deviations from geodesic motion through the
sensitivity [84]

sϕA ≡ ∂ ln ~mA

∂ lnϕ
����
ϕ¼ϕ0

; (29)

where ϕ0 is the constant value of the scalar field far from
the object. The partial derivative in Eq. (29) is to be taken
along a reversible transformation of the object [84]. This is
because under a change of the local scalar field (and
therefore of the local value of the gravitational constant) the
binding energy also changes, resulting in the body expand-
ing or shrinking. The extra kinetic energy gained by the
volume elements of the body is then assumed to be
transformed into potential energy without production of
heat (i.e. without production of entropy). In other words,
the body is thought to gradually adapt its structure to the
change in the scalar field. This is a good approximation if
the scalar field changes slowly enough, which is the case in
the PN regime.
In Einstein-æther and khronometric theory the situation

is similar. In general, because of the effective coupling
between the æther vector field and matter in the strong field
regime, the compact object’s structure, its binding energy
and its gravitational mass will be a function of the motion
relative to the æther. This is exactly why Lorentz symmetry
is violated in these theories; i.e. if Lorentz symmetry is
broken, then the motion of any compact body with respect
to the æther should be experimentally detectable. Drawing
inspiration from scalar-tensor theories, let us model sys-
tems of strongly gravitating objects with a point-particle
action of the form [50]

SppA ¼ −
Z

dτA ~mAðγAÞ; (30)

where A labels the object, γA ≡Uμu
μ
A (with u

μ
A denoting the

particle’s four-velocity and Uμ, as usual, the æther vector
field) is the Lorentz factor of each particle relative to the
æther, and dτA is the proper length along the particle’s

trajectory. Because PN theory is a perturbative expansion in
the system’s characteristic velocity, and because γA ∼ 1
corresponds to an object moving slowly relative to the
æther, we Taylor expand the action of Eq. (30) as

SppA ¼ − ~mA

Z
dτA

�
1þ σAð1 − γAÞ

þ 1

2
σA

0ð1 − γAÞ2þO½ð1 − γAÞ3�
�
; (31)

where ~mA ≡ ~mAð1Þ is a constant and we have defined the
sensitivity parameters σA and σ0A via

σA ≡ −
d ln ~mAðγAÞ

d ln γA

����
γA¼1

; (32)

σA
0 ≡ σA þ σ2A þ d2 ln ~mAðγAÞ

dðln γAÞ2
����
γA¼1

; (33)

in analogy with scalar-tensor theories. In what follows, it
will sometimes be convenient to use the rescaled sensitivity
parameter

sA ≡ σA
1þ σA

: (34)

Clearly, for weakly gravitating objects, σA ≈ sA ≈ 0
and σA

0 ≈ 0.
Let us stress that the assumption that vA=c ≪ 1, where

vA ∼ ½2ðγA − 1Þ�1=2 is the velocity of the Ath compact
object relative to the æther, is implicit in Eq. (31). The
PN expansion, on the other hand, is in terms of the ratio
v12=c, where v12 is the binary’s relative velocity (i.e. the
binary system’s characteristic speed). In our analysis we
will consider both v12=c ≪ 1 and vA=c ≪ 1. This follows
from the combination of these two facts: (i) cosmologically,
the æther must be almost aligned with the CMB frame
(otherwise there would be strong and nonviable effects on
the cosmological evolution; see also Ref. [86] for a
dynamical study of the alignment); (ii) the peculiar velocity
of our Galaxy relative to the CMB is ∼10−3c; thus the
center of mass of binary systems moves slowly relative to
the æther.
For an action of the form of Eq. (30), there is a subtlety in

the derivation of the field equations. In fact, the field
equations presented in Sec. II assume that the æther does
not couple directly to matter [cf. Eq. (4)], but as mentioned
above, this is not the case in a point-particle model aiming
at effectively describing systems of compact objects.
Because of the presence of this effective coupling, the
field equations get modified by terms proportional to
the sensitivities. In particular, for Einstein-æther theory,
the equations for the æther [Eq. (6)] are modified to include
a source term
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~æμ ≡ æμ þ 8πGæ ~mA

u0
ffiffiffiffiffiffi−gp δð3Þðxi − xiAÞðσA þ σ0ð1 − γAÞÞ

× ðuμA − γAUμÞ ¼ 0; (35)

where xiA is the worldline of the Ath point particle. Also,
Einstein equations [Eq. (5)] remain valid, but the matter
stress-energy tensor picks up additional terms with respect
to the definition Eq. (9). Mathematically, these extra terms
appear because the modified æther equation [Eq. (35)]
changes the value of the Lagrange multiplier enforcing the
unit constraint. Doing the calculation explicitly, it turns out
that the matter stress-energy tensor becomes

Tμν
ppæA ¼

~mA

u0A
ffiffiffiffiffiffi−gp δð3Þðxi − xiAÞ

��
1þ σA −

σA
0

2
ð1− γ2AÞ

�
uμAu

ν
A

− ½σAþ σA
0ð1− γAÞ�ð2UðμuνÞA − γAUμUνÞ

�
;

(36)

with the stress tensor for the æther field still given
by Eq. (7).
Similarly, in khronometric theory, Eqs. (19) and (20) are

still valid if æμ is replaced by ~æμ as defined by Eq. (35), and
if the point-particle stress-energy tensor is given by

Tμν
ppkhA¼

~mA

u0A
ffiffiffiffiffiffi−gp δð3Þðxi−xiAÞ

��
1þσA−

σA
0

2
ð1− γ2AÞ

�
uμAu

ν
A

− ½σAþσA
0ð1− γAÞ�γAUμUν

�
: (37)

This implies, in particular, that hypersurface-orthogonal
solutions of Einstein-æther theory are also solutions of
khronometric theory, although the converse is not always true.

2. PN solution to the modified field equations

In this section, we review the solution to the field
equations for a binary system of compact objects. In
particular, we will solve the equations within a PN
approximation (v12=c ≪ 1), for binaries moving slowly
relative to the æther (vA=c ≪ 1) and described by the
effective action of Eqs. (30) and (31). Note that the solution
will intrinsically depend on the parameter ~mA and the
sensitivities σA and σA

0, but σ0A will enter at higher order
than σA in the perturbative expansion [cf. Eq. (31)]. The
solution presented here for the Einstein-æther theory was
derived in Ref. [50], while the solution for khronometric
theory is novel (but see Ref. [38] for a restricted solution
with vanishing couplings between the point particles and
the æther). The derivations are standard and we will simply
present the results here for completeness.
Let us work in the standard PN gauge and PN coor-

dinates ðt0; x0; y0; z0Þ [87]. In both Einstein-æther and
khronometric theory, the 1PN metric takes the form

g0000 ¼ 1 −
1

c2
2GN ~m1

r01
þ 1

c4

�
2G2

N ~m2
1

r021
þ 2G2

N ~m1 ~m2

r01r
0
2

þ 2G2
N ~m1 ~m2

r01r
0
12

−
3GN ~m1

r01
v021 ð1þ σ1Þ

�

þ 1 ↔ 2þ Oð1=c6Þ; (38)

g00i0 ¼ −
1

c3

�
B−
1

GN ~m1

r01
v0i1 þ Bþ

1

GN ~m1

r01
v0j1 n̂

0j
1 n̂

0i
1

�

þ 1 ↔ 2þ Oð1=c4Þ; (39)

gi0j0 ¼ −
�
1þ 1

c2
2GN ~m1

r01

�
δij þ 1 ↔ 2þ Oð1=c4Þ; (40)

where ~mA is the mass of the Ath point particle [cf. Eq. (31)],
v0iA its velocity, r012 the binary’s separation, r

0
A the distance

from the Ath particle to the field point, and n̂0iA the unit
vector associated with r0A and the symbol 1 ↔ 2means that
one is to add all terms on the right-hand side of the equality
with the exchange 1 ↔ 2. We have restored here factors of
1=c to make the PN order counting clearer. A term
proportional to ð ~mA=r0AÞN and ðjvA0ij=cÞ2N is said to be
of Nth PN order or of Oð1=c2NÞ.
In Einstein-æther theory, the values of the constants

B�
A are

B�
A ≡� 3

2
− 2� 1

4
ðαæ1 − 2αæ2 Þ

�
1þ 2 − c14

2cþ − c14
σæA

�

−
c−
c1

σæA −
1

4
αæ1

�
1þ c−

2c1
σæA

�
; (41)

where the weak-field PPN parameters are

αæ1 ¼ −
8ðc23 þ c1c4Þ
2c1 − cþc−

; (42)

αæ2 ¼ αæ1
2
−
ðc1 þ 2c3 − c4Þð2c1 þ 3c2 þ c3 þ c4Þ

ð2 − c14Þc123
; (43)

and we have defined

c� ≡ c1 � c3; (44)

c14 ≡ c1 þ c4; (45)

c123 ≡ c1 þ c2 þ c3: (46)

In khronometric theory, the values of the constants B�
A are

B�
A ≡� 3

2
− 2� 1

4
ðαkh1 − 2αkh2 Þ

�
1þ 2 − α

2β − α
σkhA

�

− 2σkhA −
1

4
αkh1 ð1þ σkhA Þ; (47)

CONSTRAINTS ON EINSTEIN-ÆTHER THEORY AND … PHYSICAL REVIEW D 89, 084067 (2014)

084067-11



where now the weak-field PPN parameters are

αkh1 ¼ 4ðα − 2βÞ
β − 1

; (48)

αkh2 ¼ ðα − 2βÞ½−β2 þ βðα − 3Þ þ αþ λð−1 − 3β þ 2αÞ�
ðβ − 1Þðλþ βÞðα − 2Þ :

(49)

The æther field takes the form

U0 ¼ 1þ 1

c2
GN ~m1

r01
þ 1 ↔ 2þ Oð1=c4Þ; (50)

Ui ¼ 1

c3
GN ~m1

r01
ðC−

1 v
0i
1 þ Cþ

1 v
0j
1 n̂

0j
1 n̂

0i
1Þ þ 1 ↔ 2þ Oð1=c5Þ;

(51)

where for Einstein-æther

C�
A ≡ 8þ αæ1

8c1
½c− − ð1 − c−ÞσæA�

� 2 − c14
2

�
2αæ2 − αæ1

2ðc1 þ 2c3 − c4Þ
þ σæA
c123

�
; (52)

while for khronometric theory

C�
A ≡ 8þ αkh1

4
ð1þ σkhA Þ � 2 − α

4

�
2αkh2 − αkh1
ð2β − αÞ þ 2σkhA

β þ λ

�
:

(53)

3. The sensitivities from the PN metric

The PN solution presented in the previous section
provides a way to calculate the sensitivities in practice.
Consider in particular the solution for the metric tensor, but
specialize it to a single object (rather than a binary system)
moving relative to the æther. Mathematically, this is
achieved by setting one of the masses (e.g. ~m2) to zero
(or the separation r012 to infinity), but physically it corre-
sponds to placing oneself at a distance r01 from object 1,
such that R� ≪ r01 ≪ r012 (with R� being the radius of the
object). The existence of this “buffer” region is possible
because the PN scheme requires r012 ≫ R�, in order to
model the stars as point particles.
The advantage of considering an (effectively) single-

object system is that exact strong-field solutions that do not
rely on the point-particle approximation might exist for
such a system. Recall that this is not the case for binary
systems, for which only approximate PN solutions exist,
even in GR. If such a solution for a single object moving
relative to the æther can be found, the metric near spatial
infinity will be given by the PN solution of Eqs. (38)–(40),
with one of the masses set to zero. Because this solution

depends on σA, one can in principle read off this quantity
from the behavior of the exact solution near spatial infinity.
What components of the metric near spatial infinity

should we use to extract σA? One cannot use the spatial part
of the metric gi0j0 , because this does not depend on σA. We
could use the ðt0; t0Þ piece of the metric, but σA enters
multiplied by a term of Oð1=c4Þ. One can find σA more
easily by using the gravitomagnetic sector of the metric
[Eqs. (39), (41) and (47)] and in particular the OðvÞ terms.
By using Eqs. (41) and (47), one easily finds

σæA ¼ −
2c1½2ðBþ

A þ B−
AÞ þ 8þ αæ1 �

ðc1 − c3Þð8þ αæ1 Þ
(54)

in Einstein-æther theory and

σkhA ¼ −
½2ðBþ

A þ B−
AÞ þ 8þ αkh1 �

ð8þ αkh1 Þ (55)

in khronometric theory.
The coefficients B�

A that are needed to compute the
sensitivities are to be extracted from the exact solution for
an isolated NS moving relative to the æther, as measured by
an observer near spatial infinity. The exterior solution will
depend on the interior solution, since both must be properly
matched, as we will see in Sec. IV. Therefore, the
coefficients B�

A will depend on the strong-field behavior
of the solution in the stellar interior. Note also that these
coefficients appear in the metric [Eqs. (39), (41) and (47)]
at OðvÞ, and thus, to extract the sensitivities we only need
the strong-field solution at linear order in velocities.
Clearly, this procedure can in principle be pushed to next

order in v; i.e. σ0A can be extracted from the Oðv2Þ terms of
the strong-field solution near spatial infinity. However, as
already mentioned, σ0A enters the dynamics of compact
binaries at higher order than σA in a small-velocity
expansion. Because the orbital velocities of observed
binary pulsars are at most v12=c ∼ 10−3 (a value reached
by the double binary pulsar PSR J0737-3039A
[59,88–90]), and because the center-of-mass velocities
relative to the æther are on the order of the peculiar
velocity of our Galaxy (i.e. VCM=c ∼ 10−3), effects
proportional to σ0A will be negligible relative to effects
proportional to σA.

B. A strong-field route

As shown in the previous section, the sensitivity param-
eters can be calculated from the metric describing a body
moving with velocity v relative to the æther. One unsat-
isfactory aspect of that derivation, however, is that it uses a
“weak-field” PN approach that models bodies with point
particles. Here, we will relax the weak-field and point-
particle assumptions and show that Eqs. (54) and (55) also
follow from a strong-field definition of the sensitivities (i.e.
one that relates the sensitivities to the interior structure of
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the star, where the PN or point-particle treatment of the
previous section breaks down). In particular, we will
confirm that the calculation of the sensitivities only requires
knowledge of the metric near spatial infinity, and at linear
order in the velocity.
While the former is not that surprising (e.g. in GR,

genuinely strong-field quantities, such as the Arnowitt,
Deser and Misner mass, can be defined through the
asymptotic behavior of the metric or in terms of integrals
over the extent of the body), the latter is. In fact, one can
generalize the weak-field definition of the sensitivities
[Eqs. (31) and (32)] to the strong field by replacing the
gravitational mass of the point particle, ~mðγÞ, with its
strong-field counterpart, the total mass-energy of the body,
Mtot, and thus define

σ ¼ −
∂ lnMtot

∂ ln γ
����
v¼0

¼ −2
∂ lnMtot

∂ðv2Þ
����
v¼0

¼ −
∂2 lnMtot

∂v2
����
v¼0

:

(56)

It can be shown [91,92] that Mtot is indeed the strong-field
generalization of the point-particle mass ~mðγÞ, because far
away from the star gtt ¼ 1 − 2GNMtot=rþ � � �, which
agrees with the point-particle solution of Eq. (38) for
~mðγÞ ¼ Mtot. As for v (and γ), as mentioned above, they
are the velocity (and Lorentz factor) of the body relative to
the æther, so in a coordinate system comoving with the star
(that is, one where the star is at rest), they are defined in
terms of the behavior of the æther far from the star. In other
words, in a system of asymptotically Cartesian coordinates
where the motion is along the z axis, one has Uμ∂μ ¼
ð∂t − v∂zÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
þ Oð1=rÞ and gμν ¼ ημν þ Oð1=rÞ.

What is confusing about Eq. (56), however, is that it would
seem to imply that the mass Mtot (and therefore the metric)
needs to be calculated at order Oðv2Þ to extract the sensitiv-
ities, in contrast with the results of the previous section. In
what follows, wewill show that Eq. (56) does however lead to
the same expressions [Eqs. (54) and (55)] for the sensitivities
as the PN treatment of the previous section, essentially thanks
to Gauss’ theorem. This will confirm that one can extract the
sensitivity from the OðvÞ pieces of the metric alone. The
procedure we outline below is similar to that used in scalar-
tensor theories to extract the sensitivities of NSs from the
asymptotic behavior of the scalar field at spatial infinity [85]
(see also Ref. [93] for an approach similar to ours.)

