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Abstract

A measurement of the transverse momentum spectra of jets in Pb–Pb collisions at
√

sNN = 2.76 TeV
is reported. Jets are reconstructed from charged particlesusing the anti-kT jet algorithm with jet
resolution parametersRof 0.2 and 0.3 in pseudo-rapidity|η |< 0.5. The transverse momentumpT of
charged particles is measured down to 0.15 GeV/c which gives access to the lowpT fragments of the
jet. Jets found in heavy-ion collisions are corrected event-by-event for average background density
and on an inclusive basis (via unfolding) for residual background fluctuations and detector effects. A
strong suppression of jet production in central events withrespect to peripheral events is observed.
The suppression is found to be similar to the suppression of charged hadrons, which suggests that
substantial energy is radiated at angles larger than the jetresolution parameterR= 0.3 considered
in the analysis. The fragmentation bias introduced by selecting jets with a highpT leading particle,
which rejects jets with a soft fragmentation pattern, has a similar effect on the jet yield for central
and peripheral events. The ratio of jet spectra withR= 0.2 andR= 0.3 is found to be similar in
Pb–Pb and simulated PYTHIA pp events, indicating no strong broadening of the radial jet structure
in the reconstructed jets withR< 0.3.
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1 Introduction

Discrete formulations of Quantum Chromodynamics (latticeQCD) predict a phase transition to a new
state of matter, the Quark-Gluon Plasma (QGP), at an energy density above a critical value of about
1 GeV/fm3 and temperatures beyondTC ≈ 160 MeV [1, 2]. In this state, the elementary constituents of
hadronic matter, quarks and gluons, are deconfined and chiral symmetry is expected to be restored. The
conditions to create a QGP are expected to be reached for a short time (few fm/c) in the overlap region
of heavy nuclei colliding at high energy.

One of the tools to study the properties of the QGP is providedby hard (large momentum transferQ2)
scattering processes of the partonic constituents of the colliding nucleons. These hard scatterings occur
early in the collision (≪ 1fm/c) and the outgoing partons propagate through the expanding hot and
dense medium and fragment into jets of hadrons. Jet fragmentation in heavy-ion collisions is expected to
be modified (relative to the parton fragmentation in the vacuum) due to parton-medium interactions, e.g.
radiative and collisional parton energy loss (jet quenching) [3,4]. The initial hard parton production cross
sections are calculable using perturbative QCD (pQCD) and the non-perturbative vacuum fragmentation
process can be well calibrated via jet measurements in elementary collisions.

Jet quenching has been observed at RHIC [5–10] and at the LHC [11–17] via the measurement of high-pT

inclusive hadron and jet production, di-hadron angular correlations and the energy imbalance of recon-
structed dijets, which are observed to be strongly suppressed and modified, respectively, in central AA
collisions compared to a pp (vacuum) reference. Single particle measurements provide limited infor-
mation on the initial parton energy and its radiation. Jet reconstruction allows more direct access to
the parton energies, which can be calculated using pQCD, by integrating over the hadronic degrees of
freedom in a collinear and infrared safe way. Jets are reconstructed by grouping the detected particles
within a given angular region, e.g. a cone with radiusR. The interaction with the medium can result in a
broadening of the jet profile with respect to vacuum fragmentation. In this case, for a given jet resolution
parameterR and a fixed initial parton energy, the energy of the jet reconstructed in heavy-ion collisions
will be smaller than in vacuum. In the case where the gluons are radiated inside the cone, the jet is
expected to have a softer fragmentation and a modified density profile compared to jets in vacuum.

Jet measurements in heavy-ion collisions employ various approaches to correct for background energy
not associated with jet production and to suppress the combinatorial, false jet yield induced by fluctu-
ations of this background, e.g. via energy or momentum thresholds for particles that are used in the jet
finding process. Every approach represents a compromise between potential fragmentation biases in the
jet reconstruction and a better separation of the jet signalfrom the background.

In this article a measurement of the inclusive jetpT spectrum in Pb–Pb collisions at
√

sNN = 2.76 TeV is
reported in four centrality intervals in the most central 80% of the total hadronic cross-section. Jets are
clustered from charged tracks measured with the central barrel detectors in ALICE down to momenta of
0.15 GeV/c, which provides unique access to lowpT jet fragments at mid-rapidity at the LHC. Jets are
measured with resolution parametersR= 0.2 andR= 0.3 in the pseudo-rapidity interval−0.5<η < 0.5.
The underlying event is subtracted event-by-event for eachmeasured jet. The jet spectrum is corrected
for background fluctuations and detector effects affectingthe jet energy resolution and scale through an
unfolding procedure.

The jet reconstruction strategy and the correction procedure for background from the underlying event is
discussed in detail in Section 2. The results are presented in Section 3 and discussed in Section 4.

2 Data analysis and techniques

2.1 Data Sample and Event Selection

The data used for this analysis were recorded by the ALICE detector [18] in the fall of 2010 during the
first Pb–Pb run at a collision energy of

√
sNN = 2.76 TeV. The analysis presented here uses minimum-
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bias events, which are selected online by requiring a signalin at least two out of the following three
detectors: the forward VZERO counters (V0A and V0C) and the Silicon Pixel Detector (SPD) [19]. The
VZERO counters are forward scintillator detectors covering a pseudo-rapidity range of 2.8 < η < 5.1
(V0A) and−3.7<η <−1.7 (V0C); the SPD is part of the Inner Tracking System (ITS) described below.
The minimum-bias trigger is fully efficient in selecting hadronic events in Pb–Pb collisions. In addition,
an offline selection is applied in which the online trigger isvalidated and remaining background events
from beam-gas and electromagnetic interactions are rejected. To ensure a high tracking efficiency for all
considered events, the primary vertex was required to be within 10 cm from the center of the detector
along the beam axis and within 1 cm in the transverse plane.

The number of Pb–Pb events used in this analysis after event selection is 12.8 million in a centrality range
between 0 and 80% most central of the total hadronic cross section, corresponding to a total integrated
luminosity of 2 µb−1. The event sample is divided in four centrality intervals (0–10%, 10–30%, 30–
50%, and 50–80%) based on the sum of VZERO amplitudes. A Glauber model is used to calculate
the number of participating nucleonsNpart in the collisions, the number of binary collisionsNcoll, and
the nuclear overlap functionTAA [19]. The resulting values and their uncertainties for the considered
centrality intervals are given in Table 1.

Centrality 〈Npart〉 〈Ncoll〉 〈TAA 〉
0–10% 356.0±3.6 1500.5±165.0 23.5±0.8
10–30% 223.0±3.5 738.8±75.3 11.6±0.4
30–50% 107.2±2.8 245.6±23.3 3.8±0.2
50–80% 32.5±1.2 45.9±4.6 0.70±0.04

Table 1: Average values of the number of participating nucleonsNpart, number of binary collisionsNcoll, and the
nuclear overlap functionTAA for the centrality intervals used in the jet analysis. Experimental uncertainties on the
parameters of the nuclear density profile used in the Glaubersimulations and on the interpolated nucleon-nucleon
cross section (σNN

inel = 64±5 mb) are included in the uncertainties. For details see [19].

