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1. Introduction

In the Standard Model (SM) charge-parity (CP) violation in the
charm sector is expected to be small. Quantitative predictions of
CP asymmetries are difficult, since the computation of strong-
interaction effects in the non-perturbative regime is involved. In
spite of this, it was commonly assumed that the observation of
asymmetries of the order of 1% in charm decays would be an
indication of new sources of CP violation (CPV). Recent studies,
however, suggest that CP asymmetries of this magnitude could still
be accommodated within the SM [1–4].

Experimentally, the sensitivity for CPV searches has substan-
tially increased over the past few years. Especially with the advent
of the large LHCb data set, CP asymmetries at the O(10−2) level
are disfavoured [5–9]. With uncertainties approaching O(10−3),
the current CPV searches start to probe the regime of the SM ex-
pectations.

The most simple and direct technique for CPV searches is the
computation of an asymmetry between the particle and anti-
particle time-integrated decay rates. A single number, however,
may not be sufficient for a comprehension of the nature of the
CP violating asymmetry. In this context, three- and four-body de-
cays benefit from rich resonance structures with interfering am-
plitudes modulated by strong-phase variations across the phase
space. Searches for localised asymmetries can bring complemen-
tary information on the nature of the CPV .

In this Letter, a search for CP violation in the Cabibbo-
suppressed decay D+ → π−π+π+ is reported.1 The investigation
is performed across the Dalitz plot using two model-independent
techniques, a binned search as employed in previous LHCb anal-
yses [10,11] and an unbinned search based on the nearest-
neighbour method [12,13]. Possible localised charge asymmetries

✩ This is an open-access article distributed under the terms of the Creative Com-
mons Attribution License, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author and source are credited.

1 Unless stated explicitly, the inclusion of charge conjugate states is implied.

arising from production or detector effects are investigated us-
ing the decay D+

s → π−π+π+ , which has the same final state
particles as the signal mode, as a control channel. Since it is a
Cabibbo-favoured decay, with negligible loop (penguin) contribu-
tions, CP violation is not expected at any significant level.

2. LHCb detector and data set

The LHCb detector [14] is a single-arm forward spectrometer
covering the pseudorapidity range 2 < η < 5, designed for the
study of particles containing b or c quarks. The detector includes
a high-precision tracking system consisting of a silicon-strip ver-
tex detector surrounding the pp interaction region, a large-area
silicon-strip detector located upstream of a dipole magnet with
a bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream. The combined
tracking system provides a momentum measurement with relative
uncertainty that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c,
and impact parameter (IP) resolution of 20 μm for tracks with high
transverse momentum, pT. Charged hadrons are identified using
two ring-imaging Cherenkov (RICH) detectors [15]. Photon, elec-
tron and hadron candidates are identified by a calorimeter system
consisting of scintillating-pad and preshower detectors, an elec-
tromagnetic calorimeter and a hadronic calorimeter. Muons are
identified by a system composed of alternating layers of iron and
multiwire proportional chambers [16]. The trigger [17] consists
of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage, which applies
full event reconstruction. At the hardware trigger stage, events
are required to have muons with high transverse momentum or
hadrons, photons or electrons with high transverse energy deposit
in the calorimeters. For hadrons, the transverse energy threshold is
3.5 GeV/c2.

The software trigger requires at least one good quality track
from the signal decay with high pT and high χ2

IP, defined as the
difference in χ2 of the primary vertex (PV) reconstructed with and
without this particle. A secondary vertex is formed by three tracks
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Fig. 1. Invariant-mass distributions for (a) D+ and (b) D+
s candidates in the momentum range 50 < pD+

(s)
< 100 GeV/c for magnet up data. Data points are shown in black.

The solid (blue) line is the fit function, the (green) dashed line is the signal component and the (magenta) dotted line is the background.

Fig. 2. Dalitz plots for (a) D+ → π−π+π+ and (b) D+
s → π−π+π+ candidates selected within ±2σ̃ around the respective m̃ weighted average mass.
with good quality, each not pointing to any PV, and with require-
ments on pT, momentum p, scalar sum of pT of the tracks, and a
significant displacement from any PV.

The data sample used in this analysis corresponds to an inte-
grated luminosity of 1.0 fb−1 of pp collisions at a centre-of-mass
energy of 7 TeV collected by the LHCb experiment in 2011. The
magnetic field polarity is reversed regularly during the data taking
in order to minimise effects of charged particle and antiparticle de-
tection asymmetries. Approximately half of the data are collected
with each polarity, hereafter referred to as “magnet up” and “mag-
net down” data.