1. Einstein-æther theory

As mentioned above, we consider a star at rest, and
the æther moving relative to it, so that Uμ∂μ ¼
ð∂t − v∂zÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
þ Oð1=rÞ and gμν ¼ ημν þ Oð1=rÞ in

asymptotically Cartesian coordinates. We also assume that
the system is in a stationary regime (i.e. that the metric and
æther do not depend on the time coordinate), which is

expected to be the case after an initial transient. For such a
system, we can write the total mass as [85]

Mtot ¼ −
Z
Σ
d3xðLg þLæ þLmatÞ; (57)

where Lg is the Einstein Lagrangian density,7 Læ is the
æther Lagrangian density

Læ ¼ −
1

16πGæ

ffiffiffiffiffiffi
−g

p
Mαβ

μν∇αUμ∇βUν (58)

[the Lagrange multiplier term lðUμUν − 1Þ is not included
here because Eq. (57) is to be evaluated on shell], Lmat is
the matter’s Lagrangian density, and Σ is a hypersurface
of constant time. We stress that one can write the total mass
in terms of the Lagrangian densities alone because the
fields have no explicit time dependence (i.e. in the absence
of time derivatives, the Hamiltonian is simply H ¼
_qp − L ¼ −L), and because the Einstein Lagrangian den-
sity Lg only depends on the metric and (quadratically) on
its first derivatives. We also note that the definition given by
Eq. (57) was also used in Ref. [91] for the study of black
hole mechanics and later in Ref. [55] in the context of GW
emission. For khronometric theory, it was used in Ref. [38],
where a brief summary with references to related work can
be found.
The sensitivities can then be obtained by varying the

mass of Eq. (57). When doing so, the bulk terms evaluate to
zero because of the Euler-Lagrange equations and one is
left with surface terms alone [38,85,91]. For a star, the
hypersurface Σ can be extended to its center, and we thus
have only surface terms at the outer boundary (spatial
infinity).
More in detail, because we are taking the difference

between two neighboring solutions of the modified field
equations, the æther and metric variations δUμ and δgμν
preserve the unit constraint UμUμ ¼ 1. Thus, the bulk
terms lead to the modified field equations and thus vanish,
even though Eq. (57) does not contain the Lagrange
multiplier term. Similarly, the surface terms coming from
the variation of Lg vanish, because we are working in a
gauge where gμν ¼ ημν þ Oð1=rÞ [85]. Also, the surface
terms coming from the variation of the matter Lagrangian
vanish because we assume the matter fields to be confined
within the star, while the boundary of the hypersurface Σ
can be pushed to spatial infinity.
As a result, the only surface terms that contribute in

Einstein-æther theory are those coming from the æther
Lagrangian:

7The Einstein Lagrangian density, unlike the Einstein-Hilbert
one (from which it differs by a total divergence), depends
only on first derivatives of the metric. Explicitly, Lg ¼
− 1

16πGæ

ffiffiffiffiffiffi−gp
gμνðΓα

μλΓλ
να − Γλ

μνΓα
λαÞ (cf. e.g. Ref. [94]).
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δMtot ¼ −
Z
∂Σ

d2SiδUμ

� ∂LU

∂ð∂iUμÞ
�
: (59)

Let us then evaluate Eq. (59) for a moving stationary
configuration. Clearly, δUμ is the difference between the
æther 4-velocities of two neighboring moving solutions
with velocities v and vþ δv, while the derivative
∂LU=∂ð∂iUμÞ must be calculated for a moving solution
with velocity v. It is more convenient to use asymptotically
spherical coordinates, in which Eq. (59) becomes

δMtot ¼
1

4Gæ
lim
r→∞

Z
π

0

dθr2 sin θδUμJrμ: (60)

At lowest order and in Cartesian coordinates, the
4-velocity variation is δUμ ¼ δvðvδμt − δμzÞ þ Oð1=rÞþ
Oðδv2Þ. In spherical coordinates, this becomes

δUμ ¼ δv

�
vδμt − cos θδμr þ sin θ

r
δμθ

��
1þ O

�
1

r
; δv

��
:

(61)

To calculate Jrμ, we need to solve the modified field
equations for a system comprised of a star at rest and an
æther moving slowly relative to it. In particular, expanding
the equations at linear order in the æther’s velocity and near
spatial infinity, one obtains the solution

ds2 ¼
��

1 −
2M�
r

�
dt2 −

�
1þ 2M�

r

�
dr2 − r2dθ2

− r2sin2θdφ2 − 2vðB− þ Bþ þ 4ÞM�
r

cos θdtdr

þ vð7þ 2B−ÞM� sin θdtdθ
�
×

�
1þ O

�
v;
1

r

��
;

(62)

Uμdxμ ¼
��

1 −
M�
r

�
dt

þ v

�
1 − ð1þ B− þ Bþ þ C− þ CþÞM�

r

�
cos θdr

− vr

�
1 − ð3þ 2B− þ 2C−ÞM�

2r

�
sin θdθ

�

×

�
1þ O

�
v;
1

r

��
; (63)

with

B� ≡� 3

2
− 2� 1

4
ðαæ1 − 2αæ2 Þ

�
1þ 2 − c14

2cþ − c14
σ̄æ

�

−
c−
c1

σ̄æ −
1

4
αæ1

�
1þ c−

2c1
σ̄æ

�
; (64)

C� ≡ 8þ αæ1
8c1

½c− − ð1 − c−Þσ̄æ�

� 2 − c14
2

�
2αæ2 − αæ1

2ðc1 þ 2c3 − c4Þ
þ 1

c123
σ̄æ

�
; (65)

where the length scaleM� can be shown to be related to the
total mass of the star,Mtot, byM� ¼ GNMtot [91,92], while
σ̄æ is a free parameter characterizing the asymptotic
behavior of the solution and which a priori might have
no relation to the sensitivity of Eq. (56). To compute this
parameter, one needs to solve the modified field equations
in the stellar interior and match to an exterior solution, as
we do in the next section. Not surprisingly, Eqs. (62) and
(63) can also be obtained directly by transforming the PN
solution in Eqs. (38), (39), (40), (50), and (51) to the
appropriate gauge and identifying σ ↦ σ̄.
Using these expressions, one gets

Jrμ ¼
�
δtμc3

M�
r2

− vδrμ
M� cos θ

r2
½c2ðC− − Cþ − 3Þ

þ cþðC− þ Cþ − 2Þ − c4� − vδθμ
M� sin θ

2r

× ½2ð−c1C− þ c3Cþ þ c3Þ − ðBþ þ B−Þc−�
�

×

�
1þ O

�
1

r
; v

��
; (66)

with which Eq. (60) can be evaluated explicitly to find

δMtot ¼ −σ̄æMtotvδv½1þ Oðv; δvÞ�; (67)

where we have used the relation M� ¼ GNMtot mentioned
above. We therefore have

∂ lnMtot

∂v ðvÞ ¼ −σ̄æv; (68)

and the sensitivity is

σæ ¼ −
∂2 lnMtot

∂v2
����
v¼0

¼ σ̄æ ¼ −
2c1½2ðBþ þ B−Þ þ 8þ αæ1 �

ðc1 − c3Þð8þ αæ1 Þ
; (69)

which reduces exactly to Eq. (54).

2. Khronometric theory

As discussed in Sec. II, khronometric theory can be
thought of as Einstein-æther theory with hypersurface
orthogonality [Eq. (14)] being imposed in the action before
variation. Equivalently, khronometric theory can be derived
from the same action as Einstein-æther theory, plus
four Lagrange multipliers lαω

α that enforce that the

YAGI et al. PHYSICAL REVIEW D 89, 084067 (2014)

084067-14



vorticity vector ωα ¼ ϵαβγδUβ∂γUδ vanishes. Here,
ϵμναβ ¼ ~ϵμναβ=

ffiffiffiffiffiffi−gp
, where ~ϵμναβ is the Levi-Civita symbol.

Such a formulation of the action has the advantage of
containing only first (and not second) derivatives of the
fields (and in particular of the æther field Uα). This allows
one to define Lagrangian densities in the usual way and
proceed as in the previous section for Einstein-æther theory
to define the sensitivities in the strong-field regime.
Because the Lagrange multiplier terms vanish on shell,
the mass of a time-independent configuration is given again
by Eq. (57), exactly as in the Einstein-æther case. When
taking the difference between the mass of two neighboring
solutions, the bulk terms vanish as a result of the modified
field equations, and one is left with surface terms alone.
Exactly as in the Einstein-æther case, the surface terms
coming from Lg vanish in a gauge where gμν ¼
ημν þ Oð1=rÞ, and so do the terms coming from the
variation of the matter Lagrangian, because the matter
fields are confined within the star.
As for the surface terms coming from the Einstein-æther

Lagrangian,usingEq. (14)wecanexpress theæthervariation
δUμ in terms of the variation δT of the foliation as

δUμ ¼ −
1

2
UμUνUλδgνλ þ

δνμ − UνUμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβ∂αT∂βT

q ∂νδT: (70)

A simple calculation then yields

δMtot ¼ −
Z

d3x∂i

� ∂LU

∂ð∂iUμÞ
δUμ þ

ðδiμ − UiUμÞǣμδTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβ∂αT∂βT

q
�

(71)

with

ǣμ ¼ ∂LU

∂Uμ
− ∂i

� ∂LU

∂ð∂iUμÞ
�

¼ −
1

8πGæ

ffiffiffiffiffiffi
−g

p ðα _Uν∇μUν −∇αJαμÞ: (72)

From Gauss’ theorem, we then have

δMtot ¼ −
Z

d2Si

� ∂LU

∂ð∂iUμÞ
δUμ þ

ðδiμ − UiUμÞǣμδTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβ∂αT∂βT

q
�
:

(73)

This expression must be evaluated with boundary
conditions gμν ¼ ημν þ Oð1=rÞ and Uμ∂μ ¼ ð∂t − v∂zÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
þ Oð1=rÞ.

In a suitable gauge, the asymptotic solution for a slowly
moving star is given by

ds2 ¼
��

1 −
2M�
r

�
dt2 −

�
1þ 2M�

r

�
dr2

− r2ðdθ2 þ sin2θdφ2Þ

− 2v

�
ðB− þ Bþ þ 4ÞM�

r

�
cos θdtdr

þ 2vr

�
ð3þ B− − JÞM�

r

�
sin θdtdθ

�

×
�
1þ O

�
v;
1

r

��
; (74)

Uμdxμ ¼
�
1 −

M�
r

�
ðdtþ v cos θdr − vr sin θdθÞ

×

�
1þ O

�
v;
1

r

��
; (75)

with

B� ≡� 3

2
− 2� 1

4
ðαkh1 − 2αkh2 Þ

�
1þ 2 − α

2β − α
σ̄kh

�

− 2σ̄kh −
1

4
αkh1 ð1þ σ̄khÞ; (76)

J̄ ≡ ð2þ 3λþ βÞ½2β þ αð−1 − σ̄khÞ þ 2σ̄kh�
2ðλþ βÞðα − 2Þ ; (77)

where M� ¼ GNMtot [91,92] and σ̄kh is again a constant
(a priori unrelated to the sensitivity) that characterizes the
solutions and which needs to be calculated from the full
slowly moving solution (i.e. from the solution describing
both the interior and exterior of the star). As in the Einstein-
æther case, Eqs. (74) and (75) can be obtained by solving
the modified field equations directly at OðvÞ near spatial
infinity, or also by transforming Eqs. (38), (39), (40), (50),
and (51) after identifying σ ↦ σ̄.
From Eqs. (74) and (75), one obtains ǣμ ¼ OðvÞ and

T ¼ tþ vr cos θ, so one can rewrite Eq. (73) as

δMtot ¼
1

4Gæ
lim
r→∞

Z
π

0

dθr2 sin θ

× ½δUμJrμ þ ðα _Uν∇rUν −∇αJαrÞδT� þ Oðv2Þ:
(78)

Finally, we can write

δUμ ¼ δvðvδtμ þ cos θδrμ − r sin θδθμÞ
�
1þ O

�
1

r
; δv

��
;

δT ¼ δvr cos θ (79)

and use Eqs. (74) and (75) to explicitly compute
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Jrμ ¼
�
δμt β

M�
r2

− vδμr
M� cos θ

r2
½ð2þ B− þ BþÞβ þ α

þ λð3þ B− − Bþ − 2J̄Þ� þ vδμθ
βM� sin θ

2r3

× ð2þ B− − Bþ − 2J̄Þ
��

1þ O
�
1

r
; v

��
; (80)

α _Uν∇rUν−∇αJαr

¼ v
M cosθ

r3
½2λð−B−þBþ þ 2J̄− 3Þ

þ βð−B−þ 3Bþ þ 4J̄− 2Þ− 2α�
�
1þO

�
1

r
;v

��
: (81)

Inserting these expressions in Eq. (78), one easily
obtains

δMtot ¼ −σ̄khMtotvδv½1þ Oðv; δvÞ�; (82)

where we have used again M� ¼ GNMtot. We then have

∂ lnMtot

∂v ¼ −σ̄khv (83)

and the sensitivity

σkh ¼ −
∂2 lnMtot

∂v2
����
v¼0

¼ σ̄kh ¼ −1 −
2ðBþ þ B−Þ
8þ αkh1

; (84)

which reduces exactly to Eq. (55).

C. Effect of the sensitivities on the
motion of binary systems

The strong equivalence principle is defined as the
universality of free fall for strongly gravitating bodies.
GR satisfies this principle, but this is clearly not the case for
theories in which the sensitivities are not zero. This is
because the sensitivities, as described previously, character-
ize how the structure of a compact object (i.e. a NS)
changes with the motion relative to the ambient field in
which the object is immersed (i.e. the æther field in
Einstein-æther or khronometric theory). As we will show
later, the sensitivities depend on the particular object under
consideration and, in particular, on its compactness.
Therefore, unless the sensitivities are exactly zero as in
GR, different bodies respond differently to motion relative
to the ambient field and thus move along different
trajectories, violating the strong-equivalence principle.
In the case of Einstein-æther and khronometric theory,

the sensitivities affect both the conservative and dissipative
sectors. As for the former, the sensitivities modify
Newton’s universal gravitation law; i.e. at Newtonian order
the motion of a binary is described by [50]

_viA ¼ −
GN ~mBn̂iAB
ð1þ σAÞr2AB

; (85)

where rAB ¼ jxA − xBj and n̂iAB ¼ ðxiA − xiBÞ=rAB. Let us
rewrite this expression as [50]

_viA ¼ −
GmBn̂iAB

r2AB
; (86)

where we define the active gravitational masses as

mB ≡ ~mBð1þ σBÞ (87)

and the two-body coupling constant

G≡ GN

ð1þ σAÞð1þ σBÞ
: (88)

Similarly, the sensitivities enter the equations of motion
also at higher PN order in the conservative sector [50].
When it comes to the dissipative sector, and in particular

to binary pulsars, the most well-known observable is the
rate of change of the orbital period. In fact, it was the
monitoring of this quantity that led to the first indirect
detection of GWs by Hulse and Taylor [95–97]. For orbits
satisfying Eq. (86), this observable can be written as

_Pb

Pb
¼ −

3

2

_Eb

Eb
; (89)

where Pb is the orbital period and Eb is the binary’s binding
energy. In deriving this relation, we have used the fact
that the conservative sector is corrected only as in Eq. (85)
to leading PN order. Thus, the binding energy is given
by Eb ¼ −Gμm=ð2aÞ and the orbital period by Pb ¼
2πa3=2=ðGmÞ1=2, as in Newtonian orbital mechanics, but
in terms of the two-body coupling constantG and the active
gravitational masses mA. Here, a is the semimajor axis and

μ≡m1m2=m; m≡m1 þm2 (90)

are the reduced (active) mass and the total (active) mass,
respectively.
Equation (89) can be further manipulated by relating the

rate of change of the binding energy to the total flux of
energy F carried away from the system:

_Eb ¼ −F: (91)

In GR, F is only due to the propagation of tensor modes
(i.e. GWs), but in modified theories one normally finds
radiation from scalar and vector modes. The balance law in
Eq. (91) should hold because the total energy of the system
is a conserved quantity [38,91,92].
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The energy flux carried by all propagating degrees of
freedom can be computed by investigating the Noether
charges and currents in the theory under consideration.
These charges and currents depend on the solution to the
evolution equations for the metric perturbations on a
Minkowski background in the far zone, i.e. at distances
much larger than the GW wavelength as measured in the
system’s center-of-mass frame. In what follows, we will
summarize how to compute this flux in Einstein-æther and
khronometric theory, which then leads to a prediction for
the orbital decay rate via Eq. (89).

1. Dissipative PN dynamics in Einstein-æther theory

The energy flux in Einstein-æther theory and for a matter
action of the form of Eq. (31) was first calculated by Foster
[50]. After rederiving these results we have found impor-
tant discrepancies with Foster’s work, which justifies
showing the calculation in some detail here. In the
following, we present the correct formulas that correct
the miscalculations in Ref. [50].
The energy flux is carried by degrees of freedom that

propagate away from the source. In this region, it is
convenient to treat the metric and æther fields as perturba-
tions around a Minkowski background ημν with the æther
pointing in the time direction and decompose their spatial
components as

h0i ¼ γhi þ γh;i; Ui ¼ νi þ ν;i;

hij ¼ ϕij þ
1

2Δ
ðδijΔFh − Fh

;ijÞ þ 2ϕði;jÞ þ ϕh
;ij; (92)

where Δ is the Laplacian differential operator and

γhi;i ¼ νi;i ¼ ϕii ¼ ϕi;ij ¼ ϕi;i ¼ 0: (93)

Once the previous decomposition is used in the field
equations, Eqs. (5) and (35), one can follow the calculation
in Ref. [50] to find the waveform at a distance r from the
source (note the opposite sign due to different conventions)

ϕij ¼ −
2Gæ

r
Q̈TT

ij ðt − r=w2Þ; (94)

where

w2
2 ≡ 1

1 − cþ
(95)

is the speed of propagation of the ϕij modes and

Qij ¼ Iij −
1

3
δijIkk; (96)

with Iij given by

Iij ¼
X
A

mAxiAx
j
A½1þ Oð1=c2Þ�; (97)

for a system of A bodies. Recall that here xiAðtÞ are the
trajectories of the Ath point particle, while viAðtÞ ¼ _xiA are
their 3-velocities.
The transverse-traceless projector is built with the unit-

norm vector n̂i ≡ ri=r, where ri are the coordinates of the
point where the fields are being computed [38]. To derive
the previous expressions we used the conservation proper-
ties of an improved energy-momentum tensor as defined in
Ref. [50]. For the vector modes, we choose the gauge
ϕi ¼ 0. The field γhi can be solved as

γhi ¼ cþνi; (98)

up to terms with a vanishing time derivative. Finally, the
equation for νi yields

νi ¼ −2Gæ

ð2c1−cþc−Þr
�
n̂j

w1

�
cþ

1−cþ
Q̈ijþ Q̈ijþVij

�
−2Σi

�
T

:

(99)

Here, the different tensors on the right-hand side are to be
evaluated at a retarded time t − r=w1, where w1 is the speed
of propagation of the vector modes,

w2
1 ≡ 2c1 − cþc−

2ð1 − cþÞc14
: (100)

Also, Qij is the trace-free part of the rescaled mass
quadrupole moment

Iij ¼
X
A

σA ~mAxiAx
j
Að1þ Oð1=c2ÞÞ; (101)

and we have also introduced the tensors8

Vij ¼ 2
X
A

σA ~mA _v
½i
Ax

j�
A½1þ Oð1=c2Þ�; (102)

Σi ¼ −
X
A

σA ~mAviA½1þ Oð1=c2Þ�: (103)

Finally, for the scalar sector, once we impose the gauge
ν ¼ γh ¼ 0, the equations for the fields ϕh and h00 in the far
zone read9

8The tensor Vij is absent in the calculations of Ref. [50],
which is a mistake. For the bounds derived later, this term plays a
subleading role.