2.2 Jet reconstruction

Jets were reconstructed using charged tracks detected in the Time Projection Chamber (TPC) [20] and
the Inner Tracking System (ITS) [21] which cover the full azimuth and pseudo-rapidity|η | < 0.9. For
each track traversing the TPC, up to 159 independent space points are measured at radial distances from
85 cm to 247 cm.

The ITS consists of six cylindrical silicon layers with highgranularity for precision tracking, with the
inner layer at 3.9 cm from the center of the detector and the outer layer at 43 cm. The measured space
points in the ITS and the TPC are combined to reconstruct the tracks of charged particles. The transverse
momentum is calculated from the measured track curvature inthe magnetic field ofB= 0.5 T.

The main track selection criteria are a minimum number of points in the TPC, aχ2 cut on the fit, and a
cut on the difference between the parameters of the track fit using all the space points in ITS and TPC,
and using only the TPC space points with the primary vertex position as an additional constraint. Tracks
for which the total change in the track parameters is more than 6σ (χ2 > 36) are rejected from the sample
resulting in a tracking efficiency loss of 8% for lowpT tracks (ptrack

T < 1 GeV/c) and a few percent (1-2%)
for higher momentum tracks. For a large fraction (79%) of thetracks used in the analysis, at least one
point was found in one of the two inner pixel tracking layers (SPD) of the ITS. To improve the azimuthal
uniformity of the selected tracks, tracks without SPD points were also used in the analysis. For those
tracks the momentum was determined from a track fit constrained to the primary vertex, to guarantee
good momentum resolution.

The pT resolution for tracks is estimated from the track residualsof the momentum fit and does not
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vary significantly with centrality. All track types have a relative transverse momentum resolution of
σ(pT)/pT ≃ 1% at 1 GeV/c. The resolution atpT = 50 GeV/c is σ(pT)/pT ≃ 10% for tracks that have
at least three out of six reconstructed space points in the ITS. For the remaining tracks (6% of the track
sample) the resolution isσ(pT)/pT ≃ 20% at 50 GeV/c. The trackpT resolution is verified by cosmic
muon events and the width of of the invariant mass peaks ofK0

S, Λ andΛ̄ [22].

The track finding efficiency atpT = 0.15 GeV/c is 60% increasing to∼ 90% for pT ≃ 1.5 GeV/c and
then decreases to∼ 86% for pT ≥ 2.5 GeV/c. In peripheral events the track finding efficiency is∼ 2%
larger than in central collisions due to the lower track multiplicity.

Jets are reconstructed with the anti-kT algorithm using the FastJet package [23, 24] with resolution pa-
rametersR= 0.2 andR= 0.3. Charged tracks with|η |< 0.9 andpT > 0.15 GeV/c are used as input for
the jet algorithm. The transverse momentum of the jets,praw

T,ch jet, is calculated with the boost-invariant
pT recombination scheme. The area,A, for each jet is determined using the active area method as im-
plemented in FastJet [25]. So-called ‘ghost particles’ with very small momentum (∼ 10−100 GeV/c) are
added to the event and the number of ghost particles in a jet measures the area. Ghost particles are uni-
formly generated over the tracking acceptance (0< ϕ < 2π and|η |< 0.9), with 200 ghost particles per
unit area. Jets used in the analysis are required to have an area larger than 0.07 forR= 0.2 jets and 0.2
for R= 0.3 jets. This selection mostly removes low momentum jets withpraw

T,ch jet< 20 GeV/c. Jets are
selected to have|η | < 0.5, so that they are fully contained in the tracking acceptance. In addition, jets
containing a track with a reconstructedpT > 100 GeV/c are rejected from the analysis, to avoid possible
contributions from tracks with poor momentum resolution (the momentum resolution is 20% for tracks
with pT = 100 GeV/c). This selection has negligible effect in the reported range of jet momenta.

2.3 Background subtraction

In Pb–Pb events, the large background consisting of particles from soft scattering processes as well as
fragments from other jets, is subtracted using the procedure proposed in [26, 27]. The background is
measured on an event-by-event basis by clustering all particles using thekT-algorithm and determining
the median of the transverse momentum densityρ i

ch = pi
T,ch jet/Ai of all clustersi in the event, excluding

the two leading clusters to limit the impact of the hard jet signal on the background estimate. The signal
anti-kT jets are then corrected for the average background contribution using the medianρch:

pT,ch jet= praw
T,ch jet−ρch A, (1)

with pT,ch jet the background subtracted jetpT, praw
T,ch jet the uncorrected measured jetpT andA the area

of the anti-kT signal jet. The inclusive jet distribution is then corrected via unfolding to account for
background fluctuations and detector effects.

As demonstrated in [28] the measured background densityρch is directly related to the multiplicity and
average transverse momentum of the reconstructed charged particles. Since it is based on the same col-
lection of input particles used for the signal jets, the quantity ρch used in the analysis intrinsically includes
all detector effects, such as tracking efficiency and momentum resolution. To enable comparisons with
other experiments and generator studies, the corrected background momentum density is obtained using
the Hit-Backspace-Once-More (HBOM) method proposed in [29], i.e. by repeatedly applying the param-
eterized detector response to the measured heavy-ion events and extrapolating the measuredρ to an ideal
detector. The advantage of the method lies in the data-driven approach where only the detector response
is taken from simulation. This is of particular importance when studying observables that are sensitive
to the a-priori unknown structure of the heavy-ion event andthe correlation between different regions
in the event. This procedure yields a corrected transverse momentum density ofρ pT>0.15

ch = 155.8±3.7

GeV/c for the 10% most central events, with a spreadσ(ρ pT>0.15
ch ) = 20.5±0.4 GeV/c with no significant

dependence on the distance parameterRemployed in theρ calculation.
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2.4 Background fluctuations

All particles created in a collision are clustered into jets, but not all of them originate from hard pro-
cesses. The distinction between jets originating from a hard parton and soft clusters containing mostly
background particles (combinatorial jets) is to some extent arbitrary and requires a pragmatic defini-
tion. At very highpT, it is clear that all jets originate from parton fragmentation processes, while at low
and intermediatepT, clusters can be formed by including fragments from multiple, independent parton
scatterings or even from the soft hadronization.

Jet clusters which originate from a hard scattering will contain a large amount of uncorrelated, mostly
soft, background particles. The background subtraction procedure described in Section 2.3, removes the
background energyon average, but the background has large region-to-region fluctuations in the event,
both due to statistical fluctuations of the particle number and momentum, and collective phenomena like
elliptic flow.

Combinatorial jets and background fluctuations are intimately related: low energy jets, for example with
a momentum below 5 GeV/c, are also subject to background fluctuations and appear at relatively high
pT (well above 20 GeV/c). Such jets are mostly background energy, and thus background fluctuations
give rise to combinatorial jets.

For the results reported in the next sections an unfolding procedure is used to correct for background
fluctuations. In this procedure, the combinatorial jets will emerge at lowpT, while the spectrum is only
reported above a certainpT cut-off, thus effectively removing the combinatorial jetsfrom the result.
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Fig. 1: Uncorrected jet spectra after background subtraction, with radius parametersR= 0.2 (left) and
R= 0.3 (right) in central Pb–Pb events, without leading particleselection (unbiased, black circles) and
with at least one particle withpT > 5 (green crosses) or 10 GeV/c (red squares).