3. Event selection

To reduce the combinatorial background, requirements on the
quality of the reconstructed tracks, their χ2

IP, pT, and scalar pT sum
are applied. Additional requirements are made on the secondary
vertex fit quality, the minimum significance of the displacement
from the secondary to any primary vertex in the event, and the
χ2

IP of the D+
(s) candidate. This also reduces the contribution of

secondary D mesons from b-hadron decays to 1–2%, avoiding the
introduction of new sources of asymmetries. The final-state par-
ticles are required to satisfy particle identification (PID) criteria
based on the RICH detectors.

After these requirements, there is still a significant background
contribution, which could introduce charge asymmetries across
the Dalitz plot. This includes semileptonic decays like D+ →
K −π+μ+ν and D+ → π−π+μ+ν; three-body decays, such as
D+ → K −π+π+; prompt two-body D0 decays forming a three-
prong vertex with a random pion; and D0 decays from the D∗+
chain, such as D∗+ → D0(K −π+,π−π+, K −π+π0)π+ . The con-
tribution from D+ → K −π+π+ and prompt D0 decays that in-
volve the misidentification of the kaon as a pion is reduced to a
negligible level with a more stringent PID requirement on the π−

candidate. The remaining background from semileptonic decays is
controlled by applying a muon veto to all three tracks, using infor-
mation from the muon system [18]. The contribution from the D∗+
decay chain is reduced to a negligible level with a requirement on
χ2

IP of the π+ candidate with lowest pT.
Fits to the invariant mass distribution M(π−π+π+) are per-

formed for the D+ and D+
s candidates satisfying the above se-

lection criteria and within the range 1810 < M(π−π+π+) <

1930 MeV/c2 and 1910 < M(π−π+π+) < 2030 MeV/c2, respec-
tively. The signal is described by a sum of two Gaussian functions
and the background is represented by a third-order polynomial.
The data sample is separated according to magnet polarity and
candidate momentum (pD+

(s)
< 50 GeV/c, 50 < pD+

(s)
< 100 GeV/c,

and pD+
(s)

> 100 GeV/c), to take into account the dependence of

the mass resolution on the momentum. The parameters are deter-
mined by simultaneous fits to these D+

(s) and D−
(s) subsamples.

The D+ and D+
s invariant mass distributions and fit results

for the momentum range 50 < pD+
(s)

< 100 GeV/c are shown in

Fig. 1 for magnet up data. The total yields after summing over all
fits are (2678 ± 7) × 103 D+ → π−π+π+ and (2704 ± 8) × 103

D+
s → π−π+π+ decays. The final samples used for the CPV search

consist of all candidates with M(π−π+π+) within ±2σ̃ around
m̃D(s) , where σ̃ and m̃D(s) are the weighted average of the two
fitted Gaussian widths and mean values. The values of σ̃ range
from 8 to 12 MeV/c2, depending on the momentum region. For
the signal sample there are 3114 × 103 candidates, including back-
ground, while for the control mode there are 2938 × 103 can-
didates with purities of 82% and 87%, respectively. The purity is
defined as the fraction of signal decays in this mass range.

The D+ → π−π+π+ and D+
s → π−π+π+ Dalitz plots are

shown in Fig. 2, with slow and shigh being the lowest and high-
est invariant mass squared combination, M2(π−π+), respectively.
Clear resonant structures are observed in both decay modes.
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Fig. 3. (a) Distribution of S i
CP with 49 D+

s adaptive bins of equal population in the D+
s → π−π+π+ Dalitz plot and (b) the corresponding one-dimensional distribution

(histogram) with a standard normal Gaussian function superimposed (solid line).
4. Binned analysis

4.1. Method

The binned method used to search for localised asymmetries in
the D+ → π−π+π+ decay phase space is based on a bin-by-bin
comparison between the D+ and D− Dalitz plots [19,20]. For each
bin of the Dalitz plot, the significance of the difference between
the number of D+ and D− candidates, S i

CP , is computed as

S i
CP ≡ N+

i − αN−
i√

α(N+
i + N−

i )

, α ≡ N+

N− , (1)

where N+
i (N−

i ) is the number of D+ (D−) candidates in the ith
bin and N+ (N−) is the sum of N+

i (N−
i ) over all bins. The param-

eter α removes the contribution of global asymmetries which may
arise due to production [21,22] and detection asymmetries, as well
as from CPV . Two binning schemes are used, a uniform grid with
bins of equal size and an adaptive binning where the bins have the
same population.