9At the PN order we work to, we do not need the Oð1=c4Þ in
Eq. (104) since it corresponds to a conserved quantity; see
Ref. [50].
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Δh00 ¼
ΔF
c14

−
16Gæ

c14

X
A

~mAδ
ð3Þðxi − xiAðtÞÞ

× ½1þ Oð1=c2Þ�; (104)

c123Δ _ϕhþð1þc2Þ _F¼−16πGæn̂i
X
A

mAviAδ
ð3Þðxi−xiAðtÞÞ

× ½1þOð1=c2Þ�; (105)

while

F ¼ 4Gæc14
ðc14 − 2Þr

�
3

2
ðZ − 1Þn̂in̂jQ̈ij þ

1

2
Z ̈Ikk

−
n̂in̂j

c14w2
0

�
Q̈ij þ

1

3
δijÏkk

�
þ 2

c14w0

n̂iΣi

�
þ Oð1=c5Þ;

(106)

where we have defined

Z≡ ðαæ1 − 2αæ2 Þð1 − cþÞ
3ð2cþ − c14Þ

; (107)

and the speed of the F mode is

w2
0 ≡ ð2 − c14Þc123

ð2þ 3c2 þ cþÞð1 − cþÞc14
: (108)

These constants depend on ðc�; c13; c14; c123Þ [Eqs. (44)–
(46)] and ðαæ1 ;αæ2 Þ [Eqs. (42) and (43)]. Note that although
w0 is the same as that defined in Refs. [48,50,55], Z and the
structure of Eq. (106) differ from Refs. [50,55]. We have
checked10 that our expressions are consistent when taking
the weak-field limit [55], which is not the case for Ref. [50].
Using the previous equations and the expressions in

Refs. [50,55] we can compute the total flux F, and via
Eq. (89) the rate of change of the orbital period:

_Pb

Pb
¼ −

3aGæ

Gμm

	
A1

5
Q
���
ijQ
���
ij þ

A2

5
Q
���
ijQ
���
ij þ

A3

5
Q
���
ijQ
���
ij

þB1 I
���
I
��� þB2I

���
I
��� þB3I

���
I
���
þC _Σi

_Σi þD _Vij
_Vij



:

(109)

In these equations, the angle brackets stand for an average
over several wavelengths and we have defined the shorthand

A1 ≡ 1

w2

þ 2c14c2þ
ð2c1 − c−cþÞ2w1

þ 3c14ðZ − 1Þ2
2w0ð2 − c14Þ

; (110)

A2 ≡ 2ðZ − 1Þ
ðc14 − 2Þw3

0

þ 2cþ
ð2c1 − cþc−Þw3

1

; (111)

A3 ≡ 1

2w5
1c14

þ 2

3c14ð2− c14Þw5
0

; B1 ≡ c14Z2

4w0ð2− c14Þ
;

(112)

B2 ≡ Z
3w3

0ðc14 − 2Þ ; B3 ≡ 1

9c14w5
0ð2 − c14Þ

; (113)

C≡ 4

3w3
0c14ð2−c14Þ

þ 4

3c14w3
1

; D≡ 1

6w5
1c14

: (114)

Let us now evaluate the different terms in Eq. (109) for a
compact binary system in a generic orbit in the center-of-
mass frame. Using basic results from Newtonian and PN
orbital mechanics, we can evaluate the moments in
Eqs. (96) and (97) (cf. Ref. [50]). The only expression
not found in Ref. [50] is

_Vij ¼
2Gμm
r312

ðs2 − s1Þ½ _̂n½i12Xj�
CM − 2n̂½i12X

j�
CM _r12 þ r½i12 _X

j�
CM�;

(115)

where Xi
CM ≡ ðm1xi1 þm2xi2Þ=m are the center-of-mass

coordinates [see also Eq. (90) and the definitions around
Eq. (85)]. These moments are to be used in Eq. (109). As
explained in Ref. [50], the secular terms that depend on
Xi
CM can be neglected, as they are canceled by an opposite

contribution in the action. The final result is

_Pb

Pb
¼ −3

	�
GGæaμm

r412

��
8

15
ðA1 þ SA2 þS2A3Þð12v212 − 11_r212Þ þ 4ðB1 þ SB2 þ S2B3Þ_r212

þ ðs1 − s2Þ2
�
Cþ

�
18

5
A3 þ 2D

�
Vj
CMV

j
CM þ

�
6

5
A3 þ 36B3 − 2D

�
ðVi

CMn̂
i
12Þ2

�

þ ðs1 − s2Þ
�
12ðB2 þ 2SB3ÞVi

CMn̂
i
12v

j
12n̂

j
12 þ

8

5
ðA2 þ 2SA3ÞVi

CMð3vi12 − 2n̂i12v
j
12n̂

j
12Þ

��

; (116)

10Another way to check the consistency of the approach is to use the limit of Ref. [83] to compare with the khronometric results to be
shortly derived. Also in this case, our results are consistent.
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where recall that vi12 ≡ _ri12 is the relative 3-velocity, V
i
CM ≡

_Xi
CM is the center-of-mass velocity of the system relative to

the æther field and S≡ s1m2=mþ s2m1=m.
At this juncture, let us stop to discuss some qualitative

features of the orbital decay rate predicted in Einstein-æther
theory [Eq. (116)]. First, note that in the limit in which all
the coupling parameters go to zero, i.e. ci → 0, Eq. (116)
reduces to the GR result. Second, the Einstein-æther terms
can in principle dominate over the GR ones, under
appropriate conditions (i.e. unequal and sufficiently large
sensitivities, and sufficiently large couplings). This is
because the leading-order Einstein-æther term scales with
fewer powers of ~m=r12 than the GR result. Indeed, the
Einstein-æther terms enter first at absolute order Oð1=c8Þ,
whereas the GR prediction is of absolute order Oð1=c10Þ.
Such scalings are typical of dipolar radiation, and those
terms are proportional to the difference of the sensitivity
parameters squared. The existence of a preferred frame is
clear in the previous expression from the dependence on the
velocity of the center of mass with respect to the æther,
Vi
CM. Finally, note that for circular orbits, _r12 ¼ 0 and

n̂i12v
i
12 ¼ 0, and the above expressions simplify greatly.

2. Dissipative PN dynamics in khronometric theory

The energy flux in khronometric theory was first
calculated in Ref. [38], which focused on weak-field
sources. We will here present the main features of their
analysis, together with the generalization to the strong-
field case.
The total energy flux carried by propagating degrees of

freedom can be computed in khronometric theory, using the
decomposition in Eq. (92), to be [38]

hFi ¼ −
1

32πGæ

I
S
dΩr2

	
1

ct
_ϕij

_ϕij −
ðα − 2Þ
2αcs

_F _F



þ h _Oi;
(117)

where c−2t ¼ 1 − β is the speed of propagation of the tensor
modes and

c2s ¼
ðα − 2Þðβ þ λÞ

αðβ − 1Þð2þ β þ 3λÞ (118)

is the speed of propagation of the scalar modes. The term _O
corresponds to a boundary term given by a time derivative.
This term has two components: one that cancels when
averaged over the orbit and another one that cancels against
secular terms (cf. Ref. [50]).
The far-zone fields appearing in Eq. (117) can be

obtained by solving the modified field equations from
Sec. III A 1 and using the method described in Ref. [38]
(see also Ref. [50]). The results are

ϕij ¼ −
2Gæ

r
Q̈TT

ij ðt − r=ctÞ;

F ¼ 4Gæα

ðα − 2Þr
�
3

2
ðZ − 1Þn̂in̂jQ̈ij þ

1

2
Z̈Ikk

−
n̂in̂j

αc2s

�
Q̈ij þ

1

3
δijÏkk

�
þ 2

αcs
n̂iΣi

�
: (119)

In the expression for F, the different moments should be
evaluated at the retarded time t − r=cs, and we have defined

Z≡ ðαkh1 − 2αkh2 Þð1 − βÞ
3ð2β − αÞ : (120)

After performing the angular integration in Eq. (117), the
orbital decay rate is still given by Eq. (109), but now with
the coefficients

A1 ≡ 1

ct
þ 3αðZ − 1Þ2

2csð2 − αÞ ; A2 ≡ 2ðZ − 1Þ
ðα − 2Þc3s

; (121)

A3 ≡ 2

3αð2 − αÞc5s
; B1 ≡ αZ2

4csð2 − αÞ ; (122)

B2 ≡ Z
3c3sðα − 2Þ ; B3 ≡ 1

9αc5sð2 − αÞ ; (123)

C≡ 4

3c3sαð2 − αÞ ; D ¼ 0: (124)

Clearly then, the same observations made after Eq. (109)
are still valid here. In particular, the orbital decay rate is of
dipolar structure and depends on the sensitivities.

IV. NEUTRON STAR SOLUTIONS IN
EINSTEIN-ÆTHER THEORY

In this section, we construct Einstein-æther theory
solutions that describe isolated nonspinning NSs moving
slowly relative to the æther. We begin by presenting the
metric and æther ansatz and expand the field equations at
zeroth and first order in the velocity v relative to the æther.
We then explain how to solve these equations numerically.

A. Metric ansatz, æther field ansatz and
neutron star model

Let us consider a generic ansatz for the metric and æther
fields, for a stationary configuration describing a nonspin-
ning NS in slow motion with velocity vi relative to the æther.
One can adopt a coordinate system comoving with the

fluid elements of the NS by aligning the time coordinate
vector to the fluid’s 4-velocity uμ. More specifically, we can
choose a spacelike hypersurface Σ and assign spatial
coordinates on it. One can then define the spatial coordinates
of an event p as those of the intersection between Σ and the
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worldline of the fluid element passing through p.11 In these
comoving coordinates, the fluid elements are at rest, while
the æther is moving. In particular, the fluid 4-velocity field is

uμ ¼ δμtffiffiffiffiffi
gtt

p : (125)

Because the system is invariant under spatial rotations
around the direction of the motion relative to the æther, it is
convenient to adopt asymptotically spherical coordinates
ðt; r; θ;φÞ in which the æther’s velocity direction corre-
sponds to the polar axis. Clearly, in these coordinates both
the metric and æther will not depend on the azimuthal
coordinate φ. Noting then that the system’s configuration
must be invariant under the simultaneous reflection of

vi ↦ −vi; (126)

t ↦ −t; (127)

it is clear that at first order in the velocity, the only nonzero
components of the metric are the cross terms gtr and gtθ,
and the only nonvanishing components of the æther field
are Ur and Uθ. [Note that a contribution to Ut at OðvÞ is
forbidden by the normalization condition UμUμ ¼ 1.]
More explicitly, the most generic ansatz at linear order in

v for the metric and æther is given by

ds2 ¼ eνðrÞdt2 − eμðrÞdr2 − r2ðdθ2 þ sin2θdφ2Þ
þ 2vVðr; θÞdtdrþ 2vrSðr; θÞdtdθ þ Oðv2Þ; (128)

Uμ ¼ eνðrÞ=2δtμ þ vWðr; θÞδrμ þ vQðr; θÞδθμ þ Oðv2Þ;
(129)

and the fluid 4-velocity Eq. (125) becomes

uμ ¼ e−ν=2δμt : (130)

Note that for a star, the æther cannot have any Ur
component at Oðv0Þ, as shown explicitly in Ref. [56] using
the field equations.
The ansatz of Eqs. (128)–(130) therefore depends on two

potentials μðrÞ and νðrÞ at order Oðv0Þ, and on four
potentials Vðr; θÞ, Sðr; θÞ, Wðr; θÞ, Qðr; θÞ at OðvÞ. This
ansatz, however, has been derived by choosing spatial
coordinates comoving with the fluid without specifying the
time coordinate. In particular, one is free to perform a
coordinate transformation of the form

t0 ¼ tþ vHðr; θÞ; (131)

which can be used to set any one of the potentials Vðr; θÞ,
Sðr; θÞ,Wðr; θÞ,Qðr; θÞ to zero while keeping the ansatz of
Eqs. (128)–(130) valid at OðvÞ (modulo a redefinition of
the remaining three potentials). In what follows, we will set
therefore Q ¼ 0 without loss of generality.
We use a perfect fluid stress-energy tensor to describe the

NS matter:

Tmat
μν ¼ ½~ρðrÞ þ ~pðrÞ�uμuν − ~pðrÞgμν þ OðvÞ2; (132)

where ~ρðrÞ and ~pðrÞ are the fluid’s energy density and
pressure at Oðv0Þ, respectively. The density and pressure do
not have any OðvÞ contributions because they must be
invariant under the transformations in Eqs. (126) and (127).
Moreover, one can explicitly show that any OðvÞ pieces in
the density and pressure must vanish from the OðvÞ pieces
of the ðt; tÞ and ðr; rÞ components of the modified field
equations. Note also that, in spite of these facts, the ðt; rÞ
and ðt; θÞ components of Tmat

μν have OðvÞ contributions due
to the OðvÞ terms in the metric.
The relation between internal pressure and energy

density is parametrized by the EoS. We here investigate
four different, realistic EoS: Akmal-Pandharipande-
Ravenhall (APR) [98], SLy [99], Shen [100,101] and
LS220 [102]. For the Shen and LS220 EoS, we use a
temperature of 0.1 MeV and consider neutrinoless, β
equilibrium. These EoS are not the only ones that are
observationally viable, but they represent a sufficiently
large sample of the EoS to allow us to investigate how the
different observables depend on this choice.

B. Field equations

1. Oðv0Þ equations
Let us first look at the field equations at Oðv0Þ. The ðt; tÞ,

ðr; rÞ, and ðθ; θÞ components of the field equations give
three independent equations:

16
dM
dr

− 4c14rðr − 2MÞ d
2ν

dr2
− c14rðr − 2MÞ

�
dν
dr

�
2

þ 4c14

�
r
dM
dr

− 2rþ 3M
�
dν
dr

¼ 64πρr2; (133)

c14r2ðr − 2MÞ
�
dν
dr

�
2

þ 8rðr − 2MÞ dν
dr

− 16M ¼ 64πr3p;

(134)

4r2ðr − 2MÞ d
2ν

dr
− ðc14 − 2Þr2ðr − 2MÞ

�
dν
dr

�
2

× 4r

�
r
dM
dr

− rþM

�
dν
dr

− 8r
dM
dr

þ 8M ¼ 64πr3p;

(135)

11Note that this construction yields a bona fide coordinate chart
in the absence of caustics for the fluid flow (which is a reasonable
assumption for the system that we are considering) and in the
absence of closed timelike curves (which would in any case
violate causality and make the spacetime pathological).
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respectively, where pðrÞ and ρðrÞ are, respectively, the
rescaled NS pressure and density

p≡ 2 − c14
2

GN ~p; ρ≡ 2 − c14
2

GN ~ρ; (136)

with the length scale MðrÞ defined by

e−μðrÞ ≡ 1 −
2MðrÞ

r
: (137)

With these definitions,Mðr → ∞Þ ¼ M� ¼ GNMtot, where
Mtot is given by Eq. (57) [91,92]. Because GN is the value
of the gravitational constant measured with a Cavendish-
type experiment, thus entering Kepler’s laws, Mtot also
corresponds to the NS mass measured at spatial infinity by
a Keplerian experiment. To make this last fact clear, we
define Mobs ≡Mtot.
By using Eqs. (133) and (135), one can eliminate

ðdν=drÞ2 from Eq. (134) to yield

dν
dr

¼ 1

ðc14 − 2Þrðr − 2MÞ
�
2ðc14 − 2Þr dM

dr

þ 2ðc14 − 2ÞM þ 16πr3½ð2c14 − 1Þpþ ρ�
�
: (138)

By using this equation, ν can be eliminated from Eq. (133)
to give

dM
dr

¼ 1

c14ðc14 − 2Þr
�
−ð8 − 6c14 þ c214ÞM þ 2ðc14 − 2Þ

× ðr − 2MÞ1=2ðr − 2M þ c14M þ 4πc14r3pÞ1=2

− 2r½4πc14ð2c14 − 1Þr2pþ 4πc14r2ρþ c14 − 2�
�
;

(139)

and substituting this equation into Eq. (138), one has

dν
dr

¼ −
4

c14r

�
1 −

�
r − 2M þ c14M þ 4πc14r3p

r − 2M

�
1=2

�
:

(140)

One can use Eqs. (139) and (140) to eliminate dM=dr and ν
from Eq. (135) to yield

dp
dr

¼ 2

c14r
ðρþpÞ

�
1−

�
r− 2Mþ c14Mþ 4πc14r3p

r− 2M

�
1=2

�
:

(141)

This equation corresponds to the modified Tolman-
Oppenheimer-Volkoff (TOV) equation [103,104]. Solving
the field equations to zeroth order in velocity then reduces
to solving Eqs. (139)–(141), together with an EoS, for the
four unknown functions νðrÞ, MðrÞ, ρðrÞ and pðrÞ.
One may find it instructive to expand these equations

further in a small coupling approximation, i.e. c14 ≪ 1.
Doing so, the above equations become

dM
dr

¼ 4πr2ρ −
c14

4rðr − 2MÞ ½M
2 þ 8πð7pþ 2ρÞMr3

þ 8πð2πr2p2 − ρ − 3pÞr4� þ Oðc214Þ; (142)

dν
dr

¼ 2
4πr3pþM
rðr − 2MÞ − c14

ð4πr3pþMÞ2
2rðr − 2MÞ2 þ Oðc214Þ; (143)

dp
dr

¼ −
ð4πr3pþMÞðρþ pÞ

rðr − 2MÞ

þ c14
ð4πr3pþMÞ2ðρþ pÞ

4rðr − 2MÞ2 þ Oðc214Þ: (144)

The first terms in the above equations agree with the GR
result for the TOV equation; see e.g. Refs. [103,104].