To illustrate the impact of combinatorial jets, Fig. 1 showsuncorrected jet spectra after event-by-event
subtraction of the background following Eq. 1. The black solid circles show the result without fur-
ther selection of the jets, which shows a broad peak aroundpT,ch jet = 0 GeV/c. A large fraction of the
combinatorial jets can be removed by selecting jets with a leading charged particle above a certain thresh-
old [30]. The crosses and squares in Fig. 1 show the jet spectra with a leading charged particle above 5
and 10 GeV/c. It can be seen clearly that selecting jets by a leading highpT particle reduces the back-
ground contribution forpT,ch jet< 40 GeV/c. However, this selection does not only reject combinatorial
jets, but also introduces a bias towards harder fragmentation.

In the following, unbiased and leading track biased jet spectra are reported. The systematic uncertainty
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arising from the combinatorial jet correction by unfoldingis smaller for the biased spectra (for details,
see Section 2.7).

Fluctuations of the background are quantified by placing cones withR= 0.2 andR= 0.3 at random loca-
tions within the acceptance of the measured Pb–Pb events (0< ϕ < 2π and|ηRC|< 0.5). The transverse
momentum of charged particles in the Randomly positioned Cone (RC) is summed and the difference
δ pch

T = ∑RC
i pT,i − ρchA is calculated, which represents the statistical (region-to-region) fluctuations of

the background. An alternative method to quantify the background fluctuations is also used in which
high pT probes are embedded into the Pb–Pb events [28]. The events with embedded probes are clus-
tered with the anti-kT jet finder and the transverse momentumpT,ch jet containing the embedded probe in

the heavy-ion environment is compared to the embedded transverse momentumpprobe
T by calculating the

differenceδ pch
T = praw

T,ch jet−ρchA− pprobe
T .
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Fig. 2: Left: δ pch
T distribution for jets with resolution parameterR= 0.2 andR= 0.3 measured with

random cones in central collisions. Right: Width of the background fluctuationδ pch
T distribution as a

function of centrality for cone radiiR= 0.2 andR= 0.3. The shaded uncertainty bands indicate the
difference between the width of theδ pch

T distribution from random cones and highpT probe embedding.

The left panel of Fig. 2 shows theδ pch
T distribution from the 10% most central events for the two jetreso-

lution parameters used in this analysis. The standard deviation of the background fluctuations,σ(δ pch
T ),

is 4.47 GeV/c for R= 0.2 jets and 7.15 GeV/c for R= 0.3 jets (the statistical uncertainties are less than
4 MeV/c due to the large sample of random cones). The right panel of Fig. 2 shows the evolution of
σ(δ pch

T ) with centrality for the two jet resolution parameters extracted with the random cones technique.
The upper edge of the shaded boxes indicates theσ(δ pch

T ) obtained with track embedding, where single
tracks with 20< ptrack

T < 110 GeV/c were embedded in the heavy-ion events. The small increase inthe
standard deviation for more central events is due to the finite jet area resolution in the embedding [28].

Due to the asymmetry of theδ pch
T distribution, fluctuations that increase the jet energy aremore probable

than fluctuations to lower jet energy. More importantly, thesteeply fallingpT-spectrum favours low-pT

jets with upward fluctuations over downward fluctuations of high-pT jets at a givenpT.

Fluctuations of the background depend strongly on the multiplicity, jet area (or radius), and minimum
pT of the measured particles [28]. The analysis presented hereis limited toR= 0.2 andR= 0.3 to avoid
instabilities in the correction which are present for larger radii, see also Section 2.6.

The measured (uncorrected)δ pch
T distributions are used directly to correct the jet spectrumfor back-
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ground fluctuations. In addition, the magnitude of background fluctuations also provides a potentially
important characteristic of the properties of the heavy-ion event and the region-to-region variation of the
transverse momentum density. For this purpose, the measured values were corrected using the HBOM
iterative procedure in the same way as for the background density ρ , i.e. applying the parameterized
detector effects multiple times and extrapolating the fluctuations to an ideal detector [29]. Since the cor-
rection is based on the properties of the measured heavy-ionevent, it takes into account all correlations
in the event. The corrected width of theδ pch

T distribution is given in Table 2 for central collisions and
various cone radii. The FastJet package provides a measure of fluctuations,σFJ, which is defined from
the distribution of individual jet momentum densitiespi

T,ch jet/Ai such that 15.9% of all clusters within an

event satisfypi
T,ch jet/Ai < ρ −σFJ

√
A [31]. This measure corrects to first order the area dependence of

fluctuations (σ ∝
√

A), but is not sensitive to the tail of the distribution. TheσFJ obtained with different
radius parameters for thekT jet finder and extrapolated to an ideal detector for charged particles above
pT > 0.15 GeV/c is also reported in Table 2. It is multiplied by

√
πR2 to re-introduce part of the area

dependence, present inσ(δ pch
T ). The FastJet fluctuation measures are reported to enable thecomparison

of fluctuations in heavy ion reactions by standard jet reconstruction tools in models and data.

σ(δ pch
T ) σFJ·

√
πR2

Measured Corrected Corrected

R= 0.2 4.47±0.00 GeV/c 5.10±0.05 GeV/c 4.04±0.05 GeV/c

R= 0.3 7.15±0.00 GeV/c 8.21±0.09 GeV/c 6.35±0.09 GeV/c

R= 0.4 10.17±0.01 GeV/c 11.85±0.14 GeV/c 8.59±0.12 GeV/c

Table 2: Measured and corrected width of theδ pch
T distribution for different cone radii in 10% most

central events forptrack
T > 0.15 GeV/c. In addition, the corrected fluctuation measure from FastJet is

provided, multiplied by
√

πR2 to take into account the expected area dependence of the fluctuations. The
values forR= 0.4 are given for comparison with [28].

2.5 Detector effects

The jet response in the ALICE detector is evaluated using simulations with the PYTHIA6 [32] event
generator and GEANT3 [33] for detector response, using the same reconstruction software settings that
are used for the reconstruction of Pb–Pb events. The effect of the high track density in Pb–Pb events on
the tracking efficiency was studied using HIJING [34] eventswith the GEANT3 detector simulation. It
is found that the tracking efficiency is∼2% lower in central Pb–Pb collisions than in peripheral colli-
sions and pp collisions. This additional centrality-dependent inefficiency was introduced to the PYTHIA
events by a random rejection of tracks.