In the absence of localised asymmetries, the S i
CP values follow

a standard normal Gaussian distribution. Therefore, CPV can be
detected as a deviation from this behaviour. The numerical com-
parison between the D+ and D− Dalitz plots is made by a χ2 test,
with χ2 = ∑

i(S i
CP)

2. A p-value for the hypothesis of no CPV is ob-
tained considering that the number of degrees of freedom (ndf) is
equal to the total number of bins minus one, due to the constraint
on the overall D+/D− normalisation.

A CPV signal is established if a p-value lower than 3 × 10−7 is
found, in which case it can be converted to a significance for the
exclusion of CP symmetry in this channel. If no evidence of CPV is
found, this technique provides no model-independent way to set
an upper limit.

4.2. Control mode and background

The search for local asymmetries across the D+
s → π−π+π+

Dalitz plot is performed using both the uniform and the adaptive
(“D+

s adaptive”) binning schemes mentioned previously. A third
scheme is also used: a “scaled D+” scheme, obtained from the D+
adaptive binning by scaling the bin edges by the ratios of the max-
imum values of shigh(D+

s )/shigh(D+) and slow(D+
s )/slow(D+). This

scheme provides a one-to-one mapping of the corresponding Dalitz
plots and allows to probe regions in the signal and control chan-
nel phase spaces where the momentum distributions of the three
final state particles are similar.

The study is performed using α = 0.992 ± 0.001, as measured
for the D+

s sample, and different granularities: 20, 30, 40, 49

and 100 adaptive bins for both the D+
s adaptive and scaled D+

schemes, and 5 × 5, 6 × 7, 8 × 9 and 12 × 12 bins for the uni-
form grid scheme. Only bins with a minimum occupancy of 20
entries are considered. The p-values obtained are distributed in the
range 4–87%, consistent with the hypothesis of absence of localised
asymmetries. As an example, Fig. 3 shows the distributions of S i

CP
for the D+

s adaptive binning scheme with 49 bins.
As a further cross-check, the D+

s sample is divided according to
magnet polarity and hardware trigger configurations. Typically, the
p-values are above 1%, although one low value of 0.07% is found
for a particular trigger subset of magnet up data with 40 adap-
tive bins. When combined with magnet down data, the p-value
increases to 11%.

The possibility of local asymmetries induced by the background
under the D+ signal peak is studied by considering the candi-
dates with mass M(π−π+π+) in the ranges 1810–1835 MeV/c2

and 1905–1935 MeV/c2, for which α = 1.000±0.002. Using a uni-
form grid with four different granularities, the p-values are com-
puted for each of the two sidebands. The data are also divided
according to the magnet polarity. The p-values are found to be
within 0.4–95.5%, consistent with differences in the number of D+
and D− candidates arising from statistical fluctuations. Since the
selection criteria suppress charm background decays to a negligible
level, it is assumed that the background contribution to the signal
is similar to the sidebands. Therefore, asymmetries eventually ob-
served in the signal mode cannot be attributed to the background.

4.3. Sensitivity studies

To study the CPV sensitivity of the method for the current data
set, a number of simulated pseudo-experiments are performed
with sample size and purity similar to that observed in data.
The D+ → π−π+π+ decays are generated according to an am-
plitude model inspired by E791 results [23], where the most im-
portant contributions originate from ρ0(770)π+ , σ(500)π+ and
f2(1270)π+ resonant modes. Background events are generated
evenly in the Dalitz plot. Since no theoretical predictions on the
presence or size of CPV are available for this channel, various sce-
narios are studied by introducing phase and magnitude differences
between the main resonant modes for D+ and D− . The sensitivity
for different binning strategies is also evaluated.

Phase differences in the range 0.5–4.0◦ and magnitude differ-
ences in the range 0.5–4.0% are tested for ρ0(770)π+ , σ(500)π+
and f2(1270)π+ modes. The study shows a sensitivity (p-values
below 10−7) around 1◦ to 2◦ in phase differences and 2% in ampli-
tude in these channels. The sensitivity decreases when the number
of bins is larger than 100, so a few tens of bins approaches the op-
timal choice. A slightly better sensitivity for the adaptive binning
strategy is found in most of the studies.
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Fig. 4. Dalitz plot for D+
s → π−π+π+ control sample decays divided into (a) seven regions R1–R7 and (b) three regions P1–P3. Region R3 is further divided into two regions

of shigh at masses smaller (R3l) and larger (R3r) than the ρ0(770) resonance.
Since the presence of background tends to dilute a potential
sign of CPV , additional pseudo-experiment studies are made for
different scenarios based on signal yields and purities attainable
on data. Results show that better sensitivities are found for higher
yields, despite the lower purity.