2. OðvÞ equations
Let us now look at the field equations at OðvÞ. The

modified field equations and the æther field equations
become a system of partial differential equations for the
unknown functions Vðr; θÞ, Sðr; θÞ and Wðr; θÞ. One can
separate the variables r and θ by using the following
Legendre decomposition:

Vðr; θÞ ¼
X
n

knðrÞPnðcos θÞ; (145)

Sðr; θÞ ¼
X
n

snðrÞ
dPnðcos θÞ

dθ
; (146)

Wðr; θÞ ¼
X
n

wnðrÞPnðcos θÞ; (147)

where Pn is the nth Legendre polynomial. This structure
can be inferred from symmetry principles by looking at
how each component of the metric behaves under spatial
rotations and reflections with respect to the equatorial
plane; i.e. this is nothing but a tensor spherical harmonic
decomposition (see e.g. Ref. [105]).
With this decomposition at hand, the ðt; rÞ component of

the modified field equations and the r and θ components of
the æther field equations become
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dsn
dr

¼ 1

4

1

nðnþ 1Þr2
�
−4nðnþ 1Þc−reν=2jn − c14r2ðr − 2MÞ

�
dν
dr

�
2

kn − 4½2ðr − 2MÞkn þ nðnþ 1Þðc14 − 1Þrsn�r
dν
dr

þ 4½4M þ 16πpr3 þ nðnþ 1Þð1 − c−Þr�kn − 4nðnþ 1Þrsn
�
; (148)

d2jn
dr2

¼ 1

2

1

c123r2ðr − 2MÞ
��

−ðc2 þ c3 − c4Þr2ðr − 2MÞ d
2ν

dr2
jn þ 2c123r2

d2M
dr2

jn

þ r

�
−c123rðr − 2MÞ djn

dr
þ
�
ð2c123 − c14Þr

dM
dr

þ ð2cþ − 3c14 − 2c2ÞM − 2ðc3 − c4Þr
�
jn

�
dν
dr

þ 2c123

�
3r

dM
dr

− 2rþM

�
r
djn
dr

þ 2

�
2c2r

dM
dr

− 2ð2c123 þ c2ÞM þ ½nðnþ 1Þc1 þ 2c123�r
�
jn

�

þ nðnþ 1Þre−ν=2
�
ðc14 þ c2Þr

dν
dr

sn − ðc123 þ c2Þr
dsn
dr

þ ð3cþ þ 2c2Þsn þ c−kn

��
; (149)

dkn
dr

¼ 1

2

1

c−rðr − 2MÞ
��

2ðc2 þ c3 þ c4Þrðr − 2MÞ dν
dr

jn − 4ðc2 þ c3Þr
dM
dr

jn þ 4ðc2 þ c3Þrðr − 2MÞ djn
dr

þ 4½−ð3c123 þ c1ÞM þ 2c123r�jn
�
eν=2 − 2cþr2ðr − 2MÞ d

2sn
dr2

þ
�
−ðc− þ 2c4Þr

dsn
dr

þ ðc− þ 2c4Þsn þ ðcþ þ 2c4Þkn
�
rðr − 2MÞ dν

dr
þ 2cþr

�
3M − 2rþ r

dM
dr

�
dsn
dr

− 2ðcþsn − c−knÞr
dM
dr

− 2ð3cþsn þ c−knÞM þ 4nðnþ 1Þc123rsn
�
; (150)

respectively, where we have defined [recall also the
definitions in Eqs. (44)–(46)]

jn ≡ wn − e−ν=2kn: (151)

Note that the nth mode is independent of all other modes;
i.e. there is no mode coupling (see Appendix A for an
explanation). Note also that, as expected, the new unknown
functions at OðvÞ depend on the solutions to the Oðv0Þ
equations of the previous subsection.

C. Asymptotic solutions, matching conditions and
numerical techniques

The above system of differential equations must be
solved order by order in velocity twice: once in the interior
of the NS with a given EoS, and once in the exterior where
the density and pressure vanish. We solve these equations
as an initial value problem. The solutions will generically
depend on integration constants. These are determined by
imposing that the solutions be continuous and differen-
tiable at some matching radius, usually the NS surface.
Let us first concentrate on the initial conditions for the

Oðv0Þ equations. By imposing regularity at the NS center,
the behavior of the solution to the Oðv0Þ equations near the
center is

ρðrÞ ¼ ρc þ ρ2r2 þ Oðr3Þ; (152)

pðrÞ ¼ pc þ 4π
ðρc þ 3pcÞðρc þ pcÞ

3ðc14 − 2Þ r2 þ Oðr3Þ; (153)

MðrÞ ¼ − 4

�
2πρc þ 3πc14pc

3ðc14 − 2Þ
�
r3 þ Oðr5Þ; (154)

νðrÞ ¼ νc − 8π
ρc þ 3pc

3ðc14 − 2Þ r
2 þ Oðr3Þðr → 0þÞ; (155)

where ρc, pc and νc are the values of the density, pressure
and ν at the NS center, respectively. The quantity ρ2 is a
constant that can be expressed in terms of ρc and pc via
Eqs. (152) and (153) and the EoS. Similarly, by requiring
asymptotic flatness, the asymptotic behavior of the solution
near spatial infinity is

MðrÞ ¼ M� þ
c14
4

M2�
r

þ c14
4

M3�
r2

þ O
�
c14

M4�
r3

�
; (156)

eνðrÞ ¼ 1 −
2M�
r

−
c14
6

M3�
r3

þ O
�
c14

M4�
r4

�
ðr → ∞Þ; (157)

where M� ≡Mð∞Þ ¼ GNMobs, with Mobs the NS mass
observed by a Keplerian experiment.
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Given these asymptotic solutions, we numerically solve
the Oðv0Þ differential equations as follows. First, we choose
a specific value of the NS central density ρc, and with it, we
obtain pc from the EoS pc ¼ pðρcÞ. We obtain the interior
solution by solving Eqs. (139) and (141), together with the
EoS, from a core radius rϵ ≪ R� up to the NS surface,
defined as the radius R� at which the pressure vanishes. We
then use the values obtained from this interior solution
evaluated at the NS surface as initial conditions for a new
evolution of the equations in the exterior. The exterior
solution for MðrÞ is then evaluated at a large boundary
radius rb ≫ R� and set equal to the asymptotic expression
in Eq. (156), evaluated at the same radius rb, to solve for the
observed NS mass Mobs.
Next, we solve Eq. (140) for νðrÞ in the interior (from

r ¼ rϵ to the NS surface) using a trial value for νc. As
before, we then use the value of νðr ¼ R�Þ as an initial
condition to solve for νðrÞ in the exterior. Since Eq. (140) is
shift invariant, the trial solution plus a constant νtrðrÞ þ Cν

is also a solution. We choose Cν such that νðrÞ satisfies the
asymptotic behavior of Eq. (157) at r ¼ rb [11,106]:

eν
trðrbÞþCν ¼ 1 −

2M�
rb

−
c14
6

M3�
r3b

þ O
�
c14

M4�
r4b

�
: (158)

Note that in practice rb < ∞, but we choose it to be
sufficiently large such that the error incurred is smaller than
other numerical errors, e.g. those due to the discretization
of the differential equations.
Let us now discuss the initial conditions for the OðvÞ

equations. Equations (39) and (62) imply that we are only
interested in the n ¼ 1 component of the Legendre decom-
position, since these functions determine the sensitivities
and, thus, the orbital period decay rate. Imposing regularity
at the NS center, the solution to Eqs. (148)–(150) near the
center is

k1ðrÞ ¼ Cþ 1

30

1

c123ðc14 − 2Þ f3ðc14 − 2Þ½2ð6 − c−Þc2 þ 6cþ þ 6c3 þ c21 − c23�eνc=2D

− 24π½ð3þ 2cþ − 4c2Þc4 þ ð4 − 4c1 þ 9c14Þc2 þ 2c21 þ ð1þ 2c3 þ 3c14Þc1 þ ð3c14 − 2Þc3�pcC

− 8π½ð3þ 2cþ − 4c2Þc4 þ 2ð11 − 2c1Þc2 þ 2c21 þ ð2c3 þ 7Þc1 þ 4c3�ρcCgr2 þ Oðr3Þ; (159)

s1ðrÞ ¼ C −
1

30

1

c123ðc14 − 2Þ f3ðc14 − 2Þ½4ðc− − 1Þc2 − 2cþ − 2c3 þ 3c21 − 3c23�eνc=2D

− 24π½ð6cþ þ 8c2 − 1Þc4 þ ð8c1 − 3c14 − 8Þc2 þ 6c21 þ ð6c3 − c14 − 7Þc1 − ð6þ c14Þc3�pcC

− 8π½ð6cþ þ 8c2 − 1Þc4 þ 2ð4c1 − 7Þc2 þ 6c21 þ 3ð2c3 − 3Þc1 − 8c3�ρcCgr2 þ Oðr3Þ; (160)

w1ðrÞ ¼ Dr2 þ Oðr3Þ; (161)

where C and D are constants of integration. Similarly, we
can impose asymptotic flatness at spatial infinity and obtain
the asymptotic solution

k1ðrÞ ¼ k∞1 ðrÞ

≡ −1þ A
M�
r

þ ðkA2
Aþ kc2Þ

M2�
r2

þ
�
Bþ ðkA31

Aþ kc31Þ ln
�

r
M�

��
M3�
r3

þ O
�
M4�
r4

�
;

(162)

s1ðrÞ ¼ s∞1 ðrÞ

≡ −1þ ðsA1
Aþ sc1Þ

M�
r

þ ðsA2
Aþ sc2Þ

M2�
r2

þ
�
sA30

A −
B
2
þ sc30 þ ðsA31

Aþ sc31Þ ln
�
r
M

��
M3�
r3

þ O
�
M4�
r4

�
; (163)

w1ðrÞ ¼ w∞
1 ðrÞ

≡ Aþ 2ðc14 − 1Þ
c−

M�
r

þ ðwA2
Aþ wc2Þ

M2�
r2

þ ðwA30
Aþ wc30Þ

M3�
r3

þ O
�
M4�
r4

�
; (164)

where A and B are constants of integration, sA1
and sc1 are

given by

sA1
≡1

4

ð3c1þ2c2−4Þc1−2c2−ð2c2þ3c3þ2Þc3
c−c123

; (165)

sc1 ≡ −
1

2

1

c−c123
½ðc1 − c2 þ 3c3 þ 3c4 − 4Þc1

þ ð3c2 þ 2c3 þ 3c4 − 2Þc3 þ 2c2ðc4 − 1Þ�; (166)

and the other coefficients, kA2
, kc2 , kA31

, kc31 , sA2
, sc2 , sA30

,
sc30 , sA31

, sc31 , wA2
, wc2 , wA30

and wc30 similarly depend only
on ci (i ¼ 1, 2, 3, 4). We do not present explicit expressions
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for these quantities here because they are lengthy and
unilluminating.
One might be worried that the first terms in Eqs. (162)

and (163) seem to be inconsistent with the asymptotic
flatness condition, because they lead to terms in the metric
of the form gti ∼ vdxidt. However, such terms are coor-
dinate artifacts; for example, the Schwarzschild metric in
Eddington-Finkelstein coordinates has a component that
goes as gvr ∼ dvdr. An inverse coordinate transformation
t0 ≈ t − vz with z ¼ r cos θ would then eliminate such
terms in Eqs. (162) and (163), but we choose not to do
so here because the equations of structure are simpler in
these coordinates. The asymptotic behavior above is con-
sistent with the one found by Foster [50], as explained in
Appendix B.
The numerical solution to the modified field equations at

OðvÞ, i.e. Eqs. (148)–(150), can be obtained by exploiting
the linearity and homogeneity of the differential system.
First, let us arbitrarily choose two sets of values for the
constants ðC;DÞ in Eqs. (159)–(161) and solve Eqs. (148)–
(150) from r ¼ rϵ to the NS surface. Then, we evaluate
these interior solutions at the NS surface and use them as
initial conditions to numerically find the exterior solution.

Doing so, we obtain two homogeneous solutions Að1Þ
i and

Að2Þ
i , where Ai ≡ ðk1; s1; w1Þ, everywhere in the numerical

domain. With this at hand, the general solutions Ai can be
obtained by linear superposition

Ai ¼ C0Að1Þ
i þD0Að2Þ

i : (167)

The new constants C0 and D0 must be determined, together
with A and B in Eqs. (162)–(164), by requiring the
following matching conditions at spatial infinity:

k1ðrbÞ ¼ k∞1 ðrbÞ; (168)

s1ðrbÞ ¼ s∞1 ðrbÞ; (169)

w1ðrbÞ ¼ w∞
1 ðrbÞ; (170)

w0
1ðrbÞ ¼ w∞0

1 ðrbÞ: (171)

As before, we evaluate the matching at a fixed radius
rb ≫ R� that is large enough for the errors to be smaller
than those due to the discretization of the equations. We
will later check that our results are insensitive to the choice
of core and boundary radii.
The numerical techniques used to solve the Oðv0Þ and

OðvÞ differential system are the following. As already
mentioned, we treat the system as an initial value problem,
with initial conditions given by the asymptotic behavior of
the solution about the NS center. We then numerically solve
the equations with an adaptive step-size, fourth-order

Runge-Kutta method [107]. All numerical solutions pre-
sented in this paper are obtained with this numerical
algorithm. In all cases, we have checked that increasing
the numerical resolution does not affect the results
presented.
Finally, to obtain the sensitivities we transform the

asymptotic solution for the metric [Eqs. (162) and (163)]
to the gauge of Eqs. (38)–(40) (see Appendix B for the
explicit calculation). This relates the integration constant A,
which we can determine from our numerical solution,
to the constants B� appearing in Eqs. (54) and (69)
through

A ¼ −ðB− þ Bþ þ 2Þ: (172)

With this relation at hand, we can then write the sensitiv-
ities for an isolated star in Einstein-æther theory in terms of
the constant A as

σæ ¼ 2c1ð2A − 4 − αæ1 Þ
c−ð8þ αæ1 Þ

: (173)

V. NEUTRON STAR SOLUTIONS IN
KHRONOMETRIC THEORY

In this section, we construct solutions of khronometric
theory that describe nonspinning NSs moving slowly
relative to the æther. We follow the same organizational
structure as in Sec. IV, and thus begin by introducing the
metric and khronon field ansatz for a generic nonspinning
stationary and slowly moving system, and then present the
field equations and explain how to solve them numerically.

A. Metric ansatz, khronon field ansatz and
neutron star model

In khronometric theory, one can construct the æther field
from the khronon field T through the relation in Eq. (14).
The most generic ansatz for the metric, æther and for the
4-velocity of the NS fluid is then still given by
Eqs. (128)–(130). However, Eq. (14) (hypersurface ortho-
gonality) implies the relation

ϵαβγδUβ∇γUδ ¼ 0 (174)

between the different components of the æther field. Thus,
in the generic ansatz of Eq. (129) one has

∂ðQe−ν=2Þ=∂r ¼ e−ν=2∂W=∂θ (175)

in the khronometric case. This means that one can choose
the function Hðr; θÞ in Eq. (131) such that it satisfies the
conditions

∂H
∂r ¼ We−ν=2;

∂H
∂θ ¼ Qe−ν=2: (176)
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With this, one can eliminate both Ur and Uθ and thus set
W ¼ Q ¼ 0 by performing the coordinate transformation
in Eq. (131) with a judicious choice of H. This trans-
formation corresponds to using a foliation adapted to the
khronon T ¼ const hypersurfaces [i.e. t ¼ T þ OðvÞ2] and
leaves the ansatz of Eqs. (128)–(130) unchanged modulo a
redefinition of the potentials S and V.