The jet response is determined on a jet-by-jet basis by comparing jets before (particle level jets) and after
detector simulation (detector level jets), that are geometrically matched. Particle level jets are clustered
from primary charged particles produced by the event generator. Primary charged particles include all
prompt charged particles produced in the collision, including the products of strong and electromagnetic
decays, but excluding weak decays of strange hadrons. In this analysis the detector to particle level
correction is based on the Perugia-0 tune [35] of PYTHIA6. Itwas verified that the simulated detector
response for jets is largely independent of the generator tune by comparing to the jet response obtained
with the Perugia-2010 and 2011 tune [36, 37]. The contribution from weak decay products to the track
sample is small due to the track selection requirements and low material budget (11.5%± 0.5% X0 in
the central tracking systems [38]). The remaining contamination is included in the response matrix. No
correction for hadronization effects was applied since therelation between parton level jet and particle
level jet in heavy-ion collisions is not well-defined.
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The detector effects that influence the jet energy scale and resolution are the charged particle tracking
efficiency and the transverse momentum resolution, with thetracking efficiency being the dominant
contributor. The finitepT resolution of reconstructed charged tracks has a small effect on the jet energy
resolution since the majority of the constituents of a jet are of moderatepT where the tracking momentum
resolution is good. In addition, since the transverse momentum of the jet is the sum of the transverse
momentum of independently measured tracks, the relative momentum resolution is in general better than
that of individual tracks.

part

T,ch jet
p)/part

T,ch jet
p- det

T,ch jet
p(

-1 -0.8 -0.6 -0.4 -0.2 0 0.2

P
ro

ba
bi

lit
y/

B
in

(0
.0

4)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
ALICE simulation

)c (GeV/part

T,ch jet
p

30 - 40
50 - 60
70 - 80

 = 0.2R TkAnti-
c > 0.15 GeV/track

T
p

part

T,ch jet
p)/part

T,ch jet
p- det

T,ch jet
p(

-1 -0.8 -0.6 -0.4 -0.2 0 0.2

P
ro

ba
bi

lit
y/

B
in

(0
.0

4)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
ALICE simulation

)c (GeV/part

T,ch jet
p

30 - 40
50 - 60
70 - 80

 = 0.3R TkAnti-
c > 0.15 GeV/track

T
p

Fig. 3: Distributions of relative transverse momentum difference between detector and particle level
anti-kT jets with R= 0.2 andR= 0.3 and several ranges of jet transverse momentum at particle level.
The distributions correspond to the 10% most central events. Events were generated using PYTHIA with
the standard ALICE detector response simulation using GEANT3 and the data reconstruction algorithms
and settings used for Pb–Pb events. The dominant systematicuncertainty is the uncertainty on tracking
efficiency.

Figure 3 shows the probability distribution of the relativetransverse momentum difference between the
detector and particle level jets with resolution parametersR= 0.2 andR= 0.3 in three different intervals
of the transverse momentum of the particle level jetppart

T,ch jet. The most probable detector levelpdet
T,ch jet

is very close to the particle level jetppart
T,ch jet in all cases. The average momentum of the detector level

jet is lower than the particle level momentum, because of theaverage inefficiency of 10-20% in the
charged particle reconstruction. Momentum resolution effects and under-subtraction of the background
(back reaction) can cause a detector level jet to have a higher momentum. The momentum difference
distribution is highly asymmetric and cannot be described by a Gaussian distribution.

To characterize the detector response, the mean of the relative difference betweenpdet
T,ch jet andppart

T,ch jet as
a function of the jet momentum at particle level is shown in Fig. 4. For unbiased jets the reconstructed jet
momentum is on average 14–19% lower than the generated momentum, in the rangeppart

T,ch jet= 20−100
GeV/c, with a weakpT-dependence. The mean of the jet response is also shown for leading track biased
jets withpleading track

T > 5 and 10 GeV/c. Those jets whose leading track is not reconstructed in the detector
are rejected from the sample. This results in an improved jetenergy resolution at low jetpT while the jet
finding efficiency is decreased, as shown in Fig. 5.

To give more details on the detector response to jets, the most probable value of the relative difference
betweenppart

T,ch jet and pdet
T,ch jet is shown as a function ofppart

T,ch jet in the right panel of Fig. 4. The most
probable value is determined as the mean of a Gaussian function fitted to the peak region,−0.03<
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Fig. 4: Jet detector response for jet finding resolution parameterR= 0.3 for the 10% most central events.
Data points extracted from event and full detector simulation. Systematic uncertainty originates from the
uncertainty on the tracking efficiency. Left: mean of the jetresponse for charged jets withR= 0.3. See
text for details. Right: Mean, most probably value and quartiles of the jet response as a function of jet
momentum.

(pdet
T,ch jet− ppart

T,ch jet)/ppart
T,ch jet< 0.03. The most probable value of the detector levelpT is within 0.5% of

ppart
T,ch jetover the entirepT range.

The right panel in Fig. 4 also shows the boundaries at 25%, 50%or 75% of the response distribution
for jets withR= 0.3, integrating from the rightpdet

T,ch jet→ ∞. Approximately 25% of the detector level
jets has a larger reconstructed jet momentum than generated. The 50% percentile (median) correction is
5% atppart

T,ch jet= 20 GeV/c and increases to 14% atppart
T,ch jet= 100 GeV/c. For 75% of the jet population

the correction for detector effects is smaller than 22% at low pT,jet ≈ 20GeV/c and 30% at highpT,jet ≈
100GeV/c.
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Fig. 5: Jet-finding efficiency for inclusive unbiased and leading track biased jets extracted from event
and detector simulation for the 10% most central events. Left panel:R= 0.2. Right panel:R= 0.3.

The jet-finding efficiency is obtained by taking the ratio between the spectra of the particle level jets
which have a detector level partner, and all particle level jets. In case of jets biased by a highpT con-
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stituent, the numerator consists of jets fulfilling the highpT track requirement on detector level and the
denominator are all particle level jets with a highpT generated particle. Figure 5 shows the jet-finding
efficiency for the unbiased sample, which is unity at highpT and reduces to 95% atppart

T,ch jet= 20 GeV/c
due to migration of the jet axis outside theη acceptance. The jet-finding efficiency for jets with radii
of R= 0.2 andR= 0.3 differs by a few per cent at lowpT and is the same at highpT. In general the
jet-finding efficiency is∼1% higher in pp compared to Pb–Pb without apT dependence forppart

T,ch jet> 20

GeV/c. For leading track biased jets, the jet-finding efficiency isreduced and reaches 90% atppart
T,ch jet≈ 25

GeV/c for pleading track
T > 5 GeV/c and atppart

T,ch jet≈ 60 GeV/c for pleading track
T > 10 GeV/c, which is con-

sistent with the charged particle tracking efficiency.

2.6 Unfolding

Both background fluctuations and detector effects lead to smearing of the measured jet momentum in
heavy ion collisions. These effects can be corrected for using deconvolution, orunfoldingprocedures
[39–41]. The background fluctuations and detector effects partially compensate: an upward energy shift
is more likely due to background fluctuations while detectoreffects mainly induce a shift to lowerpT.

The relation between the measured spectrumMm and the ‘true’ jet spectrumTt is

Mm = Rtot
m,t ·Tt = Rbkg

m,d ·Rdet
d,t ·Tt , (2)

whereRdet
d,t is the response matrix for detector effects (including efficiencies),Rbkg

m,d is the response matrix

for background fluctuations, andRtot
m,t =Rbkg

m,d ·Rdet
d,t is the total response matrix for the combined effects of

background fluctuations and detector effects. The subscripts m,d, t are indices indicating the bin number.

The response for background fluctuations is extracted with the data-driven method described in Section
2.4 and the response for detector effects is obtained from detector simulations as described in Section 2.5.
The response matrices are combined into an overall responsematrix Rtot

m,t . It was verified that correcting
for detector effects and background fluctuations in two separate unfolding steps yields the same unfolded
jet spectrum.
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Fig. 6: Combined jet response for charged jets for the two resolution parameters considered, including
background fluctuations and detector effects for 0-10% central Pb–Pb events. Left panel:R= 0.2. Right
panel:R= 0.3.