5. Unbinned analysis

5.1. k-Nearest neighbour analysis technique

The unbinned model-independent method of searching for CPV
in many-body decays uses the concept of nearest neighbour events
in a combined D+ and D− samples to test whether they share the
same parent distribution function [12,13,24]. To find the nk nearest
neighbour events of each D+ and D− event, the Euclidean distance
between points in the Dalitz plot of three-body D+ and D− decays
is used. For the whole event sample a test statistic T for the null
hypothesis is calculated,

T = 1

nk(N+ + N−)

N++N−∑
i=1

nk∑
k=1

I(i,k), (2)

where I(i,k) = 1 if the ith event and its kth nearest neighbour
have the same charge and I(i,k) = 0 otherwise and N+ (N−) is
the number of events in the D+ (D−) sample.

The test statistic T is the mean fraction of like-charged neigh-
bour pairs in the combined D+ and D− decays sample. The ad-
vantage of the k-nearest neighbour method (kNN), in comparison
with other proposed methods for unbinned analyses [24], is that
the calculation of T is simple and fast and the expected distri-
bution of T is well known: for the null hypothesis it follows a
Gaussian distribution with mean μT and variance σ 2

T calculated
from known parameters of the distributions,

μT = N+(N+ − 1) + N−(N− − 1)

N(N − 1)
, (3)

lim
N,nk,D→∞σ 2

T = 1

Nnk

(
N+N−

N2
+ 4

N2+N2−
N4

)
, (4)

where N = N+ + N− and D is a space dimension. For N+ = N−
a reference value

μTR = 1

2

(
N − 2

N − 1

)
(5)

is obtained and for a very large number of events N , μT ap-
proaches 0.5. However, since the observed deviations of μT from
μTR are sometimes tiny, it is necessary to calculate μT − μTR . The

convergence in Eq. (4) is fast and σT can be obtained with a good
approximation even for space dimension D = 2 for the current val-
ues of N+ , N− and nk [13,24].

The kNN method is applied to search for CPV in a given re-
gion of the Dalitz plot in two ways: by looking at a “normal-
ization” asymmetry (N+ �= N− in a given region) using a pull
(μT − μTR)/	(μT − μTR) variable, where the uncertainty on μT

is 	μT and the uncertainty on μTR is 	μTR , and looking for a
“shape” or particle density function (pdf) asymmetry using another
pull (T − μT )/σT variable.

As in the binned method, this technique provides no model-
independent way to set an upper limit if no CPV is found.

5.2. Control mode and background

The Cabibbo-favoured D+
s decays serve as a control sample to

estimate the size of production and detection asymmetries and
systematic effects. The sensitivity for local CPV in the Dalitz plot
of the kNN method can be increased by taking into account only
events from the region where CPV is expected to be enhanced by
the known intermediate resonances in the decays. Since these re-
gions are characterised by enhanced variations of strong phases,
the conditions for observation of CPV are more favourable. Events
from other regions are expected to only dilute the signal of CPV .

The Dalitz plot for the control channel D+
s → π−π+π+ is par-

titioned into three (P1–P3) or seven (R1–R7) regions shown in
Fig. 4. The division R1–R7 is such that regions enriched in reso-
nances are separated from regions dominated by smoother distri-
butions of events. Region R3 is further divided into two regions
of shigh at masses smaller (R3l) and larger (R3r) than the ρ0(770)

resonance, in order to study possible asymmetries due to a sign
change of the strong phase when crossing the resonance pole. The
three regions P1–P3 correspond to a more complicated structure of
resonances in the signal decay D+ → π−π+π+ (see Fig. 11).

The value of the test statistic T measured using the kNN
method with nk = 20 for the full Dalitz plot (called R0) of D+

s →
π−π+π+ candidates is compared to the expected Gaussian T
distribution with μT and σT calculated from data. The calcu-
lated p-value is 44% for the hypothesis of no CP asymmetry.
The p-values are obtained by integrating the Gaussian T distri-
bution from a given value up to its maximum value of 1. The
results are shown in Fig. 5 separately for each region. They do
not show any asymmetry between D+

s and D−
s samples. Since

no CPV is expected in the control channel, the local detection
asymmetries are smaller than the present sensitivity of the kNN
method. The production asymmetry is accounted for in the kNN
method as a deviation of the measured value of μT from the
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Fig. 5. (a) Pull values of T and (b) the corresponding p-values for D+
s → π−π+π+ control sample candidates restricted to each region, obtained using the kNN method with

nk = 20. The horizontal blue lines in (a) represent −3 and +3 pull values. The region R0 corresponds to the full Dalitz plot. Note that the points for the overlapping regions
are correlated.