B. Field equations

The modified field equations at Oðv0Þ are exactly the
same as those in æther theory [51,73,80,81], with the
substitutions of Eq. (15). At OðvÞ, the only nonvanishing
components of the modified Einstein equations are the
ðt; rÞ and ðt; θÞ ones, which, after performing the Legendre
decomposition of Eqs. (145)–(147), lead to

d2kn
dr2

¼ 1

8

1

ðβ þ λÞr2ðr − 2MÞ
�
4αr2ðr − 2MÞ d

2ν

dr2
kn þ 8ðβ þ λÞr2 d

2M
dr2

kn þ αr2ðr − 2MÞ
�
dν
dr

�
2

kn

− 4

�
−ðβ þ λÞrðr − 2MÞ dkn

dr
þ ðαþ β þ λÞr dM

dr
kn þ ½½3ðαþ λÞ − β þ 4�M − 2ðαþ λþ 1Þr�kn

þ nðnþ 1Þðλþ 1Þrsn
�
r
dν
dr

þ 8ðβ þ λÞr
�
−2rþ 3r

dM
dr

þM

�
dkn
dr

þ 16λr
dM
dr

kn þ 4nðnþ 1Þðβ þ 2λþ 1Þr2 dsn
dr

þ ½−16ð2β þ 3λþ 1ÞM þ 4½−16πr2pþ nðnþ 1Þðβ − 1Þ þ 4ðβ þ λÞ�r�kn − 4nðnþ 1Þð3β þ 2λ − 1Þrsn
�
; (177)

d2sn
dr2

¼ 1

4

1

ðβ − 1Þr2ðr − 2MÞ
�
4αr2ðr − 2MÞ d

2ν

dr2
sn þ αr2ðr − 2MÞ

�
dν
dr

�
2

sn

þ 2r

�
ðβ − 1Þrðr − 2MÞ dsn

dr
− 2αr

dM
dr

sn þ ½−2ð3α − β þ 1Þsn − 2ðβ − 1Þkn�M

þ r½ð4α − β þ 1Þsn þ ðβ − 1Þkn�
�
dν
dr

þ 4ðβ − 1Þr
�
3M þ r

dM
dr

− 2r

�
dsn
dr

þ 4r½−ðβ þ 3Þsn þ ðβ þ 2λþ 1Þkn�
dM
dr

− 4ðβ þ 2λþ 1Þrðr − 2MÞ dkn
dr

þ ½−12ðβ − 1Þsn þ 4ð7β þ 6λ − 1Þkn�M þ 8½½−8πr2pþ nðnþ 1Þðβ þ λÞ�sn − 2ðβ þ λÞkn�r
�
: (178)

1. Asymptotic solutions, matching conditions and numerical techniques

The initial conditions for the Oðv0Þ equations are exactly the same as in Einstein-æther theory, as described in Sec. IV C,
since the differential equations are identical. The initial conditions for the OðvÞ equations, on the other hand, will be
different. Requiring that the metric be asymptotically flat, the asymptotic behavior of the solution to Eqs. (177) and (178)
for the n ¼ 1 modes is

k∞1 ðrÞ ¼ −1þ A
M�
r

þ ð7þ 11β þ 18λÞA − 6ð6þ αÞλ − 2ð2αþ 11Þβ − 2ðαþ 7Þ
8ðβ þ λÞ

M2�
r2

þ
�
Bþ 2ðβ þ 3λþ 2Þ½ðαþ 5ÞA − ð3αþ 10Þ�

15ðβ þ λÞ ln

�
r
M�

��
M3�
r3

þ O
�
M4�
r4

�
; (179)

s∞1 ðrÞ ¼ −1þ ð−1þ 3β þ 2λÞAþ 2ð1þ 2β þ 3λÞ
4ðβ þ λÞ

M�
r

þ −ð3þ β þ 4λÞAþ 2ð1þ λÞαþ 6ð1 − βÞ
8ðβ þ λÞ

M2�
r2

þ
�
−8ð1 − 4β − 3λÞαþ 5ð13þ 38β þ 51λÞ

120ðβ þ λÞ A −
1

2
B −

3ð1þ 15β þ 17λÞαþ 5ð13þ 38β þ 51λÞ
60ðβ þ λÞ

−
ðβ þ 3λþ 2Þ½ðαþ 5ÞA − ð3αþ 10Þ�

15ðβ þ λÞ ln

�
r
M�

��
M3�
r3

þ O
�
M4�
r4

�
: (180)
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Imposing regularity at the NS center, the solution near
the center is

k1ðrÞ ¼ CþDr2 þ Oðr3Þ; (181)

s1ðrÞ ¼ Cþ r2

3ðβ − 2λ − 3Þðα − 2Þ
× ð−3αf8π½ðβ þ 3λþ 3Þpc þ ρc�C
þ ð3β þ 4λþ 1ÞDg
− 16π½ðβ þ 3λ − 1Þρc − 3pc�C
þ 6ð3β þ 4λþ 1ÞDÞ þ Oðr3Þ: (182)

The matching conditions and procedure are identical to
those described in Sec. IV C for Einstein-æther theory.
Similarly, the numerical techniques are the same, and the
extraction of the sensitivity is done by transforming the
asymptotic solution for the metric [Eqs. (179) and (180)] to
the gauge of Eqs. (38)–(40) (see Appendix B for the
explicit calculation), which again yields Eq. (172). Thus,
one can calculate the sensitivity with the numerically
derived value of A and Eqs. (55) or (84) via

σkh ¼ 2A − 4 − αkh1
8þ αkh1

: (183)

VI. NUMERICAL NEUTRON STAR SOLUTIONS
AND SENSITIVITIES

In this section we present the results obtained by
numerically solving the modified field equations. In par-
ticular, we concentrate on deriving numerical results for the
sensitivities and developing an analytic fitting formula. We
first tackle the Einstein-æther case and then move on to
khronometric theory.

A. Einstein-æther theory

Let us first focus on the numerical solutions at Oðv0Þ.
At this order, the main observable is the relation between
the NS mass and its radius, for a sequence of NSs in a
given EoS family. As can be seen from the equations of
Sec. IV B 1 (and as already noted in Ref. [56]), these
solutions depend only on the c14 combination of the
coupling constants [see Eq. (45)].
Figure 2 shows the mass-radius relation in Einstein-

æther theory for different values of c14. The horizontal line
at M ¼ 1.97M⊙ is the lower mass bound derived from
observations of PSR J0348þ 0432 [58]. Observe that, as
one increases c14, the NS mass decreases for a fixed radius,
which is consistent with the conclusions in Ref. [56].
This figure is a perfect example of the strong degeneracy

between the EoS and modified gravity effects, which in
turn prevents us from constraining modified theories with

the mass-radius relation alone. For example, if we knew
that the LS220 EoS was the correct one, then we could
argue that the observation of PSR J0348þ 0432 [58]
requires that c14 < 0.1. However, we do not know the
correct EoS and, for instance, the APR EoS could be the
correct one. If that were the case, we would not be able to
place competitive constraints on c14. We then conclude that
the observation of PSR J0348þ 0432 [58] (or any other
system for that matter) is ineffective at constraining
Einstein-æther theory through the mass-radius relation.
Let us now consider the OðvÞ solutions and, in particular,

the sensitivities in Einstein-æther theory. In the weak-field
limit, i.e. expanding in the ratio of the binding energy Ω to
the NS mass Mobs, one can show that the sensitivity scales
as [50]

swfæ ¼
�
αæ1 −

2

3
αæ2

�
Ω

Mobs
þ O

�
Ω2

M2
obs

�
; (184)

with αæ1 and αæ2 given by Eqs. (42) and (43), while [48,55]

Ω ¼ −
1

2
GN

Z
d3xρðrÞ

Z
d3x0

ρðr0Þ
jx − x0j ; (185)

with r ¼ jxj and r0 ¼ jx0j. When plotting the weak-field
sensitivity using Eq. (184), we evaluate Ω by using the
Legendre expansion of the Green’s function of the
Laplacian operator [108]. Of course, this integral depends
on the EoS through ρðrÞ.
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FIG. 2 (color online). Mass-radius relations in Einstein-æther
theory with different coupling strengths (c14 ¼ 0.1; 0.3; 0.5; 0.8),
where the thick black curve corresponds to the GR result. Each
panel corresponds to a different EoS: APR (top left), SLy (top
right), Shen (bottom left) and LS220 (bottom right). The
horizontal dashed line corresponds to the lower mass bound
provided by observations of PSR J0348þ 0432 [58]. Observe
that as c14 is increased, the NS mass decreases for a fixed radius.
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Figure 3 shows the absolute magnitude of the sensitivity
in Einstein-æther theory, calculated from the numerical
solution to the OðvÞ modified field equations, for
different EoSs as a function of NS compactness C� ¼
M�=R� ¼ GNMobs=R�. For comparison, we also plot the
weak-field expression for the sensitivity [Eq. (184)] with
the APR EoS. The bottom panel shows the fractional
difference between the actual sensitivity and its weak-field
approximation. Observe that as C� increases, Eq. (184)
becomes highly inaccurate, with errors of roughly 15%–
30% for realistic NS compactnesses, i.e. for compact-
nesses 0.1≲ C� ≲ 0.3.
Figure 4 shows the absolute magnitude of the sensitivity

as a function of c− for cþ ¼ 1 and cþ ¼ 0.1, saturating the
Solar System constraint for αæ1 and αæ2 . Observe that the
sensitivity increases monotonically with c− and cþ.
One may wonder whether the results presented here are

robust to the method used to obtain the numerical solutions
of the modified field equations. Two key features of this
method are the choice of core radius (where the interior
integration is numerically started) and the value of the
boundary radius (where the matching is carried out).
Figure 5 shows the sensitivity as a function of the matching
radius (top panel) and the core radius (bottom panel) for the
APR EoS. Observe that the fractional error on the sensi-
tivities is always smaller than 0.1%.
Figures 3 and 4 show that the sensitivities in Einstein-

æther theory do not depend strongly on the EoS. Because of

this, it is natural to develop an EoS-independent fitting
formula. First, we choose the LS220 EoS as a represen-
tative EoS with which to compute sensitivities and we
set αæ1 ¼ 10−4 and αæ2 ¼ 4 × 10−7, thus saturating Solar
System constraints. With this, we then numerically com-
pute the sensitivity in the range cþ ∈ 3 × ð10−4; 10−1Þ,
c− ∈ 3 × ð10−5; 10−3Þ and C� ∈ ð0.11; 0.28Þ for a total of
103 points. We choose this region in the parameters
ðcþ; c−Þ as it will still be allowed after imposing binary
pulsar constraints (see Fig. 1).
With the data in hand, we choose a functional form for

the fitting function. By plotting the sensitivity as a function
of cþ, c− and C�, we empirically find that sæ is well
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FIG. 3 (color online). The absolute magnitude of the sensitivity
in Einstein-æther theory against the NS compactness for various
EoS and the weak-field expression in Eq. (184) with the APR
EoS. The bottom panel shows the fractional difference between
the sensitivity and the weak-field expression in Eq. (184). We
saturate the PPN parameters αæ1 and αæ2 such that they satisfy the
Solar System constraint, and cþ ¼ 10−4 ¼ c−. Observe that,
as expected, the weak-field result is highly accurate for
small compactness, but it becomes inaccurate for realistic NS
compactnesses.
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FIG. 5 (color online). The fractional difference in sensitivity
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(bottom) with the APR EoS. We set the coupling constants to
c1 ¼ 2c2 ¼ 2c3 ¼ −2c4, with Mobs ¼ 1.4M⊙.
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described by a polynomial in these quantities (at least in the
region of parameter space described above). We could use a
fitting function that corrects Eq. (184) with higher powers
of C�, but we find that this is not as good as

sæ ¼
X2

l;m;n¼0

cl;m;nclþcm−Cn�: (186)

We fit the data described above with Eq. (186), using the
fact that each numerical point is known to at least a
fractional numerical accuracy of 1%. The fit returns an
r2 value of 0.959, with fitted coefficients given in Table I.
We also carried out a more accurate fit by keeping more
terms in the polynomial expansion of Eq. (186); the r2 is
then 0.9994 and the coefficients are given in Appendix C.
Note that c0;0;0 ¼ Oðαæ1;2Þ ≠ 0, because we have chosen
αæ1;2 such that Solar System constraints are saturated. Thus,
the fitting function does not go to zero as cþ → 0
and c− → 0.

B. Khronometric theory

Spherically symmetric solutions in khronometric theory
are identical to those of Einstein-æther theory [after the
substitution in Eq. (15)] [51,73,80,81]. Thus, the mass-
radius relation for NSs will also be identical to what we
presented in Fig. 2. We recall, however, that stability or
Cherenkov requirements, Solar System experiments and
BBN bounds restrict the couplings λ, β and α to very small
values (cf. Fig. 1), so the deviations away from the GR
mass-radius relation will be even smaller than in Einstein-
æther theory. For this reason, and because of the degen-
eracies between the mass-radius relation and the EoS,
khronometric theory cannot be constrained by measure-
ments of NS pulsar masses alone.
Let us then focus on the numerical solutions to the

modified field equations at OðvÞ. In the weak-field limit,
one can show that the sensitivities in khronometric theory

scale in the same exact way as in Einstein-æther theory
[Eq. (184)], except that now αkh1 and αkh2 are given by
Eqs. (48) and (49).
Figure 6 shows the absolute magnitude of the sensitivity

in khronometric theory, calculated from the numerical
solution to the OðvÞ modified field equations, for different
EoS as a function of β (left panel) and NS compactness C�
(right panel). Here we have chosen α and λ by saturating
Eqs. (23) and (24). The bottom right panel shows the
fractional difference between the actual sensitivity and its
weak-field approximation, where we recall that the latter is
given by Eq. (184) with αæ1 and αæ2 replaced by αkh1 and
αkh2 . Observe first that the behavior of the sensitivity
in khronometric theory as a function of β is rather
different from that of the sensitivity in Einstein-æther
theory as a function of c−. Observe also that as C�
increases, the weak-field result becomes highly inaccurate,
with errors of roughly 50%–100% for realistic NS
compactnesses.
As in the Einstein-æther case, Fig. 6 shows that the

sensitivities in khronometric theory are also rather insensi-
tive to the EoS. Because of this, it is natural to develop an
EoS-independent fitting formula. Again, we choose a
fitting function of the form

skh ¼
X2

l;m;n¼0

cl;m;nβ
lλmCn� (187)

and fit this to sensitivities computed numerically using the
LS220 EoS and choosing α ¼ 2β due to current Solar
System constraints [see Eq. (22)]. We carry out this fit
with data in the region β ∈ ð5 × 10−5; 5 × 10−3Þ, λ ∈ ð3 ×
10−3; 10−1Þ and C� ∈ ð0.11; 0.26Þ with a total of 103

points. This range in β and λ for the fits is chosen in this
way because these values remain viable after placing binary
pulsar constraints. As in the Einstein-æther case, when
carrying out the fits, we use the fact that each numerical

TABLE I. Estimated numerical coefficients for the fitting formulas of the sensitivity in Einstein-æther (æ) theory and khronometric
gravity (kh).

æ c0;0;0 c0;0;1 c0;0;2 c0;1;0 c0;1;1 c0;1;2 c0;2;0 c0;2;1 c0;2;2
1.95 × 10−5 −3.15 × 10−1 4.60 × 10−4 7.58 × 10−2 −1.07 4.34 −3.19 × 101 4.37 × 102 −1.6 × 103

æ c1;0;0 c1;0;1 c1;0;2 c1;1;0 c1;1;1 c1;1;2 c1;2;0 c1;2;1 c1;2;2
−2.14 × 10−2 2.90 × 10−1 −9.86 × 10−1 6.39 × 101 −8.34 × 102 2.68 × 103 −4.57 × 103 5.7 × 104 −1.51 × 105

æ c2;0;0 c2;0;1 c2;0;2 c2;1;0 c2;1;1 c2;1;2 c2;2;0 c2;2;1 c2;2;2
5.67 × 10−1 −7.67 2.65 × 101 −1.87 × 103 2.49 × 104 −8.04 × 104 2.32 × 105 −2.99 × 106 8.91 × 106

kh c0;0;0 c0;0;1 c0;0;2 c0;1;0 c0;1;1 c0;1;2 c0;2;0 c0;2;1 c0;2;2
−2.87 × 10−8 −1.82 × 10−6 6.34 × 10−6 3.20 × 10−6 2.09 × 10−5 −9.83 × 10−5 −2.62 × 10−5 −1.14 × 10−4 5.95 × 10−4

kh c1;0;0 c1;0;1 c1;0;2 c1;1;0 c1;1;1 c1;1;2 c1;2;0 c1;2;1 c1;2;2
0.313 −1.01 1.25 −0.506 1.76 −0.983 0.148 0.491 −2.86

kh c2;0;0 c2;0;1 c2;0;2 c2;1;0 c2;1;1 c2;1;2 c2;2;0 c2;2;1 c2;2;2
1.03 −0.268 −8.38 −9.29 −39.3 206 51.6 254 −1250
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point is known to at least a fractional accuracy of 1%. The
fit returns an r2 value of 0.99996, with fitted coefficients
given in Table I. Notice that this fit is significantly better
than the Einstein-æther one, so we do not need to redo the
fit with a higher-order polynomial.
We will not repeat Fig. 5 for khronometric theory, but we

have checked that indeed our results are accurate to better
than 0.1% and, thus, unaffected by the way the numerical
solution is obtained.

VII. PULSAR CONSTRAINTS

In this section, we discuss how to place constraints on
Lorentz-violating theories with binary pulsar observations.
We begin with an overview of how binary pulsars can be
used to test GR. We then specialize our discussion to
Lorentz-violating theories. We conclude with an imple-
mentation of these ideas to constrain Einstein-æther and
khronometric theory.