Figure 6 shows the width of the combined responseσ(pdet
T,ch jet)/ppart

T,ch jet as a function ofppart
T,ch jet. It can

be observed that the dominant correction at low momenta originates from the background fluctuations
while at highpT the detector effects dominate.
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Inverting Eq. 2 to obtain the true spectrum from the measuredspectrum requires some care: calculating
the inverse of the response matrix leads to solutions for thetrue jet spectrum that has large unphysical
bin-to-bin-fluctuations. To suppress these fluctuations, unfolding algorithms implement regularisation
procedures, which impose a smoothness criterion on the finalresult. There is some freedom in the
choice of regularisation procedure, which leads to an additional systematic uncertainty on the unfolded
spectrum for the final result.

Three unfolding algorithms with different regularisationprocedures were tested: theχ2 method with a
log-log-regularisation (see Appendix A), the (generalized) Singular Value Decomposition (SVD) method
as implemented in RooUnfold, and the Bayesian method [40,42–45]. It was found in a closure test with
a thermal background model that the Bayesian method does notconverge properly for this case, while
the other two methods give similar results. The covariance matrix cov(x,y) for the unfolded result is
calculated by propagating the measurement errors in the unfolding and/or using Monte Carlo variations
of the input spectra [45]. The quality of the unfolded resultis evaluated by inspecting the Pearson
coefficientsρ(x,y) = cov(x,y)

σxσy
. A large (anti-)correlation between neighboring bins indicates that the

regularisation is too strong or too weak. The statistical uncertainties on the unfolded data points are the
square root of the diagonal elements of the covariance matrix of the unfolded spectrum.

2.6.1 Unfolding strategy –pT ranges

There are two relevant kinematic ranges in the unfolding strategy applied in this analysis: thepT-range of
the measured spectrum and thepT-range of the unfolded spectrum, which may be different. A minimum
pT cut-off on the measured jet spectrum is introduced to suppress jet candidates, which are dominated by
background fluctuations, including combinatorial jets, while the unfolded spectrum starts at the lowest
possiblepT, punfolded

T > 0 GeV/c.

The minimumpT cut-off (pmin,meas
T ) on the measured spectrum removes a large fraction of combinatorial

jets, which makes the unfolding procedure more stable. Feed-in from true jets withpT < pmin,meas
T

into the region used for unfolding is accounted for by extending the unfolded spectrum topT,ch jet = 0
GeV/c. The feed-in from lowpT true jets is a significant effect since the spectrum falls steeply with
pT,ch jet. Combinatorial jets still present in the measurement afterapplying the kinematical selections are

transferred in the unfolding procedure to the region belowpmin,meas
T . Feed-in from jets withpT,ch jet larger

than the maximum measuredpT,ch jet is also included by extending the reach of the unfolded spectrum
to pT,ch jet = 250 GeV/c. The optimal value of the minimumpT cut-off has been studied using the jet
background model described in [30] and within simpler set-up in which a jet spectrum is folded with the
measured background fluctuations. Stable unfolding is obtained with a minimumpT cut-off of at least
five times the width of theδ pch

T -distributionσ(δ pch
T ). For the most central collisions andR= 0.3, this

means that the spectrum is reported forpT,ch jet > 40 GeV/c. In addition, the maximumpT cut-off is
driven by the available statistics. The present data set allows for a measurement ofpT,ch jet< 110 GeV/c
in central events andpT,ch jet < 90 GeV/c in peripheral events. In case of leading track biased jets, the
unfolding is more stable since the correction for combinatorial jets is reduced.

2.7 Systematic uncertainties

The systematic uncertainties on the results were evaluatedby varying a number of key assumptions in
the correction procedure and by using different unfolding methods. The different tests and the resulting
systematic uncertainties are discussed in the following subsections, and summerized in Table 3.

2.7.1 Unfolding and regularisation uncertainties

The uncertainties from the regularisation and the unfolding procedure were evaluated by changing the
regularisation strengthβ in the χ2-method and by comparing the results from theχ2 method and the
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generalised SVD method. Both variations give an uncertainty on the applied regularisation. Therefore,
the uncertainties were taken to be the maximum deviation from both studies. The SVD method also
makes use of a prior, which was varied. This has a negligible effect on the result.

Regularisation strength β The regularisation strengthβ (see Eq. A.2) is varied from a value where
fluctuating solutions dominate to the point where the unfolding becomes over-constrained. The main
effect of varyingβ is that the unfolded jet spectrum changes shape. With increasing regularisation, the
unfolded spectrum becomes steeper at lowpT and flatter at highpT. The maximum deviation of the
yield for eachpT bin of the unfolded spectra within the reasonable range ofβ is used as the systematic
uncertainty. The uncertainty is largest for the unbiased jet sample with resolution parameterR= 0.3 in
the most central collisions up to 20% at lowpT,jet.

Unfolding method The spectrum obtained with theχ2 minimization method is compared to results
using the Bayesian and SVD unfolding methods. Theχ2 and SVD unfolded spectra agree within±10%
for all centrality classes and jet samples. The Bayesian method is only included in the estimate of the
systematic uncertainties for the cases where the combinatorial jets are suppressed by selecting jets with
a leading track withpT > 5 or 10 GeV/c. Without this selection, the Bayesian method was found to be
unreliable: large deviations up to 50% at lowpT,jet are observed in central collisions with a resolution
parameterR= 0.3. Such deviations are also seen in the validation studies with a heavy-ion background
model where the Bayesian method did not give the correct result, unless the truth was used as the prior.

Prior The unfolding algorithm starts from a QCD inspired shape forthe unfolded spectrum, the prior.
The measured jet spectrum is used as a standard prior for all unfolding methods and the sensitivity to
the choice of prior is evaluated by changing the shape and yield of the prior. When the prior is far from
the truth (for example a uniform distribution), theχ2 unfolding takes more iterations to converge but
eventually an unfolded jet spectrum is obtained, which is statistically not significantly different from the
unfolded spectrum obtained with the measured spectrum as a prior. The choice of prior has a negligible
effect on the final unfolded spectrum.

2.7.2 Combinatorial jets

The effect of combinatorial jets in the sample is evaluated by changing the minimumpT of the unfolded
spectrum and the measured range where the unfolding is applied.

Minimum pT of unfolded jet spectrum In the default analysis the unfolded spectrum starts atpT,ch jet=
0 GeV/c. The sensitivity of the result to very low energy (combinatorial) jets is explored by removing
the first bin from the unfolding procedure, i.e. starting theunfolded spectrum atpT,ch jet= 5 or 10 GeV/c
instead ofpT,ch jet= 0. This removes one parameter from theχ2 minimization. It results in an increase
of the unfolded jet yield by a few percent depending on the centrality bin and jet radius.