Fig. 6. (a) Raw asymmetry A = (N− − N+)/(N− + N+) and (b) the pull values of μT for D+
s → π−π+π+ control sample candidates restricted to each region. The horizontal

lines in (b) represent +3 and +5 pull values. The region R0 corresponds to the full Dalitz plot. Note that the points for the overlapping regions are correlated.

Fig. 7. (a) Pull values of T and (b) the corresponding p-values for the background candidates restricted to each region obtained using the kNN method with nk = 20. The
horizontal blue lines in (a) represent −3 and +3 pull values. The region R0 corresponds to the full Dalitz plot. Note that the points for the overlapping regions are correlated.
reference value μTR . In the present sample, the obtained value
μT −0.5 = (84±15)×10−7, with (μT −μTR)/	(μT −μTR) = 5.8σ ,
in the full Dalitz plot is a consequence of the observed global
asymmetry of about 0.4%. This value is consistent with the pre-
vious measurement from LHCb [22]. The comparison of the raw
asymmetry A = (N− − N+)/(N− + N+) and the pull values of μT
in all regions are presented in Fig. 6. The measured raw asym-
metry is similar in all regions as expected for an effect due to
the production asymmetry. It is interesting to note the relation
μT − μTR ≈ A2/2 at order 1/N between the raw asymmetry and
the parameters of the kNN method.

A region-by-region comparison of D+
s candidates for magnet

down and magnet up data gives insight into left-right detection
asymmetries. No further asymmetries, except for the global pro-
duction asymmetry discussed above, are found.

The number of nearest neighbour events nk is the only param-
eter of the kNN method. The results for the control channel show
no significant dependence of p-values on nk . Higher values of nk
reduce statistical fluctuations due to the local population density
and should be preferred. On the other hand, increasing the num-
ber of nearest neighbours with limited number of events in the

sample can quickly increase the radius of the local region under
investigation.

The kNN method also is applied to the background events,
defined in Section 4.2. Contrary to the measurements for the
D+

s → π−π+π+ candidates, for background no production asym-
metry is observed. The calculated μT −0.5 = (−5.80±0.46)×10−7

for the full Dalitz plot is very close to the value μTR − 0.5 =
(−5.8239±0.0063)×10−7 expected for an equal number of events
in D+ and D− samples (Eq. (5)). The measured pull values of T
and the corresponding p-values obtained using the kNN method
with nk = 20 are presented for the background in Fig. 7, separately
for each region. The comparison of normalisation asymmetries and
pull values of μT in all regions are presented in Fig. 8. All the kNN
method results are consistent with no significant asymmetry.

5.3. Sensitivity studies

The sensitivity of the kNN method is tested with the same
pseudo-experiment model described in Section 4.3. If the simu-
lated asymmetries are spread out in the Dalitz plot the events may
be moved from one region to another. For these asymmetries it is
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Fig. 8. (a) Raw asymmetry and (b) pull value of μT as a function of a region for the background candidates. The horizontal lines in (b) represent +3 and +5 pull values. The
region R0 corresponds to the full Dalitz plot. Note that the points for the overlapping regions are correlated.

Fig. 9. Distributions of S i
CP across the D+ Dalitz plane, with the adaptive binning scheme of uniform population for the total D+ → π−π+π+ data sample with (a) 49 and

(c) 100 bins. The corresponding one-dimensional S i
CP distributions (b) and (d) are shown with a standard normal Gaussian function superimposed (solid line).
observed that the difference in shape of the probability density
functions is in large part absorbed in the difference in the normal-
isation. This indicates that the choice of the regions is important
for increasing the sensitivity of the kNN method. In general the
method applied in a given region is sensitive to weak phase differ-
ences greater than (1–2)◦ and magnitude differences of (2–4)%.

6. Results

6.1. Binned method

The search for CPV in the Cabibbo-suppressed mode D+ →
π−π+π+ is pursued following the strategy described in Sec-
tion 4. For the total sample size of about 3.1 million D+ and
D− candidates, the normalisation factor α, defined in Eq. (1), is
0.990 ± 0.001. Both adaptive and uniform binning schemes in the
Dalitz plot are used for different binning sizes.

The S i
CP values across the Dalitz plot and the corresponding

histogram for the adaptive binning scheme with 49 and 100 bins
are illustrated in Fig. 9. The p-values for these and other binning

Table 1
Results for the D+ → π−π+π+ decay sample using the adap-
tive binning scheme with different numbers of bins. The num-
ber of degrees of freedom is the number of bins minus 1.