A. Binary pulsars as laboratories for
fundamental physics

Einstein-æther and khronometric theory predict that the
orbital period decay of binary systems should generically
be faster than that predicted by GR because of the emission
of dipolar radiation, i.e. due to a correction to the
dissipative sector of GR. All observations of binary pulsars
to date, however, have verified the GR prediction.
Therefore, binary pulsars can be used to place constraints
on these theories, by essentially requiring that the non-GR
effects be smaller than observational uncertainties [109].
Binary pulsar astrophysics is carried out by fitting a

suitably averaged set of observed pulses to a given pulsar
model. The output of this procedure is then a set of best-fit
model parameters that describe the observation (e.g. the

rate of change of pericenter, the orbital decay rate, the rate
of change of the line of nodes, etc.) with a given
observational error estimate for each of these parameters.
This observational error, of course, decreases with obser-
vation time, as more data are accumulated.
Some parameters of the binary system, however, are not

directly measurable but are rather inferred from other
observables. Let us for example consider the individual
masses of the binary. These are inferred by noting that other
observables are functions of the individual masses, once
one chooses a gravitational theory. Since these observables
are measured up to some uncertainty, this error also
propagates into the inferred masses.
More specifically, the inferred individual masses can be

determined from two binary observables that depend only
on the conservative sector of the theory, e.g. the rate of
change of the pericenter and the Shapiro time delay. This
inference can be carried out with the leading-order,
Newtonian expressions for these post-Keplerian observ-
ables, since 1PN order corrections and higher will be
greatly subdominant. In Einstein-æther and in khronomet-
ric theory, the conservative sector is modified to leading PN
order only through the substitutions GN ↦ G ¼ GN ½1þ
OðσA; σBÞ� and ~mA ↦ mA ¼ ~mA½1þ OðσAÞ� [cf. Eq. (85)].
This leads to corrections of OðσAÞ to the masses measured
assuming GR as the fiducial gravitational theory.
One may wonder whether one has to account for

corrections of OðσAÞ in the masses, as well as 1PN order
corrections to the conservative sector, when placing con-
straints on Einstein-æther and khronometric theory with
observations of the orbital decay rate. This is not the case
because in these theories _Pb=Pb differs from the GR
prediction at leading PN order due to corrections to the
dissipative sector. More precisely, deviations away from
GR appear at −1PN order for NS-white dwarf systems, and
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at 0PN when the −1PN terms are subdominant [such as in
the case of binary NSs; see discussion after Eq. (193) for
more details]. Thus, corrections of OðσAÞ and those of
1PN to the conservative sector are always smaller than
observational errors.
Once one has determined the inferred individual masses

and measured the orbital period of the system, one can
calculate the predicted rate of change of the orbital period
and compare this to the observed value. To date, the GR
prediction has always agreed with the observed value

�
_Pb

Pb

�
obs

¼
�
_Pb

Pb

�
GR

ð1� δobs � δinfÞ; (188)

up to the observational uncertainty δobs in _Pb and the
inferred error δinf induced in the predicted value of _Pb=Pb
due to the error that propagates from the individual masses.
In Einstein-æther and in khronometric theory, the

predicted orbital decay rate differs from the GR one:

�
_Pb

Pb

�
æ;kh

¼
�
_Pb

Pb

�
GR

ð1þ δ _Pæ;khÞ; (189)

where δ _Pæ;kh is the fractional difference in the prediction.
In fact, because of the presence of dipolar radiation, δ _Pæ;kh

is much larger than unity for small velocities, unless the
coupling constants are very small. As we will see later in
this section, δ _Pæ;kh ¼ Oðc2=v212Þ, while ð _Pb=PbÞGR ¼
Oðv1012=c10Þ, with v12 the magnitude of the binary’s orbital
velocity.
Comparing Eqs. (188) to (189), one then finds that the

most conservative constraint comes from demanding

jδ _Pæ;khj ≤ δobs þ δinf ¼ Oð10%Þ: (190)

In what follows, we will instead use the equivalent relation

δ _Pæ;khðmA þ δmA; Pb þ δPb; κiæ;kh;EoSÞ ≤ δobs (191)

to place constraints on the coupling constants κiæ;kh, where
κiæ ¼ ðcþ; c−Þ in Einstein-æther theory and κikh ¼ ðλ; βÞ in
khronometric theory. Here mA and Pb are the best-fit
parameter for the (inferred) individual masses and the
orbital period, while δmA and δPb are their associated
statistical errors. Recall that, in these theories, the non-GR
correction to the prediction of the orbital decay rate not
only depends on the individual masses and the orbital
period, but also on the EoS through the sensitivities. Thus,
we will search for the region in the two-dimensional
coupling parameter space where Eq. (191) is satisfied,
with δ _Pæ;kh evaluated within mA � δmA, Pb � δPb and
various values of the sensitivities, determined by the EoS
and the individual masses. Let us emphasize that Eq. (191)

does not lead to a line in the two-dimensional coupling
parameter space, but rather a two-dimensional region.

B. Binary and isolated pulsars as laboratories for
Lorentz violation

To date, all robust pulsar constraints on Lorentz violation
come from studies of its effects on the conservative
dynamics of the system that then propagate to the observed
pulse sequence. Such effects are modeled with the
PPN formalism [64,110–114], where the point-particle
Lagrangian is modified to include preferred-frame effects.
The latter are proportional to certain PPN parameters (the
relevant ones here are α1 and α2), as well as contractions of
preferred-frame-related velocity vectors and PN vector
potentials [3,87]. Such modifications to the Lagrangian
induce effects on pulsar observables, which can then be
used to place constraints on α1 and α2. Let us classify these
in terms of the sources used: isolated pulsars and binary
pulsars.
Let us first consider the isolated pulsar case. In Lorentz-

violating theories of gravity, the presence of a preferred
frame induces precession of the pulsar’s spin axis relative to
this frame, pushing the pulsar beam in and out of the line of
sight [115,116]. This effect has not been observed in
isolated pulsars, which then allows for constraints [44]
on the strong-field generalization ðα̂1; α̂2Þ [116] of the PPN
parameters ðα1;α2Þ. The angular precession velocity of the
spin angular momentum vector due to preferred-frame
effects, and thus, the rate of change of the angle between
the spin axis and the line of sight, is proportional to α̂2
[115,116], but also depends on the magnitude and direction
of the relative 3-velocity of the isolated pulsar with respect
to the preferred frame. Using data from PSR B1937þ 21
[117] and PSR J1744–1134 [118] that show no such
precession, Shao et al. [44] placed the constraint α̂2 <
1.6 × 10−9 at 95% confidence. Here, they associate the
preferred-frame 3-velocity with our Solar System bary-
center velocity relative to the CMB, randomizing over the
pulsar’s radial velocity with respect to us and the spin
orientation.
Let us now consider the binary pulsar case. For systems

with small eccentricity, preferred-frame effects parame-
trized by α̂1 and α̂2 decouple. The former induce a
correction to the rate of change of the eccentricity, which
in turn affects the precession of the pericenter. The latter
induce precession of the orbital angular momentum around
the center of mass’ 3-velocity vector in the preferred frame,
leading to a change in the inclination angle with respect to
the line of sight, and thus, precession of the projected
semimajor axis [109]. The orbital plane and pericenter
precession produces noticeable effects in the pulse profiles,
all of which depend on the magnitude and direction of the
3-velocity of the binary system in the preferred frame.
All current pulsar observations match GR predictions

without these extra precession effects, which then allows
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for constraints on α̂1 and α̂2. Using data from pulsar-white
dwarf binaries with known three-dimensional velocity,
PSRs J1012þ 5307 [119] and J1738þ 0333 [60], Shao
and Wex [43] placed the constraints α̂2 < 1.8 × 10−4 and
α̂1 ≲ 10−5 at 95% confidence. We see that the constraint on
α̂2 is not as strong as that from isolated pulsars. These
constraints depend on the magnitude and direction of the
3-velocity of the binary system in the preferred frame,
which Shao and Wex [43] took to be its velocity relative to
the CMB.
We will show later that the isolated pulsar constraint is

not suitable to bound Einstein-æther or khronometric
theory. This is for one main reason. PSR B1937þ 21
[117] and PSR J1744–1134 [118] are isolated, millisecond
pulsars, and thus their masses have not been measured,
precisely because they are isolated. As we will see later, α̂1
and α̂2 in Einstein-æther and khronometric theory depend
on the sensitivities, which cannot be determined without
knowing the mass, even if the EoS were known. Without
a priori knowledge of the mass, one cannot map the
isolated pulsar constraint on α̂1 and α̂2 to a constraint on
ðcþ; c−Þ or ðλ; βÞ. Note that this will be the case for any
Lorentz-violating theory of gravity.

C. Constraining Lorentz-violating gravity with
binary pulsars

Let us first concentrate on observations of the orbital
decay rate of PSR J1141-6545 [57], PSR J0348þ 0432
[58] and PSR J0737-3039 [59]. The first two are binary
systems composed of a NS and white dwarf, in a 0.17-
eccentricity, 4.74-h orbit and in a Oð10−6Þ-eccentricity,
2.46-h orbit, respectively. Therefore, these systems have an
orbital velocity of v12=c ¼ Oð10−3Þ. The last system is a
double binary pulsar with 0.088 eccentricity and 2.45-h
orbit. In all cases, the eccentricity is small and will thus be
neglected. Our constraints are robust to this assumption,
because eccentricity corrections to δ _Pæ;kh are of Oðe2Þ,
which is negligible in Eq. (191) relative to the uncertainties
due to the dependence on the individual masses, orbital
period, and EoS. Of course, one would not be able to
neglect eccentricity if considering certain binary pulsar
systems, such as the very well-studied PSR 1913+16
[95–97], which has an eccentricity of roughly 0.6.
All pulsars we consider have spin periods significantly

larger than 1 ms. PSR J1141-6545 [57] has a spin period of
roughly 390 ms, PSR J0348þ 0432 [58] a period of 39 ms,
and PSR J0737-3039A and B [59] a period of 22 and
2700 ms, respectively. Let us convert these spin periods
into a dimensionless spin parameter ā≡ J�=ðGNM2

obsÞ,
where J� ¼ I�ω� is the spin angular momentum, with I�
the moment of inertia and ω� the star’s angular velocity.
Approximating the moment of inertia with that of a solid
sphere, I� ≈ Isphere ¼ ð2=5ÞMobsR2�, with radius 11 km,
one finds that ā ≈ 1.4 × 10−3 for PSR J1141-6545 [57],

ā ≈ 8.8 × 10−3 for PSR J0348þ 0432 [58] and ā ≈ 2.25 ×
10−2 and ā≈1.98×10−4 for PSR J0737-3039A and B [59].
One can neglect the spin of the pulsar when modeling the

orbital dynamics of binary systems to test GR for the
following reason. In the small-spin or slow-rotation
approximation [120–123], all observables can be expanded
in a series in ā ≪ 1. To zeroth order in this approximation,
one recovers the nonspinning results used in this paper. To
first order in this approximation, only observables that
depend on the gravitomagnetic sector of the metric, i.e. the
“cross” time-space components, are modified. One of these
observables is precisely the orbital decay rate, which
acquires a spin-orbit coupling correction. Such a correction,
however, appears at 1.5PN order; i.e. the leading-order spin
correction to the orbital decay rate is actually of
Oðāv312=c3Þ smaller than the leading-order terms, which
makes this effect negligible for our purposes. Similarly,
there will be spin corrections to observables associated with
the conservative dynamics, i.e. spin corrections to the
Hamiltonian. As in the orbital decay rate, however, they
are suppressed in the PN sense and, thus, can be neglected.
Given this, one can model the pulsars in the binary systems
that we consider as if they were nonspinning. This allows
us to use the results of the previous sections, which do not
account for NS spins.
With all of this at hand, consider then a binary system

with nonspinning components in a circular orbit in either
Einstein-æther or khronometric theory. Because of the
circularity condition, all terms proportional to _r12 vanish
in Eq. (116) to leading PN order. After orbit averaging, the
orbital decay rate to leading PN order reduces to

_Pb

Pb
¼ −

192π

5

�
2πGNm

Pb

�
5=3

�
μ

m

�
1

Pb
hAi; (192)

where we recall one more time that mA are the active
masses,m ¼ m1 þm2 is the total active mass, and Pb is the
orbital period and we have defined

hAi≡ 5ð1 − c14=2Þ
32

ðs1 − s2Þ2
�

Pb

2πGNm

�
2=3

×C
�
1þ O

�
v2

c2
;
V2
CM

c2
;

�
s1 − s2Þ−1

VCMv
c2

��

þ
�
1 −

c14
2

�
½ð1 − s1Þð1 − s2Þ�2=3

× ðA1 þ SA2 þ S2A3Þ
�
1þ O

�
v2

c2

��
: (193)

There are many interesting features in Eqs. (192) and
(193) that deserve further discussion. First, notice that
Eq. (192) reduces to the GR prediction whenA ¼ 1, which
is the case when the constants ci → 0 [recall that C also
depends on the ci via Eq. (114)]. Second, notice that the
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first term in Eq. (193) (the one proportional to C) leads to
dipolar radiation, which scales as ðv=cÞ−2 relative to the
GR quadrupole term. Third, notice that in Eq. (193) we
have included the order of uncontrolled remainders explic-
itly, which can be read off from Eq. (116). In particular, the
dipole term is corrected by standard 1PN terms (propor-
tional to v2), as well as terms proportional to V2

CM; the latter
can be safely assumed to be small because the preferred
frame is to be identified with that in which the CMB is
isotropic. The dipole term also possesses uncontrolled
remainders proportional to the vVCM product, which scale
linearly with the difference in sensitivities, as opposed to
quadratically as the leading-order dipole term thus.
The rate of orbital decay is dominated by the term with

the least powers of velocity, or equivalently the least powers
ofGm=Pb, provided the binary is widely separated. Indeed,
this is the case for all observed binary pulsars, with
Gm=Pb ¼ Oð10−10Þ a typical value for a binary with a
1-h orbital period. Clearly then, dipolar radiation dominates
the orbital decay rate, unless s1 − s2 ≈ 0. On the other
hand, the sensitivities of a binary system will be similar to
each other if their EoS and their masses are similar. This is
the case for the double pulsar PSR J0737-3039 [59], for
which the quadrupole term [the second term in Eq. (193)]
becomes comparable to the dipole (the first term in this
equation). Of course, the uncontrolled remainders propor-
tional to VCM that correct the dipole term at 1PN order are
irrelevant here, as they are also multiplied by the difference
in the sensitivities. As we will see, the inclusion of this
system allows for better constraints on Lorentz-violating
theories.
Let us now concentrate on mapping the constraints on α̂1

and α̂2 to constraints on ðcþ; c−Þ and ðλ; βÞ from obser-
vations of PSRs J1012þ 5307 [119] and J1738þ 0333
[60]. The mapping can be obtained by replacing α1 ↦ α̂1,
α2 ↦ α̂2, s1 ↦ 0 and s2 ↦ 0 in Eq. (41) [85,116]. By
equating the latter to Eq. (41) without these replacements,
we can read off the relation between the strong-field PPN
coefficients and the standard PPN coefficients and sensi-
tivities. Notice that this is done here for the first time, since
previous work (e.g. [42–44,116]) did not calculate the
sensitivities. This procedure is completely generic and does
not depend on the parameters of the orbit. Doing so in
Einstein-æther theory, we find

α̂æ1 ¼ αæ1 þ c−ð8þ αæ1 ÞσæA
2c1

; (194)

α̂æ2 ¼αæ2 þ
c−ð8þαæ1 ÞσæA

4c1
−
ðc14−2Þðαæ1 −2αæ2 ÞσæA

2ðc14−2cþÞ
; (195)

while in khronometric theory we find

α̂kh1 ¼ αkh1 þ ð8þ αkh1 ÞσkhA ; (196)

α̂kh2 ¼ αkh2 þ ðαkh1 − 2αkh2 þ αð4þ αkh2 Þ − ð8þ αkh1 ÞβÞσkhA
α − 2β

;

(197)

where we recall that the ci and ðα; βÞ are coupling constants
in Einstein-æther and khronometric theory. Observe that
both of these quantities depend not only on the weak-field
values of the PPN parameters ðα1; α2Þ, but also on the
sensitivities of the NSs, which depend on the masses; this is
why we use observations of PSRs J1012þ 5307 [119] and
J1738þ 0333 [60], since we know the NS masses for these
systems. Saturating the Solar System constraints on the
weak-field parameters ðα1; α2Þ, and using the strong-field
constraints on ðα̂1; α̂2Þ, one can place constraints on
ðc−; cþÞ and ðλ; βÞ.