Minimum pT of measured jet spectrum Increasing the minimum measuredpT reduces the amount
of combinatorial jets in the measured spectrum (see Fig. 1).The remaining combinatorial jets contribute
to the jet yield at lowpT in the unfolded spectrum. The minimumpT of the measured jet spectrum is
varied by 10 GeV/c to a lower and higher value. With the two variations the unfolding is performed again
and the resulting difference between the unfolded spectra with the default one assigned as a systematic
uncertainty. This systematic uncertainty is largest at lowpT in the region where thepmin,meas

T cut-off is
placed. For unbiased jets in most central collisions and resolution parameterR= 0.3 the uncertainty at
pT,jet = 40 GeV/c is 25%, while it decreases to a few percent forpT,jet > 60 GeV/c.
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2.7.3 Uncertainty on background

Background fluctuation distribution: random cones and high pT probe embedding Theδ pch
T dis-

tribution obtained from embedding single highpT tracks in measured Pb–Pb events is used as a variation
to theδ pch

T distribution from random cones. The width of the backgroundfluctuations obtained from
single-track embedding is a few 100 MeV/c larger than for the random cones. The uncertainty is taken as
the difference between the unfolded jet spectrum using theδ pch

T response from single-track embedding
and the response from random cones. The difference is largest at low pT,jet (< 40 GeV/c), where∼ 15%
deviation in the jet yield for the unbiasedR= 0.3 central jet spectrum is observed.

Correction for collective flow effects in case of leading track biased jets Due to the presence of
collective effects such as elliptic and triangular flow in heavy-ion collisions the background density
differs from region-to-region. Jets with a highpT leading track are preferentially found in regions with
larger background density (in-plane). The subtracted background, however, is the averagepT density of
the event,ρch, multiplied by the area of the jet. A correction for the larger background for biased jets
is included in the response matrix. This correction is determined by calculatingρch on the near, away
side and in the region perpendicular to the leading track biased jet in an event. The correction is largest
for events in the 10-30% centrality class where forR= 0.3 jets with a 5 GeV/c bias an overall increase
of the background of 0.49 GeV/c is present. The correction for flow effects is only applied for leading
track biased jet spectra since for the unbiased case, jets are selected regardless of their correlation with
the event or participant plane [28].

The uncertainty on the correction for flow effects is calculated by changing the background to the lowest
and highest values found in the different azimuthal regions(perpendicular and near-side regions respec-
tively). The uncertainty onρch is 3 GeV/c for the jet sample with a 5 GeV/c leading track selection, and
2 GeV/c for a 10 GeV/c leading track requirement in central events. The systematic uncertainty on the
unfolded jet spectrum forR= 0.3 jets withpleading track

T > 5 GeV/c in 10% most central collisions is 8%
at pT,jet = 40 GeV/c and decreases to 4% atpT,jet = 100 GeV/c. A previous study has shown that the
background fluctuations (δ pT-distribution) are almost independent of the orientation with respect to the
reaction plane [28]; this effect is negligible compared to the change in the average background.

2.7.4 Uncertainty on the detector response

The detector response has two main components: tracking efficiency and momentum resolution of which
the tracking efficiency is the dominant uncertainty. The uncertainty on the tracking efficiency is estimated
to be 4%, motivated by detector simulation studies with PYTHIA and HIJING events, and by varying
the track selection criteria. To determine the systematic uncertainty on the result, a second response
matrix is constructed from a simulation with a 4% lower efficiency and the measured Pb–Pb jet spectrum
is unfolded. The difference between the nominal unfolded solution and the unfolded spectra with a
modified detector response is∼ 20% atpT,jet = 50 GeV/c and decreases to∼ 11% atpT,jet = 100 GeV/c;
the full difference is used as the systematic uncertainty, which corresponds to a 3–5% uncertainty on the
charged jetpT.

2.7.5 Centrality determination

The relative uncertainty on the fraction of hadronic cross-section used in the Glauber fit to determine the
centrality classes is 1% [19]. The contribution of this uncertainty on the jet spectrum is estimated by
varying the limits of the centrality classes by±1% (e.g. for the 10–30% centrality class to 9.9–29.7%
and 10.1–30.3%). With the shifted limits of the centrality classes the jet spectrum is compared to the
nominal jet spectrum. The uncertainty is the same for the jetspectrum with different leading track biases
and increases from central to peripheral events. For the 0–10% centrality class the uncertainty is less
than 1% and in the peripheral centrality class 50–80% it is∼ 1.9%.



14 ALICE Collaboration

Resolution parameter R= 0.2 R= 0.3

Centrality class pT-interval (GeV/c) 30–40 70–80 30–40 70–80

0–10%

Regularisation +3.4
−0.0

+2.3
−0.3

+9.9
−0.0

+2.6
−6.7

Unfolding method +0.0
−3.5

+0.0
−1.1

+0.0
−7.3

+7.6
−0.0

Minimum pT unfolded +9.6
−0.0

+0.3
−0.0

+0.0
−5.9

+0.0
−1.8

Minimum pT measured +1.7
−4.8

+0.2
−0.3

+0.0
−13

+0.0
−2.1

Prior < 0.1

δ pch
T

+0.0
−4.9

+0.0
−2.1

+0.0
−27

+0.0
−4.6

Detector effects ±2.7 ±5.5 ±4.6 ±5.2

Flow bias +0.9
−5.8

+0.4
−4.1

+7.3
−5.9

+4.8
−4.1

Centrality determination 0.8

Total shape uncertainty +10
−7.6

+2.4
−2.4

+9.9
−31

+7.6
−8.6

Total correlated uncertainty +2.9
−6.4

+5.6
−6.9

+8.6
−7.5

+7.1
−6.6

50–80%

Regularisation +0.0
−5.5

+13
−4.1

+0.1
−5.1

+17
−2.2

Unfolding method +2.1
−0.0

+0.0
−20

+2.3
−0.0

+0.0
−20

Minimum pT unfolded +0.3
−0.0

+0.1
−0.0

+1.0
−0.0

+0.6
−0.0

Minimum pT measured +9.3
−0.0

+0.7
−0.4

+7.5
−0.0

+1.0
−0.0

Prior < 0.1

δ pch
T

+8.2
−0.0

+2.4
−0.0

+3.0
−0.0

+2.2
−0.0

Detector effects ±3.3 ±6.2 ±3.3 ±3.1

Flow bias +1.9
−1.9

+0.3
−0.3

+0.4
−7.2

+0.3
−4.0

Centrality determination 1.9

Total shape uncertainty +13
−5.5

+13
−20

+8.5
−5.1

+17
−20

Total correlated uncertainty +4.2
−4.2

+6.5
−6.5

+3.8
−8.2

+3.6
−5.4

Table 3: Overview of systematic uncertainties for jet spectra with a leading track withpT > 5 GeV/c.
Relative uncertainties are given in percentiles for twopT-intervals and two different centrality intervals.

2.7.6 Total systematic uncertainty

The differential production yields are reported with theirsystematic uncertainties separated into two
categories:

– Shape uncertainty These are uncertainties that are highly anti-correlated between parts of the
spectrum: if the yield is increased in some bins, it decreases in other bins. The uncertainties from
the unfolding method and regularisation, and the uncertainty on the background fluctuations (only
δ pch

T uncertainty) fall into this category. The contributions are added in quadrature.

– Correlated systematic uncertaintyThese are uncertainties that result in correlated changes over
the entire spectrum. The contributions to this type of uncertainty are the uncertainty on the detector
response, the effect of flow in the background, and the influence of the combinatorial jets. The
contributions are added in quadrature.



Measurement of charged jet suppression in Pb-Pb collisionsat
√

sNN = 2.76 TeV 15

2.7.7 Systematic uncertainty on ratios

The following procedures are used for ratios of jet spectra:

– Uncorrelated uncertainties The systematic uncertainties from the unfolding method, which in-
clude regularisation and variation ofpT-ranges, are not correlated from one unfolded jet spectrum
to another. The contributions from these sources are added in quadrature to calculate the uncer-
tainies on ratios.