Number of bins χ2 p-value (%)

20 14.0 78.1
30 28.2 50.6
40 28.5 89.2
49 26.7 99.5

100 89.1 75.1

choices are shown in Table 1. All p-values show statistical agree-
ment between the D+ and D− samples.

The same χ2 test is performed for the uniform binning scheme,
using 20, 32, 52 and 98 bins also resulting in p-values consistent
with the null hypothesis, all above 90%. The S i

CP distribution in the
Dalitz plot for 98 bins and the corresponding histogram is shown
in Fig. 10.

As consistency checks, the analysis is repeated with indepen-
dent subsamples obtained by separating the total sample accord-
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Fig. 10. (a) Distribution of S i
CP with 98 bins in the uniform binning scheme for the total D+ → π−π+π+ data sample and (b) the corresponding one-dimensional S i

CP
distribution (b) with a standard normal Gaussian function superimposed (solid line).

Fig. 11. Dalitz plot for D+ → π−π+π+ candidates divided into (a) seven regions R1–R7 and (b) three regions P1–P3.

Fig. 12. (a) Raw asymmetry and (b) the pull values of μT for D+ → π−π+π+ candidates restricted to each region. The horizontal lines in (b) represent pull values +3
and +5. The region R0 corresponds to the full Dalitz plot. Note that the points for the overlapping regions are correlated.
ing to magnet polarity, hardware trigger configurations, and data-
taking periods. The resulting p-values range from 0.3% to 98.3%.

All the results above indicate the absence of CPV in the D+ →
π−π+π+ channel at the current analysis sensitivity.

6.2. Unbinned method

The kNN method is applied to the Cabibbo-suppressed mode
D+ → π−π+π+ with the two region definitions shown in Fig. 11.
To account for the different resonance structure in D+ and D+

s de-
cays, the region R1–R7 definition for the signal mode is different
from the definition used in the control mode (compare Figs. 4(a)
and 11(a)). The region P1–P3 definitions are the same. The results
for the raw asymmetry are shown in Fig. 12. The production asym-
metry is clearly visible in all the regions with the same magnitude
as in the control channel (see Fig. 6). It is accounted for in the kNN
method as a deviation of the measured value of μT from the ref-

erence value μTR shown in Fig. 12. In the signal sample the values
μT − 0.5 = (98 ± 15) × 10−7 and (μT −μTR)/	(μT − μTR) = 6.5σ
in the full Dalitz plot are a consequence of the 0.4% global asym-
metry similar to that observed in the control mode and consistent
with the previous measurement from LHCb [21].

The pull values of T and the corresponding p-values for the
hypothesis of no CPV are shown in Fig. 13 for the same regions. To
check for any systematic effects, the test is repeated for samples
separated according to magnet polarity. Since the sensitivity of the
method increases with nk , the analysis is repeated with nk = 500
for all the regions. All p-values are above 20%, consistent with no
CP asymmetry in the signal mode.

7. Conclusion

A search for CPV in the decay D+ → π−π+π+ is performed
using pp collision data corresponding to an integrated luminosity
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Fig. 13. (a) Pull values of T and (b) the corresponding p-values for D+ → π−π+π+ candidates restricted to each region obtained using the kNN method with nk = 20. The
horizontal blue lines in (a) represent pull values −3 and +3. The region R0 corresponds to the full Dalitz plot. Note that the points for the overlapping regions are correlated.
of 1.0 fb−1 collected by the LHCb experiment at a centre-of-mass
energy of 7 TeV. Two model-independent methods are applied to a
sample of 3.1 million D+ → π−π+π+ decay candidates with 82%
signal purity.

The binned method is based on the study of the local signifi-
cances S i

CP in bins of the Dalitz plot, while the unbinned method
uses the concept of nearest neighbour events in the pooled D+ and
D− sample. Both methods are also applied to the Cabibbo-favoured
D+

s → π−π+π+ decay and to the mass sidebands to control pos-
sible asymmetries not originating from CPV .