1. Einstein-æther theory

Let us now concentrate on Einstein-æther theory. The
predicted rate of orbital decay is given by Eq. (193) with
ðC;A1;A2;A3Þ functions of the coupling constants
ðcþ; c−Þ, given in Eqs. (110)–(112), with Eqs. (107),
(108), (100) and (95). The predicted strong-field general-
izations of the PPN parameters ðα̂æ1 ; α̂æ2 Þ are given by
Eqs. (194) and (195) in terms of their weak-field versions
in Eqs. (42) and (43), as well as the sensitivities.
Comparing the prediction of the orbital decay rate to
observations of PSR J1141-6545 [57], PSR J0348þ
0432 [58] and PSR J0737-3039 [59], we can then place
constraints on the ðcþ; c−Þ coupling parameter space of this
theory. Comparing the prediction of ðα̂æ1 ; α̂æ2 Þ to the con-
straint on these quantities derived from observations of PSR
J1738þ 0333 [60], we can also place constraints on this
parameter space. We do not consider constraints derived
from the orbital decay rate of PSR J1738þ 0333 [60] and
from the ðα̂æ1 ; α̂æ2 Þ constraint of PSR J1012þ 5307 [119]
because they are weaker than constraints derived with the
systems described above.
Figure 7 shows these constraints. The area below and to

the right of the solid black line is the allowed ðcþ; c−Þ
region after imposing Cherenkov and stability constraints
[48]. The green-shaded area with red dotted borders is the
allowed ðcþ; c−Þ region after imposing constraints from
observations of PSR J1141-6545 [57] (top, left panel), PSR
J0348þ 0432 [58] (top, right panel), PSR J0737-3039 [59]
(bottom left panel) and PSR J1738þ 0333 [60] (bottom
right panel). As discussed earlier, Eq. (191) must be
evaluated varying over ðcþ; c−Þ, but also allowing for
the inferred error in the masses, the observational error
in the orbital decay rate, the allowed range on ðαæ1 ; αæ2 Þ
given Solar System constraints, and various NS sensitivities
associated with different EoS. Similarly, Eqs. (194) and
(195) must be evaluated by trying different values of αæ1 and
αæ2 within the Solar System constraints, as well as different
values of the sensitivities for different EoS. The result, thus,
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is not a line in ðcþ; c−Þ space but rather a two-dimensional
region, as shown in the figures.
Observe that the allowed ðcþ; c−Þ regions in Fig. 7

associated with PSR J1141-6545 [57] and PSR J0348þ
0432 [58] are rather similar, while they are both quite
different from that associated with PSR J0737-3039 [58].
The first two systems are NS-white dwarf binaries, and
since white dwarfs have much smaller binding energies
than NSs, sNS − sWD ∼ sNS ≠ 0, which implies that the
orbital decay rate is dominated by dipolar radiation, i.e. by
the first term in Eq. (193). On the other hand, PSR J0737-
3039 [59] is a double pulsar binary with similar masses and
thus the difference between the sensitivities is small,
making the dipolar and quadrupolar terms in the orbital
decay rate comparable, i.e. making the first and second
terms in Eq. (193) of the same order. Observe also that
constraints on ðcþ; c−Þ derived from bounds on ðα̂æ1 ; α̂æ2 Þ in

the bottom right panel of Fig. 7 also possess a character-
istically different shape. This is because these constraints
derive from comparing the effect of the conservative sector
of the theory to observations, i.e. the Hamiltonian, instead
of the effect of the dissipative sector, i.e. the radiation-
reaction force.
For comparison, Fig. 7 also shows the values of ðcþ; c−Þ

(dashed black curve) that would be required for the orbital
decay rate to be identical to that of GR in the limit of zero
sensitivity [55]. Weakly gravitating objects have small
sensitivities, as the latter scales with the binding energy,
which is why we label this curve “weak-field.” This curve
was obtained in Ref. [55] by requiring that αæ1 and αæ2 be
identically zero, which results in vanishing sensitivities in
the weak-field limit [cf. Eq. (184)]. Observe that the strong-
field binary pulsar constraints derived here overlap with
this weak-field constraint only in a small ðcþ; c−Þ region.
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FIG. 7 (color online). Constraints on Einstein-æther theory from binary pulsar observations. The green-shaded regions correspond to
those allowed after imposing constraints from the observation of PSR J1141-6545 [57] (top, left panel), PSR J0348þ 0432 [58] (top,
right panel), PSR J0737-3039 [59] (bottom left panel) and PSR J1738þ 0333 [60] (bottom right panel). The first three panels use
observations of the orbital decay rate through Eq. (191), allowing for inferred error in the masses, observational error in the orbital
period, the allowed range of the PPN parameters ðαæ1 ; αæ2 Þ given Solar System constraints, and different sensitivities given different EoS.
The last panel uses constraints on the strong-field PPN parameters and Eqs. (194) and (195). For comparison, we also plot the allowed
ðcþ; c−Þ region after imposing Cherenkov and stability constraints [48] (below and to the right of the solid black line), as well as the
values of ðcþ; c−Þ required for the orbital decay rate to agree exactly with the GR prediction in the zero-sensitivity limit. Observe that the
new, strong-field constraints are much more stringent than the Cherenkov or stability bounds.
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Observe also that, although the slope of this weak-field
curve is similar to the average slope of the allowed region
with PSR J0737-3039 [59] (bottom left panel), it disagrees
with the slope of the other allowed regions. This is because
setting the sensitivities to zero automatically discards the
dipolar term in the orbital decay rate, which in fact
dominates over the quadrupolar one for mixed binary
pulsar systems.
Reference [55] argues that the width of the allowed

region given binary pulsar constraints should be approx-
imately Oð0.1%Þ, but this is not the case for the systems
studied here. The main difference between our work and
that of Ref. [55] is that the latter only considered con-
straints from PSR 1913þ 16 [95–97], which consists of
two NSs, in the weak-field or vanishing sensitivity limit,
while we here considered other more relativistic double
pulsar and mixed pulsar binaries in the strong-field or
nonvanishing sensitivity limit. Moreover, the width of the
allowed region is not controlled just by the observational
error in the orbital decay rate, but also by the inferred error
in the individual masses, the observational error in the
orbital decay rate, the allowed range of ðαæ1 ; αæ2 Þ given
Solar System constraints, and also the different NS
sensitivities that depend on the EoS, all of which depend
strongly on the system that is observed. As we discussed
earlier, one must vary over all such parameters to obtain the
correct allowed region, which as shown in Fig. 7 is between
Oð0.1%Þ and Oð1%Þ.
Reference [50] argues that current tests will be satisfied

if the weak-field conditions are imposed and the coupling
constants satisfy ðcþ; c−Þ ≤ Oð10−2Þ. For any given sys-
tem, we find that the allowed region is not a box with sides
of Oð10−2Þ but rather a band with width Oð10−3Þ.
However, when we combine all of these allowed regions
in the left panel of Fig. 1, their intersection is indeed
almost a box with width of Oð10−3Þ in the c− direction and
Oð10−2Þ in the cþ direction. The change in shape of the
combined allowed region is because different observations
lead to allowed bands with different average slopes, which
in turn is because for some systems dipolar radiation
dominates, while for others it does not. The width of the
box is determined by the smallest width of the bands,
which is of Oð10−3Þ. All together, these constraints
constitute the first, accurate strong-field test of Einstein-
æther theory.

2. Khronometric theory

Let us now concentrate on khronometric theory. The
predicted rate of orbital decay is given by Eq. (193) with
ðC;A1;A2;A3Þ functions of the coupling constants ðλ; βÞ,
given in Eqs. (121) and (122). The predicted strong-field
generalization of the PPN parameters ðα̂kh1 ; α̂kh2 Þ is given by
Eqs. (196) and (197) in terms of their weak-field versions in
Eqs. (48) and (49), as well as in terms of the sensitivities.
Comparing the prediction of the orbital decay rate to

observations of PSR J1141-6545 [57], PSR J0348þ
0432 [58] and PSR J0737-3039 [59], we can then place
constraints on the ðλ; βÞ coupling parameter space of this
theory. Comparing the prediction of ðα̂kh1 ; α̂kh2 Þ to the
constraint on these quantities derived from observations
of PSR J1738þ 0333 [60], we also place constraints on
this parameter space.
Figure 8 shows these constraints. The area above and to

the left of the solid black line is the allowed ðλ; βÞ region
after imposing Cherenkov and stability constraints. The
green-shaded area with red dotted borders is the allowed
ðλ; βÞ region after imposing constraints from observations
of PSR J1141-6545 [57] (top, left panel), PSR J0348þ
0432 [58] (top, right panel), PSR J0737-3039 [59] (bottom
left panel) and PSR J1738þ 0333 [60] (bottom right
panel). As discussed earlier, Eq. (191) must be evaluated
varying over ðλ; βÞ, but also allowing for the inferred error
in the masses, the observational error in the orbital decay
rate, the allowed range on ðαkh1 ; αkh2 Þ given Solar System
constraints, and various NS sensitivities associated with
different EoS. Similarly, Eqs. (196) and (197) must be
evaluated by choosing different values of α1

kh and αkh2
within the Solar System constraints, as well as different
values of the sensitivities for different EoS. As in the
Einstein-æther case, the result is not a line in the ðλ; βÞ
plane but rather a two-dimensional region.
Observe that, as in the Einstein-æther case, the allowed

ðλ; βÞ regions associated with PSR J1141-6545 [57] and
PSR J0348þ 0432 [58] are similar to each other but
different from that associated with PSR J0737-3039
[58]. As before, this is because the first two systems are
mixed binaries (NS-white dwarf), and thus, sNS − sWD ∼
sNS ≠ 0, since sWD ≪ sNS. In turn, this implies that the
orbital decay rate is dominated by dipolar radiation, i.e. by
the first term in Eq. (193). PSR J0737-3039 [59] is a double
pulsar binary, i.e. two NSs with similar masses, and thus the
difference in sensitivities is small. This makes dipolar and
quadrupolar terms in the orbital decay rate comparable and,
thus, changes the shape of the allowed coupling region. The
allowed region in the bottom right panel of this figure is
also different from the other three, because the former
derives from constraints on ðα̂kh1 ; α̂kh2 Þ, and thus from the
conservative sector of the theory, instead of the dissipative
one. Observe also that the first three binary systems leave λ
unconstrained in the β → 0 limit. This is to be expected
since in this limit the constant dominating the dipole
radiation, C, vanishes when αkh1 ¼ 0 ¼ αkh2 . Furthermore,
the constants in the quadrupole contribution also approach
their GR value,A1 → 1,A2 → 0,A3 → 0 in this limit, and
the only effect comes from the sensitivities which are too
small to produce a strong constraint. When we combine all
the panels of Fig. 8, one obtains the right panel of Fig. 1.
Observe that binary pulsar observations further constrain
the parameter region previously allowed by stability and
BBN considerations.
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VIII. CONCLUSIONS AND FUTURE DIRECTIONS

We have investigated Lorentz-violating gravity (focusing
in particular on violations of boost invariance) in the light
of binary pulsar observations. We focused on Einstein-
æther theory and khronometric theory, which are generic
theories that break boost invariance at low energies, and
showed that they predict emission of dipolar radiation from
binary systems, as first reported in Refs. [38,50,55]. This
greatly modifies the orbital evolution of these systems, and
in particular the decay rate of their orbital period, as
compared to the GR prediction. Furthermore, the emission
of quadrupolar radiation is also modified. All these
modifications, however, depend on the NS sensitivities,
which measure how the binding energy of a NS responds to
its motion relative to the additional fields of the theory (the
æther and khronon). Thus, constraints on Lorentz-violating
gravity can only be placed once the sensitivities have been
computed.

Here, we showed in two independent ways that the
sensitivities can be extracted, without loss of generality,
from solutions describing slowly moving NSs to first order
in velocity, and we then found these solutions numerically
for the first time. We began with a generic ansatz for the
metric and for the æther and khronon fields. We then
expanded the modified field equations in tensor spherical
harmonics and succeeded at reducing the field equations to
a system of ordinary differential equations, which we
solved numerically. These slowly moving solutions then
allowed us to extract the NS sensitivities, for which we also
present fits in terms of the coupling constants and NS
compactness. We checked that the sensitivities approach
the weak-field expression derived by Foster [50] as one
decreases the NS compactness and showed that the two
differ rather significantly in the large compactness regime.
With these solutions at hand, we then computed the

predictions of the orbital decay rate in these theories,
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FIG. 8 (color online). Constraints on khronometric theory from binary pulsar observations. The green-shaded regions correspond to
those allowed after imposing constraints from the observation of PSR J1141-6545 [57] (top, left panel), PSR J0348þ 0432 [58] (top,
right panel), PSR J0737-3039 [59] (bottom left panel) and PSR J1738þ 0333 [60] (bottom right panel). The first three panels use
observations of the orbital decay rate through Eq. (191), allowing for inferred error in the masses, observational error in the orbital
period, the allowed range of the PPN parameters ðαkh1 ; αkh2 Þ given Solar System constraints, and different sensitivities given different
EoS. The last panel uses constraints on the strong-field PPN parameters and Eqs. (194) and (195). For comparison, we also plot the
allowed ðλ; βÞ region after imposing Cherenkov and stability constraints (above and to the left of the solid black line). Observe how
stringent the new, strong-field constraints are.
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compared them to observations of PSR J1141-6545 [57],
PSR J0348þ 0432 [58], and PSR J0737-3039 [59], and
obtained very stringent bounds on the coupling constants of
Einstein-æther and khronometric theory. We also comple-
mented these constraints by computing the bounds on the
coupling parameters induced by constraints on the pre-
cession of PSR J1738þ 0333 [60]. All together, the
constraints derived here on the full set of parameters that
control gravitational Lorentz violation are much stronger
than previously obtained bounds.
Future work could extend the results obtained here in

various directions. One possibility would be to verify the
results of this paper by carrying a Bayesian hypothesis-
testing or model-selection analysis [124,125]. Such an
analysis would take into account covariances between
the system parameters and the coupling constants of the
theories, which were here neglected. However, since the
modifications to the orbital decay rate enter at lower PN
order than the leading-order GR prediction, we expect such
covariances to have a small effect.
Another possible avenue for future work is to study other

binary pulsar observables, such as rate of advance of
perihelion [109]. In order to compute this observable,
one would have to first compute the acceleration of each
component of the binary system, which depends not only
on the sensitivities, but also on their first derivative [50]. To
calculate the latter, one would have to obtain moving NS
solutions to higher order in the slow-velocity expansion.
The framework we developed here should suffice to obtain
such solutions. For example, the modified field equations
should still separate if one carries out a tensor spherical
harmonic decomposition. (This can be seen e.g. by
extending the procedure of Appendix A to next order in
the velocity.)
Yet another possibility would be to investigate the

constraints that future GW observations could place on
Einstein-æther and khronometric theory, given a future
detection. GWobservations should be particularly sensitive
to the frequency evolution of the GW phase, which will be
modified in these theories due to dipolar emission.
Moreover, additional polarizations would be excited in
binary NS inspirals, beyond the two transverse-traceless
ones of GR, which could lead to even stronger constraints
if a signal is detected by multiple interferometers [126].
Finally, it would be interesting to compute the sensitiv-

ities in Lorentz-violating gravity for isolated black holes
[52,68,69,80–82]. Once this is accomplished, one could
perform an analysis similar to the one carried out here to
place constraints on Lorentz violation in gravity from the
orbital decay rates of low-mass x-ray binaries [127–129].
Indeed, the orbital decay rates of such systems have already
been used to place constraints on certain modified gravity
theories [127,130–133]. Moreover, black hole binaries are
expected to be a primary target for future GW detectors.
Constraints on the coupling constants of Einstein-æther and

khronometric theory derived from such observations would
require knowledge of the sensitivity parameters. The latter
could be obtained by following the analysis carried out here
but generalized to black hole solutions.
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APPENDIX A: SEPARABILITY
OF FIELD EQUATIONS

In Secs. IVand V, we have shown explicitly that the field
equations of Einstein-æther and khronometric theory for an
isolated nonspinning star moving slowly relative to the
æther reduce to a system of ordinary differential equations
(ODEs), if the “perturbation potentials” [i.e. the functions
of r and θ that describe, at OðvÞ, the effect of the motion
relative to the æther on the system] are decomposed in
Legendre polynomials.
This is nontrivial and does not simply follow from the

fact that the Legendre polynomials are a basis for the space
of the regular functions of the polar angle θ. In principle,
one may indeed imagine that the equations for the various
multipole moments may not decouple, leaving one with a
hierarchy of infinite coupled ODEs. In fact, the reason why
such a situation does not happen and the equations for the
various multipole moments decouple lies in the symmetries
of the “unperturbed” [i.e. Oðv0Þ] solution, which we
assumed to be static and spherically symmetric. In GR,
it has long been known that whenever the background has
those symmetries, the equations that govern (linear) per-
turbations decouple and therefore reduce to a (finite)
system of ODEs [135,136]. As far as we are aware, a
general proof of this fact is not yet available in Einstein-
æther or khronometric theory, but we will present another
route to this result in the particular case considered here.
Relative to the “brute-force” decomposition of Secs. IV
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and V, this approach has the advantage of showing more
explicitly the role of the symmetries of the background.
We begin by noting that the spacetime outside a spheri-

cally symmetric static star can be described, in cylindrical
isotropic coordinates, by the following metric:

ds2 ¼ fðrÞdt2 − hðrÞðdρ2 þ ρ2dθ2 þ dz2Þ; (A1)

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
. Note that the use of isotropic coor-

dinates (rather than the areal coordinates used elsewhere in
this paper) has the advantage that the spatial part of the
metric is conformally flat. The æther field is instead
simply

Uμ ¼ δtμ
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
: (A2)

Consider now a star slowly moving in the z direction
relative to the æther. Based on the transformation properties
of the metric and æther under a coordinate change z ↦ −z
and t ↦ −t, it is clear that only the gtz and gtρ components
of the metric and the Ut, Uz and Uρ components of the
æther can be affected. The normalization condition for the
æther immediately requires that the perturbation to Ut be
zero, because δðUμUμÞ¼ 2gμνUμδUν ¼ 2δUt=

ffiffiffiffiffiffiffiffiffi
fðrÞp ¼ 0.