– Correlated uncertainties The systematic uncertainties from the flow bias, theδ pch
T -distribution,

and the detector effects are highly correlated between unfolded spectra from different centrality
classes, jet resolution parameters and leading track biases. The uncertainty on the tracking effi-
ciency is similar for all centrality classes. The flow bias depends on thepT of the leading track,
jet resolution parameter, and centrality class but is correlated. As a consequence, within a ratio the
correlated systematic uncertainties partially cancel.

3 Results

Jet spectra are measured with resolution parametersR= 0.2 and 0.3 in four centrality classes: 0–10%,
10–30%, 30–50% and 50–80%. Figure 7 shows the measured Pb–Pbjet spectra reconstructed from
charged constituents withpT > 0.15 GeV/c. The jet spectra are unfolded for detector effects and back-
ground fluctuations, and corrected for the jet finding efficiency as described in the preceding sections.
The upper panels show the inclusive jet spectra while for thecenter and lower panels the jet spectra with
a leading track bias of at least 5 and 10 GeV/c are shown. The markers represent the central values of the
unfolded jet spectra. It should be noted that the unfolding procedure leads to correlations between the
data points, because the width of the response function is similar to the bin width: neighboringpT-bins
tend to fluctuate together (correlated) while bins with somedistance tend to be anti-correlated. The verti-
cal error bars represent the statistical uncertainties. The filled and open boxes indicate the corresponding
shape and correlated systematic uncertainties discussed previously.

The jet yield is given per event and normalized by the averagenumber of nucleon-nucleon collisions
Ncoll corresponding to the given centrality interval. The markers shown below 20 GeV/c indicate the
normalization uncertainty on the extracted values ofNcoll (see Table 1). The jet yield evolves with
centrality: for central collisions fewer jets are observedperNcoll than in peripheral collisions.

The left panels in Fig. 8 show the ratio between the unbiased jet spectra and jets with a leading track
of at least 5 GeV/c. Although the biased spectrum is a subset of the unbiased spectrum, the statistical
uncertainties are added in quadrature since the unfolding procedure introduces a point-to-point correla-
tion between the statistical uncertainties. In the jetpT-range considered here,pT,ch jet > 20 GeV/c, the
PYTHIA vacuum expectation from the Perugia-2011 tune [35] is that almost all jets have a constituent
of at least 5 GeV/c, resulting in a ratio at unity as indicated by the PYTHIA datapoints. The ratio be-
tween the unbiased and 5 GeV/c biased measured Pb–Pb jet spectra is consistent in peripheral and central
collisions with the vacuum expectation. No evidence of the modification of the hard jet core is observed.

The right panels in Fig. 8 show the ratio between the jet spectra with a leading trackpT of at least
10 GeV/c and 5 GeV/c as measured in central and peripheral Pb–Pb collisions compared to the same
observable at particle level in PYTHIA with the Perugia-2011 tune. By selecting jets with a higher
momentum for the leading jet constituent, lowpT jets with a soft fragmentation pattern are removed
from the sample. The ratio increases withpT reaching unity atpT,ch jet= 50 GeV/c for R= 0.2 jets and
at pT,ch jet= 60 GeV/c for R= 0.3 jets in central and peripheral collisions. This rising trend is due to the
increased fragmentation bias and is compatible with the fragmentation bias observed in PYTHIA.
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Fig. 8: Ratio of reconstructed unbiased and leading track biased jet yields for two resolution parameters
(top panel:R= 0.2; bottom panel:R= 0.3). Calculations of the same ratio with the PYTHIA model
(particle level) are shown for reference. Left panels: ratio of unbiased spectra topleading track

T > 5 GeV/c.

Right panels: ratio of spectra withpleading track
T > 10 GeV/c to pleading track

T > 5 GeV/c.
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Jet quenching in most central heavy-ion collisions is quantified by constructing the jet nuclear modifica-
tion factorRCP,

RCP=

1
〈TAA 〉

1
Nevt

d2Nch jet

dpT,ch jetdηch jet

∣

∣

∣

∣

central

1
〈TAA 〉

1
Nevt

d2Nch jet

dpT,ch jetdηch jet

∣

∣

∣

∣

peripheral

, (3)

which is the ratio of jetpT spectra in central and peripheral collisions normalized bythe nuclear overlap
functions〈TAA 〉 as calculated with a Glauber model for each centrality class[19]. If the full jet energy
is recovered within the cone, and in the absence of initial state effects like parton shadowing [46–48],
RCP is unity by construction. In that case, jet quenching would manifest itself as redistribution of the
energy within the cone as compared to jet fragmentation in the vacuum. The jet suppression factorRCP

is shown in Fig. 9, using centrality class 50-80% as the peripheral reference. A strong jet suppression,
0.3 < RCP < 0.5, is observed for 0-10% central events, while more peripheral collisions (30-50%) are
less suppressed,RCP≃ 0.8 at highpT,ch jet. A mild increase ofRCP with increasingpT,ch jet is observed at
low jet energies while at highpT & 50 GeV/c the suppression is consistent with a constant. TheRCP does
not change significantly with the resolution parameterR for the range studied (R= 0.2 andR= 0.3).
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Fig. 9: Nuclear modification factorRCP for charged jets with a leading charged particle withptrack
T > 5

GeV/c, with R= 0.2 (left panels) andR= 0.3 (right panels) and different centrality selections.

Figure 10 shows the jetRCP at 60< pT,ch jet< 70 GeV/cas a function of the average number of participant
nucleons corresponding to the selected centrality classes(see Table 1). A decreasing trend of theRCP

as a function of the number of participants is observed. Figure 10 also compares the suppression of jets
with a highpT track selection, and shows no evident dependence on the fragmentation pattern.

The ratio of the jetpT spectra measured at differentR can potentially provide information about jet
structure modifications due to redistribution of energy caused by jet quenching [49,50]. Figure 11 shows
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the measured ratioσ(R= 0.2)/σ(R= 0.3) for central and peripheral collisions. The comparison of the
measured ratio to the ratio obtained with PYTHIA (particle level) shows that the transverse jet shape in
central and peripheral Pb–Pb collisions are consistent with jet shapes in vacuum. No sign of a modified
jet structure is observed between radii of 0.2 and 0.3 withinuncertainties.

)c (GeV/
T,ch jet

p
0 20 40 60 80 100

=
0.

3)
R(σ

=
0.

2)
/

R(σ

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
Pb-Pb 0-10%

Pb-Pb 50-80%

PYTHIA

correlated uncertainty

shape uncertainty

ALICE
=2.76 TeVNNsPb-Pb 

TkAnti-
c > 0.15 GeV/track

T
p

 > 5 GeV/c
T

pLeading track 

Fig. 11: Ratio of charged jetpT-spectra with radius parameterR= 0.2 and 0.3 and a leading charged
particleptrack

T > 5 GeV/c in Pb–Pb data and simulated PYTHIA events.