No single bin in any of the binning schemes presents an abso-
lute S i

CP value larger than 3. Assuming no CPV , the probabilities of
observing local asymmetries across the phase-space of the D+ me-
son decay as large or larger than those in data are above 50% in all
the tested binned schemes. In the unbinned method, the p-values
are above 30%. All results are consistent with no CPV .
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B. Pietrzyk 4, T. Pilař 47, D. Pinci 24, S. Playfer 49, M. Plo Casasus 36, F. Polci 8, G. Polok 25,
A. Poluektov 47,33, E. Polycarpo 2, A. Popov 34, D. Popov 10, B. Popovici 28, C. Potterat 35, A. Powell 54,
J. Prisciandaro 38, A. Pritchard 51, C. Prouve 7, V. Pugatch 43, A. Puig Navarro 38, G. Punzi 22,r , W. Qian 4,
B. Rachwal 25, J.H. Rademacker 45, B. Rakotomiaramanana 38, M.S. Rangel 2, I. Raniuk 42, N. Rauschmayr 37,
G. Raven 41, S. Redford 54, S. Reichert 53, M.M. Reid 47, A.C. dos Reis 1, S. Ricciardi 48, A. Richards 52,
K. Rinnert 51, V. Rives Molina 35, D.A. Roa Romero 5, P. Robbe 7, D.A. Roberts 57, A.B. Rodrigues 1,
E. Rodrigues 53, P. Rodriguez Perez 36, S. Roiser 37, V. Romanovsky 34, A. Romero Vidal 36, M. Rotondo 21,
J. Rouvinet 38, T. Ruf 37, F. Ruffini 22, H. Ruiz 35, P. Ruiz Valls 35, G. Sabatino 24,k, J.J. Saborido Silva 36,
N. Sagidova 29, P. Sail 50, B. Saitta 15,d, V. Salustino Guimaraes 2, B. Sanmartin Sedes 36, R. Santacesaria 24,
C. Santamarina Rios 36, E. Santovetti 23,k, M. Sapunov 6, A. Sarti 18, C. Satriano 24,m, A. Satta 23,
M. Savrie 16,e, D. Savrina 30,31, M. Schiller 41, H. Schindler 37, M. Schlupp 9, M. Schmelling 10, B. Schmidt 37,
O. Schneider 38, A. Schopper 37, M.-H. Schune 7, R. Schwemmer 37, B. Sciascia 18, A. Sciubba 24, M. Seco 36,
A. Semennikov 30, K. Senderowska 26, I. Sepp 52, N. Serra 39, J. Serrano 6, P. Seyfert 11, M. Shapkin 34,
I. Shapoval 16,42,e, Y. Shcheglov 29, T. Shears 51, L. Shekhtman 33, O. Shevchenko 42, V. Shevchenko 30,
A. Shires 9, R. Silva Coutinho 47, M. Sirendi 46, N. Skidmore 45, T. Skwarnicki 58, N.A. Smith 51,
E. Smith 54,48, E. Smith 52, J. Smith 46, M. Smith 53, M.D. Sokoloff 56, F.J.P. Soler 50, F. Soomro 38,
D. Souza 45, B. Souza De Paula 2, B. Spaan 9, A. Sparkes 49, P. Spradlin 50, F. Stagni 37, S. Stahl 11,
O. Steinkamp 39, S. Stevenson 54, S. Stoica 28, S. Stone 58, B. Storaci 39, S. Stracka 22,37, M. Straticiuc 28,
U. Straumann 39, V.K. Subbiah 37, L. Sun 56, W. Sutcliffe 52, S. Swientek 9, V. Syropoulos 41,
M. Szczekowski 27, P. Szczypka 38,37, D. Szilard 2, T. Szumlak 26, S. T’Jampens 4, M. Teklishyn 7,
G. Tellarini 16,e, E. Teodorescu 28, F. Teubert 37, C. Thomas 54, E. Thomas 37, J. van Tilburg 11, V. Tisserand 4,
M. Tobin 38, S. Tolk 41, L. Tomassetti 16,e, D. Tonelli 37, S. Topp-Joergensen 54, N. Torr 54, E. Tournefier 4,52,
S. Tourneur 38, M.T. Tran 38, M. Tresch 39, A. Tsaregorodtsev 6, P. Tsopelas 40, N. Tuning 40,37,
M. Ubeda Garcia 37, A. Ukleja 27, A. Ustyuzhanin 52,p, U. Uwer 11, V. Vagnoni 14, G. Valenti 14, A. Vallier 7,
R. Vazquez Gomez 18, P. Vazquez Regueiro 36, C. Vázquez Sierra 36, S. Vecchi 16, J.J. Velthuis 45,
M. Veltri 17,g , G. Veneziano 38, M. Vesterinen 37, B. Viaud 7, D. Vieira 2, X. Vilasis-Cardona 35,n,
A. Vollhardt 39, D. Volyanskyy 10, D. Voong 45, A. Vorobyev 29, V. Vorobyev 33, C. Voß 60, H. Voss 10,
R. Waldi 60, C. Wallace 47, R. Wallace 12, S. Wandernoth 11, J. Wang 58, D.R. Ward 46, N.K. Watson 44,
A.D. Webber 53, D. Websdale 52, M. Whitehead 47, J. Wicht 37, J. Wiechczynski 25, D. Wiedner 11,
L. Wiggers 40, G. Wilkinson 54, M.P. Williams 47,48, M. Williams 55, F.F. Wilson 48, J. Wimberley 57,
J. Wishahi 9, W. Wislicki 27, M. Witek 25, G. Wormser 7, S.A. Wotton 46, S. Wright 46, S. Wu 3, K. Wyllie 37,
Y. Xie 49,37, Z. Xing 58, Z. Yang 3, X. Yuan 3, O. Yushchenko 34, M. Zangoli 14, M. Zavertyaev 10,a, F. Zhang 3,
L. Zhang 58, W.C. Zhang 12, Y. Zhang 3, A. Zhelezov 11, A. Zhokhov 30, L. Zhong 3, A. Zvyagin 37