One is then left with the perturbations δgtz, δgtρ, δUz

and δUρ.
We only have two vectors at our disposal to construct the

perturbations to these fields, namely n ¼ ðρ; zÞ=r (clearly,
jnj ¼ 1) and v ¼ ð0; vÞ, so we can write

�
δgtρ
δgtz

�
¼ SðrÞvþ VðrÞðv · nÞn; (A3)

�
δUρ

δUz

�
¼

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
½QðrÞv þWðrÞðv · nÞn�: (A4)

Clearly, the functions S; V;Q;W can only depend on r,
because in order to introduce a dependence on ρ and z
singularly one would have to use the vector v one more
time; i.e. such a dependence only appears at Oðv2Þ.
The most generic ansatz describing the system at linear

order in the velocity is therefore

ds2 ¼ fðrÞdt2−hðrÞðdρ2þρ2dθ2þdz2Þ

þ2v

�
SðrÞþVðrÞz

2

r2

�
dzdtþ2vVðrÞzρ

r2
dρdtþOðvÞ2;

(A5)

while that for the æther is

Uμ ¼
ffiffiffiffiffiffiffiffiffi
fðrÞp fδtμ þ v½ ~Qðρ; zÞδzμ þ ~Wðρ; zÞδρμ�g þ OðvÞ2;

(A6)

~Qðρ;zÞ¼QðrÞþWðrÞz
2

r2
; ~Wðρ;zÞ¼WðrÞzρ

r2
: (A7)

Because this decomposition is completely general and
simply based on the symmetries of the problem, and because
the metric and æther now only depend on potentials
S; V;Q;W that are functions of r only, the field equations
must reduce to a system of differential equations for
S; V;Q;W. (Clearly, if they did not, it would mean that
the above general decomposition is inconsistent with the
field equations, which would in turn mean that slowly
moving stars do not exist in the theory under consideration.)
In fact, inserting this ansatz into the field equations for

Einstein-æther theory, one finds that the nontrivial equa-
tions follow from the r and θ components of the æther
equation and from the ðt; rÞ and ðt; θÞ components of the
Einstein equations and have the following structure:

e1≡
X12
i¼1

AiðrÞvi ¼ 0; (A8)

e2 ≡
X10
i¼1

BiðrÞ~vi ¼ 0; (A9)

e3 ≡
X6
i¼1

CiðrÞwi ¼ 0; (A10)

e4 ≡
X10
i¼1

DiðrÞ~vi ¼ 0; (A11)

where

v ¼ ðSðrÞ; S0ðrÞ; S0ðrÞ; VðrÞ; V 0ðrÞ; V 0ðrÞ;
QðrÞ; Q0ðrÞ; Q0ðrÞ;WðrÞ;W0ðrÞ;W0ðrÞÞ; (A12)

~v ¼ ðSðrÞ; S0ðrÞ; S00ðrÞ; VðrÞ; V 0ðrÞ;
QðrÞ; Q0ðrÞ; Q00ðrÞ;WðrÞ;W0ðrÞÞ; (A13)

w ¼ ðSðrÞ; S0ðrÞ; VðrÞ; QðrÞ; Q0ðrÞ;WðrÞÞ; (A14)

and where the functions AiðrÞ; BiðrÞ; CiðrÞ; DiðrÞ depend
on the coupling constants as well as on the Oðv0Þ potentials
fðrÞ and hðrÞ. Their explicit form is not particularly
illuminating and we will not write it down here, but for
our purposes it is sufficient to mention that they are
functions of r only, so the system of Eqs. (A8)–(A11)
does indeed become a system of differential equations in
the radial coordinate, as expected.
To show that these differential equations are indeed

ordinary, i.e. that they can be put in the form dy=dr ¼ FðyÞ,
where y is a suitable array of variables, a more detailed
understanding of the gauge degrees of freedom is required.
As already shown in Sec. IVA, it is clear that one can set
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one of the potentials S; V;Q;W exactly to zero in Einstein-
æther theory with a gauge choice. [This can be checked
explicitly by looking at the transformation properties of
the metric and æther under a change of coordinates
t0 ¼ tþ vHðrÞz.] Therefore, one of the four equations in
Eqs. (A8)–(A11) must be algebraically related to the other
three; i.e. one should have just three independent equations
for the three physical degrees of freedom. In fact, it is
possible to show that the radial derivative de3=dr can be
expressed as a linear combination of e1, e2, e3 and e4,
once the Oðv0Þ equations are satisfied. This fact can be
checked explicitly but follows elegantly from the existence
of a generalized Bianchi identity in Einstein-æther
theory [137] (see also Refs. [52,69]), which relates the
Einstein equations to the æther equations [Eq. (6)] and is
given by

∇μðTμν
æ −Gμν þUμæνÞ ¼ −æμ∇νUμ: (A15)

As a result, one can set e.g. W ¼ 0 with a gauge trans-
formation and rewrite the system e1 ¼ e2 ¼ e4 ¼ 0 as an
ODE system:

S00ðrÞ ¼ S2ðS; S0; Q;Q0; V; V 0Þ; (A16)

Q00ðrÞ ¼ Q2ðS; S0; Q;Q0; V; V 0Þ; (A17)

V 00ðrÞ ¼ V2ðS; S0; Q;Q0; V; V 0Þ; (A18)

which can be evolved in the radial coordinate (starting e.g.
from an initial radius rϵ outwards). The additional equation
e3 ¼ 0 is an initial value constraint for this evolution system;
i.e. e3 ¼ 0 only involves initial data for the system
(A16)–(A18) [as can be seen from the derivative structure
of Eq. (A10)], and by virtue of the generalized Bianchi
identity (A15), it is satisfied everywhere if imposed at the
initial radius rϵ (cf. Refs. [52,69] for more details).
Similarly, in the case of khronometric theory, the only

nontrivial equations are the ðt; rÞ and ðt; θÞ components of
the Einstein equations (the equation following from the
variation of the khronon field is actually implied by the
Einstein equations and does not need to be imposed
explicitly [73]). These equations take the form

e1≡
X12
i¼1

FiðrÞvi ¼ 0; (A19)

e2 ≡
X10
i¼1

HiðrÞ ~vi ¼ 0; (A20)

where Fi and Hi are again functions of r only [depending
on the couplings and on the background potentials fðrÞ and
hðrÞ]. Also, the requirement that the æther be hypersurface
orthogonal simply imposes a relation WðrÞ ¼ rQ0ðrÞ

between the æther potentials at OðvÞ. Therefore, the field
equations reduce to a system of differential equations in the
radial isotropic coordinate r, exactly as expected. More
precisely, as we have shown in Sec. V, a gauge trans-
formation allows one to set both æther perturbations Q and
W to zero. [This can be checked explicitly by considering a
gauge transformation t0 ¼ tþ vHðrÞz.] By doing so, the
system takes the form

S00ðrÞ ¼ S2ðS; S0; V; V 0Þ; (A21)

V00ðrÞ ¼ V2ðS; S0; V; V 0Þ; (A22)

which is indeed a set of ODEs.

APPENDIX B: MAPPING BETWEEN THE PN
METRIC AND THE HARTLE-THORNE METRIC

Let us here spell out the mapping between the PN metric
of Eqs. (38)–(40) and the asymptotic solution given by
Eqs. (162) and (163) for Einstein-æther theory, or by
Eqs. (179) and (180) for khronometric theory.
Without loss of generality, one can take the z0 direction to

be the direction of motion. Let us then transform the metric
of Eqs. (38)–(40), which is written in the standard PN
gauge, to comoving PN coordinates ðt00; x00; y00; z00Þ via the
Lorenz boost

t0 ¼ t00 þ vz00 þM�x00ivi

2r00
; (B1)

x0 ¼ x00; (B2)

y0 ¼ y00; (B3)

z0 ¼ z00 þ vt00: (B4)

With this coordinate transformation, the line element
becomes

ds2 ¼
�
1 −

2M�
r0

�
dt002 −

�
1þ 2M�

r00

�
δijdðx00Þidðx00Þj

− vð2Bþ þ 1ÞM�z00

r003
ðx00dt00dx00 þ y00dt00dy00Þ

− v
M�
r00

�
ð2B− þ 7Þ þ ð2Bþ þ 1Þ z

002

r002

�
dt00dz00; (B5)

where r00 is the distance from the origin to the field point in
the comoving standard PN gauge. Note that in the GR limit,
Bþ → −1=2 and B− → −7=2, and thus gt00i vanishes. Next,
let us transform this metric to comoving spherical coor-
dinates ðt; r; θ;φÞ by

t00 ¼ t; (B6)

x00 ¼ ðr −M�Þ sin θ cosφ; (B7)
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y00 ¼ ðr −M�Þ sin θ sinφ; (B8)

z00 ¼ ðr −M�Þ cos θ; (B9)

where the subtraction by M� is needed to remove the
harmonic factors. This transformation gives

ds2 ¼
�
1 −

2M�
r

�
dt2 −

�
1þ 2M�

r

�
dr2

− r2dθ2 − r2sin2θdφ2

− 2vðB− þ Bþ þ 4ÞM�
r

cos θdtdr

þ vð7þ 2B−ÞM� sin θdtdθ: (B10)

Now, let us perform the coordinate transformation given by
Eq. (131), where we choose Hðr; θÞ to be

Hðr; θÞ ¼ −
�
1 −

1þ 2B− þ 2C−

2

M�
r

�
r cos θ þ O

�
M2�
r2

�
;

(B11)

which yields

ds2 ¼
�
1 −

2M�
r

�
dt2 −

�
1þ 2M�

r

�
dr2

− r2dθ2 − r2sin2θdφ2

− 2v

�
1þ ðB− þ Bþ þ 2ÞM�

r

�
cos θdtdr

þ 2vr

�
1 − ðC− − 1ÞM�

r

�
sin θdtdθ; (B12)

to the appropriate order.

Comparing Eq. (B12) to the metric ansatz in Eq. (128),
one can read off the asymptotic behavior of k1ðrÞ and s1ðrÞ:

k1ðrÞ ¼ −
�
1þ ðB− þ Bþ þ 2ÞM�

r

�
þ O

�
1

r2

�
; (B13)

s1ðrÞ ¼ −
�
1 − ðC− − 1ÞM�

r

�
þ O

�
1

r2

�
: (B14)

Finally, comparing these asymptotic relations to the asymp-
totic expansion of k1ðrÞ and s1ðrÞ in Eqs. (162) and (163)
for Einstein-æther theory, or in Eqs. (179) and (180) for
khronometric theory, we can read off the integration
constant A, given by Eq. (172).

APPENDIX C: HIGH-ORDER FIT OF THE
NEUTRON STAR SENSITIVITY IN

EINSTEIN-ÆTHER THEORY

The function Eq. (186) used to fit the numerical results
for the NS sensitivities in Einstein-æther theory contained
only 27 terms, which thus led to an r2 value of approx-
imately 0.96. In this Appendix, we repeat the fit but with a
function that contains 120 terms, thus yielding an r2 value
closer to 0.999. The function that we fit is

sæ ¼
X5
l¼0

X3
m¼0

X4
n¼0

cl;m;nclþcm−Cn�: (C1)

We experimented with different fitting functions (e.g.
polynomials of different orders in cþ, c− and C�) and
found that Eq. (C1) leads to the highest r2 value with less
than 130 coefficients. After the fit, the latter are

c0;0;0 ¼ 7.5614 × 10−5; c0;1;0 ¼ −4.1773 × 10−1; c0;2;0 ¼ 2.4191 × 102; c0;3;0 ¼ −3.7821 × 104;

c0;0;1 ¼ −1.9843 × 10−3; c0;1;1 ¼ 1.0465 × 101; c0;2;1 ¼ −6.0529 × 103; c0;3;1 ¼ 9.4537 × 105;

c0;0;2 ¼ 1.7522 × 10−2; c0;1;2 ¼ −9.5518 × 101; c0;2;2 ¼ 5.5053 × 104; c0;3;2 ¼ −8.569 × 106;

c0;0;3 ¼ −7.1593 × 10−2; c0;1;3 ¼ 3.8615 × 102; c0;2;3 ¼ −2.2216 × 105; c0;3;3 ¼ 3.4574 × 107;

c0;0;4 ¼ 1.0796 × 10−1; c0;1;4 ¼ −5.7411 × 102; c0;2;4 ¼ 3.2636 × 105; c0;3;4 ¼ −5.0288 × 107;

c1;0;0 ¼ −1.4808 × 10−1; c1;1;0 ¼ 1.2786 × 103; c1;2;0 ¼ −8.6676 × 105; c1;3;0 ¼ 1.5257 × 108;

c1;0;1 ¼ 3.7377; c1;1;1 ¼ −3.2087 × 104; c1;2;1 ¼ 2.1741 × 107; c1;3;1 ¼ −3.8261 × 109;

c1;0;2 ¼ −3.4865 × 101; c1;1;2 ¼ 2.9613 × 105; c1;2;2 ¼ −2.0015 × 108; c1;3;2 ¼ 3.5182 × 1010;

c1;0;3 ¼ 1.4124 × 102; c1;1;3 ¼ −1.1938 × 106; c1;2;3 ¼ 8.0668 × 108; c1;3;3 ¼ −1.4181 × 1011;

c1;0;4 ¼ −2.2149 × 102 c1;1;4 ¼ 1.8188 × 106 c1;2;4 ¼ −1.2206 × 109 c1;3;4 ¼ 2.1391 × 1011

c2;0;0 ¼ 2.3829 × 101; c2;1;0 ¼ −2.8516 × 105; c2;2;0 ¼ 2.474 × 108; c2;3;0 ¼ −4.7786 × 1010;

c2;0;1 ¼ −6.0241 × 102; c2;1;1 ¼ 7.1666 × 106; c2;2;1 ¼ −6.2074 × 109; c2;3;1 ¼ 1.1984 × 1012;
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c2;0;2 ¼ 5.6602 × 103; c2;1;2 ¼ −6.6286 × 107; c2;2;2 ¼ 5.7222 × 1010; c2;3;2 ¼ −1.1032 × 1013;

c2;0;3 ¼ −2.2968 × 104; c2;1;3 ¼ 2.6753 × 108; c2;2;3 ¼ −2.3067 × 1011; c2;3;3 ¼ 4.446 × 1013;

c2;0;4 ¼ 3.6916 × 104; c2;1;4 ¼ −4.1104 × 108; c2;2;4 ¼ 3.5102 × 1011; c2;3;4 ¼ −6.7418 × 1013;

c3;0;0 ¼ −1.6988 × 103; c3;1;0 ¼ 2.6497 × 107; c3;2;0 ¼ −2.5671 × 1010; c3;3;0 ¼ 5.1948 × 1012;

c3;0;1 ¼ 4.306 × 104; c3;1;1 ¼ −6.6618 × 108; c3;2;1 ¼ 6.4414 × 1011; c3;3;1 ¼ −1.3027 × 1014;

c3;0;2 ¼ −4.0809 × 105; c3;1;2 ¼ 6.1694 × 109; c3;2;2 ¼ −5.9414 × 1012; c3;3;2 ¼ 1.1998 × 1015;

c3;0;3 ¼ 1.6593 × 106; c3;1;3 ¼ −2.4913 × 1010; c3;2;3 ¼ 2.3951 × 1013; c3;3;3 ¼ −4.8345 × 1015;

c3;0;4 ¼ −2.7415 × 106 c3;1;4 ¼ 3.8467 × 1010 c3;2;4 ¼ −3.6549 × 1013 c3;3;4 ¼ 7.3477 × 1015

c4;0;0 ¼ 5.5764 × 104; c4;1;0 ¼ −1.0772 × 109; c4;2;0 ¼ 1.1071 × 1012; c4;3;0 ¼ −2.2974 × 1014;

c4;0;1 ¼ −1.4174 × 106; c4;1;1 ¼ 2.7088 × 1010; c4;2;1 ¼ −2.778 × 1013; c4;3;1 ¼ 5.7611 × 1015;

c4;0;2 ¼ 1.3554 × 107; c4;1;2 ¼ −2.5106 × 1011; c4;2;2 ¼ 2.5632 × 1014; c4;3;2 ¼ −5.3069 × 1016;

c4;0;3 ¼ −5.5226 × 107; c4;1;3 ¼ 1.0141 × 1012; c4;2;3 ¼ −1.0333 × 1015; c4;3;3 ¼ 2.1382 × 1017;

c4;0;4 ¼ 9.3758 × 107; c4;1;4 ¼ −1.5706 × 1012; c4;2;4 ¼ 1.5792 × 1015; c4;3;4 ¼ −3.2537 × 1017;

c5;0;0 ¼ −6.8247 × 105; c5;1;0 ¼ 1.55 × 1010; c5;2;0 ¼ −1.6476 × 1013; c5;3;0 ¼ 3.4679 × 1015;

c5;0;1 ¼ 1.7392 × 107; c5;1;1 ¼ −3.8986 × 1011; c5;2;1 ¼ 4.1344 × 1014; c5;3;1 ¼ −8.6962 × 1016;

c5;0;2 ¼ −1.6767 × 108; c5;1;2 ¼ 3.615 × 1012; c5;2;2 ¼ −3.8153 × 1015; c5;3;2 ¼ 8.0115 × 1017;

c5;0;3 ¼ 6.8445 × 108; c5;1;3 ¼ −1.4604 × 1013; c5;2;3 ¼ 1.538 × 1016; c5;3;3 ¼ −3.2277 × 1018;

c5;0;4 ¼ −1.1899 × 109; c5;1;4 ¼ 2.2663 × 1013; c5;2;4 ¼ −2.3528 × 1016; c5;3;4 ¼ 4.9149 × 1018:
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