4 Discussion and Conclusions

Before the first jet measurements in heavy ion collisions were performed, it was expected that medium
interactions redistribute the momenta of jet fragments to small or moderate angles, because of kinematic
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effects (the momentum of the jet is large compared to the typical momenta of partons in the medium)
as well as dynamics (the cross section for medium-induced radiation peaks at small angles [51]). At the
same time, there were some indications from numerical calculations by Vitev [52] and in the q-PYTHIA
event generator [53, 54] that large angle radiation is kinematically favoured for large medium density.
The first jet measurements in heavy ion collisions at the LHC showed a large energy imbalance for jet
pairs [15,16,55], indicating that a significant fraction ofjet momentum is transported out of the jet cone
by interactions with the medium for recoil jets. Since then,it has been realised that there is a variety
of mechanisms that may contribute to large angle radiation,such as jet broadening by medium-induced
virtuality (YaJEM) [56, 57], reinteractions of the radiated gluons (also called ’frequency collimation of
the radiation’) [58,59], and quantum (de-)coherence effects [60,61].

The large suppression of charged jet production withR= 0.2 andR= 0.3 in central Pb–Pb collisions
shown in Fig. 9, also indicates that momentum transport to large angles is an important effect.

To further explore these effects, Fig. 12 compares the jet measurement reported in this paper to the
nuclear modification factor for charged hadrons measured byALICE [22] and CMS [14] and to the
calorimetric jet measurements by ATLAS [17].

Comparing theRCP of jets to charged particles in Fig. 12, one would expect the suppression for jets to
be smaller than for hadrons, since jet reconstruction collects multiple jet fragments into the jet cone,
thus recovering some of the medium-induced fragmentation.However, it can be seen that theRCP for
jets is similar to that observed for single hadrons over a broad momentum range. This indicates that the
momentum is redistributed to angles larger thanR= 0.3 by interactions with the medium.

Such a strong redistribution of momentum might also be expected to lead to a significant broadening of
the energy profile within the larger cone radiusR= 0.3. The results presented in this paper, however,
show that the ratio of yields for jets withR= 0.2 andR= 0.3 is similar in PYTHIA pp simulations
and Pb–Pb collisions (see Fig. 11), indicating that the energy profile of the found jets is not significantly
modified. In addition, Fig. 8 shows that the effect of selecting jets with a leading hadron withpT > 5 or
10 GeV/c is similar in Pb–Pb collisions and in PYTHIA pp events, whichindicates that the longitudinal
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charged particles, charged jets and full jets.
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momentum distribution of (leading) highpT tracks in jets reconstructed in Pb-Pb collisions remains
largely unmodified. This observation is in qualitative agreement with measurements of fragmentation
properties by CMS [62,63] and ATLAS [64].

A further impression of the importance of soft radiation canbe obtained by comparing the calorimetric jet
measurement by ATLAS to the ALICE results in this paper. The ALICE measurement is more sensitive to
low-momentum fragments due to the high tracking efficiency and good momentum resolution of charged
particle tracks at lowpT. The agreement between these two jet measurements in Fig. 12suggests that
the contribution of low momentum fragments to the jet energyis small. A study of PYTHIA events
shows that the expected contribution of fragments withpT < 1(2) GeV/c is 4(7)% of the jet energy
at pT,ch jet = 40 GeV/c with cone radiusR= 0.2(0.3) in pp collisions. The results indicate that this
contribution is also limited in Pb–Pb collisions.

The measured ratios of jet cross sections withR= 0.2 andR= 0.3 and with and without leading particle
selection show that the transverse and longitudinal fragment distributions of the reconstructed jets are
similar in pp (PYTHIA calculations) and Pb–Pb collisions. This ’unmodifed hard core’ of the jet may
be due to formation time effects (the parton leaves the medium with relatively high momentum and
then fragments without further interactions) [56, 65], quantum interference effects (a group of partons
with small opening angles interacts with the medium as one parton) [66], kinematics (large momentum
emissions are kinematically favoured at small angles) [56]and/or selection bias effects [56,67].

First results from the JEWEL event generator show a strong suppression of jets, in agreement with the
RCP shown in Fig. 12 [68]. However, more extensive comparisons of theoretical models to the different
experimental measurements are needed to determine how wellthey constrain the dynamics of parton
energy loss models.

In summary, a measurement of charged jet spectra in Pb–Pb collisions at different centralities was re-
ported, using charged hadrons withpT > 0.15 GeV/c. The analysis was performed for a jet sample
with a minimal fragmentation bias by introducing differentpT-ranges in the unfolding procedure for
the unfolded and measured spectrum. To suppress combinatorial jets from the measured population,
jet spectra with a leading track selection ofpleading track

T > 5 and 10 GeV/c were also reported. The ef-
fect of the leading track cut at 5 GeV/c is small for the measured rangepT,ch jet> 20 GeV/c, while for

pleading track
T > 10 GeV/c, the effect is sizeable, but consistent with expectations from jet fragmentation in

PYTHIA events, indicating that the high-pT fragmentation is not strongly modified by interactions with
the medium. The ratio of jets reconstructed withR= 0.2 andR= 0.3 is found to be similar in central
and peripheral Pb–Pb events, and similar to PYTHIA calculations, indicating no strong broadening of
the radial jet profile withinR= 0.3. The nuclear modification factorRCP for jets is in the range 0.3–0.5,
and tends to be lower at lowpT,ch jet≈ 30 GeV/c than at highpT,ch jet≈ 100 GeV/c. The value ofRCP for
jets is similar to charged hadrons, which suggests that interactions with the medium redistribute energy
and momentum to relatively large angles with respect to the jet axis.
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A χ2 minimization unfolding method

The χ2 minimization method minimizes the difference between the refolded and measured spectrum
[42]. The refolded spectrum is the unfolded distribution convoluted with the response matrix. Theχ2

function to be minimized indicates how well the refolded distribution describes the measured spectrum:

χ2
fit = ∑

refolded

(

yrefolded−ymeasured

σmeasured

)2

, (A.1)

in which y is the yield of the refolded or measured distribution andσmeasuredthe statistical uncertainty
on the measured distribution. The true distribution minimizes thisχ2 function but in addition also many
other fluctuating solutions exist. Heavily fluctuating solutions can be damped by adding a penalty term
to theχ2 function:

χ2 = ∑
refolded

(

yrefolded−ymeasured

σmeasured

)2

+βP(yunfolded), (A.2)

whereyunfolded is the unfolded distribution.βP(yunfolded) is the penalty term which regularizes the un-
folded distribution. The strength of the applied regularization is given byβ andP(yunfolded) is the reg-
ularization term favoring a certain shape. The choice of theregularization function is motivated by the
expected shape of the solution. For this analysis the regularization favors a local power law which is
calculated using finite differences:

P(yunfolded) = ∑
unfolded

(

d2 logyunfolded

dlogp2
T

)2

. (A.3)

Note that the exponent in the power law is not fixed and is not required to be the same over the full
unfolded solution. Sensitivity of the unfolded distribution to this particular choice of regularization
can be tested by varying the regularization strengthβ and by comparing the unfolded distribution to a
solution with a different functional shape for the regularization.

In case the regularization is dominant the penalty term is ofthe same order or larger than theχ2
fit between

the refolded and measured spectrum. In this case the refolded spectrum does not describe the measured
spectrum and theχ2

fit between the refolded and measured spectrum is large.

The covariance matrix for the unfolded spectrum is calculated in the usual way, by inverting the Hessian
matrix. In case the regularization is too weak or too strong,off-diagonal correlations in the Pearson
coefficients extracted from the covariance matrix appear.
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