1 Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2 Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3 Center for High Energy Physics, Tsinghua University, Beijing, China
4 LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
5 Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
7 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8 LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
9 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany



LHCb Collaboration / Physics Letters B 728 (2014) 585–595 595

10 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
11 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12 School of Physics, University College Dublin, Dublin, Ireland
13 Sezione INFN di Bari, Bari, Italy
14 Sezione INFN di Bologna, Bologna, Italy
15 Sezione INFN di Cagliari, Cagliari, Italy
16 Sezione INFN di Ferrara, Ferrara, Italy
17 Sezione INFN di Firenze, Firenze, Italy
18 Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
19 Sezione INFN di Genova, Genova, Italy
20 Sezione INFN di Milano Bicocca, Milano, Italy
21 Sezione INFN di Padova, Padova, Italy
22 Sezione INFN di Pisa, Pisa, Italy
23 Sezione INFN di Roma Tor Vergata, Roma, Italy
24 Sezione INFN di Roma La Sapienza, Roma, Italy
25 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
26 AGH – University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
27 National Center for Nuclear Research (NCBJ), Warsaw, Poland
28 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
29 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
30 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
31 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
32 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
33 Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
34 Institute for High Energy Physics (IHEP), Protvino, Russia
35 Universitat de Barcelona, Barcelona, Spain
36 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
37 European Organization for Nuclear Research (CERN), Geneva, Switzerland
38 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
39 Physik-Institut, Universität Zürich, Zürich, Switzerland
40 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
41 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
42 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
43 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
44 University of Birmingham, Birmingham, United Kingdom
45 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
46 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
47 Department of Physics, University of Warwick, Coventry, United Kingdom
48 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
49 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
50 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
51 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
52 Imperial College London, London, United Kingdom
53 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
54 Department of Physics, University of Oxford, Oxford, United Kingdom
55 Massachusetts Institute of Technology, Cambridge, MA, United States
56 University of Cincinnati, Cincinnati, OH, United States
57 University of Maryland, College Park, MD, United States
58 Syracuse University, Syracuse, NY, United States
59 Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil t

60 Institut für Physik, Universität Rostock, Rostock, Germany u

61 KVI-University of Groningen, Groningen, The Netherlands v

62 Celal Bayar University, Manisa, Turkey w

a P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
b Università di Bari, Bari, Italy.
c Università di Bologna, Bologna, Italy.
d Università di Cagliari, Cagliari, Italy.
e Università di Ferrara, Ferrara, Italy.
f Università di Firenze, Firenze, Italy.
g Università di Urbino, Urbino, Italy.
h Università di Modena e Reggio Emilia, Modena, Italy.
i Università di Genova, Genova, Italy.
j Università di Milano Bicocca, Milano, Italy.
k Università di Roma Tor Vergata, Roma, Italy.
l Università di Roma La Sapienza, Roma, Italy.

m Università della Basilicata, Potenza, Italy.
n LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
o Hanoi University of Science, Hanoi, Viet Nam.
p Institute of Physics and Technology, Moscow, Russia.
q Università di Padova, Padova, Italy.
r Università di Pisa, Pisa, Italy.
s Scuola Normale Superiore, Pisa, Italy.
t Associated to Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
u Associated to Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany.
v Associated to Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands.

w Associated to European Organization for Nuclear Research (CERN), Geneva, Switzerland.


	Search for CP violation in the decay D+ ->π-π+π+
	1 Introduction
	2 LHCb detector and data set
	3 Event selection
	4 Binned analysis
	4.1 Method
	4.2 Control mode and background
	4.3 Sensitivity studies

	5 Unbinned analysis
	5.1 k-Nearest neighbour analysis technique
	5.2 Control mode and background
	5.3 Sensitivity studies

	6 Results
	6.1 Binned method
	6.2 Unbinned method

	7 Conclusion
	Acknowledgements
	References
	LHCb Collaboration


