
C
ER

N
-A

C
C

-2
01

3-
02

36
05

/1
0/

20
13

CERN-ACC-2013-0236

Grzegorz.Kruk@cern.ch

Report

How to Successfully Renovate a Controls
System? - Lessons Learned from the

Renovation of the CERN Injectors’ Controls
Software

G. Kruk, S. Deghaye, O. Kulikova, V. Lezhebokov, M. Pace, P. Pera Mira, E. Roux, J. Pawel Wozniak
CERN, Geneva, Switzerland

Keywords: Electronics and Controls

Abstract

Renovation of the control system of the CERN LHC injectors was initiated in 2007 in the scope of the
Injector Controls Architecture (InCA) project. One of its main objectives was to homogenize the
controls software across CERN accelerators and reuse as much as possible the existing modern sub-
systems, such as the settings management used for the LHC. The project team created a platform that
would permit coexistence and intercommunication between old and new components via a dedicated
gateway, allowing a progressive replacement of the former. Dealing with a heterogeneous
environment, with many diverse and interconnected modules, implemented using different
technologies and programming languages, the team had to introduce all the modifications in the
smoothest possible way, without causing machine downtime. After a brief description of the system
architecture, the paper discusses the technical and non-technical sides of the renovation process such
as validation and deployment methodology, operational applications and configuration tools
characteristics and finally users’ involvement and human aspects, outlining good decisions, pitfalls
and lessons learned over the last five years.

Presented at:

14th International Conference on Accelerator and Large Experimental Physics Control Systems

S. Francisco, USA

Geneva, Switzerland
October, 2013

1

HOW TO SUCCESSFULLY RENOVATE A CONTROLS SYSTEM? -

LESSONS LEARNED FROM THE RENOVATION OF THE CERN

INJECTORS’ CONTROLS SOFTWARE

Grzegorz Kruk, Stephane Deghaye, Olga Kulikova, Valery Lezhebokov, Marine Pace, Pablo Pera

Mira, Eric Roux, Jakub Pawel Wozniak, CERN, Geneva, Switzerland

Abstract

Renovation of the control system of the CERN LHC

injectors was initiated in 2007 in the scope of the Injector

Controls Architecture (InCA) project. One of its main

objectives was to homogenize the controls software

across CERN accelerators and reuse as much as possible

the existing modern sub-systems, such as the settings

management used for the LHC. The project team created

a platform that would permit coexistence and

intercommunication between old and new components via

a dedicated gateway, allowing a progressive replacement

of the former. Dealing with a heterogeneous environment,

with many diverse and interconnected modules,

implemented using different technologies and

programming languages, the team had to introduce all the

modifications in the smoothest possible way, without

causing machine downtime. After a brief description of

the system architecture, the paper discusses the technical

and non-technical sides of the renovation process such as

validation and deployment methodology, operational

applications and configuration tools characteristics and

finally users’ involvement and human aspects, outlining

good decisions, pitfalls and lessons learned over the last

five years.

INTRODUCTION

During the 80s and the 90s the high-level controls

system used in the CERN Proton Synchrotron (PS)

complex was based on a 2-tier architecture. Most of the

Graphical User Interfaces (GUIs) were implemented in

the C/C++ programming language using the X/Motif

widget toolkit. The processes running on the front-end

computers (FECs) were based on a framework called GM

and communicated with higher layers via a custom RPC

protocol, both developed in-house.

While being relatively simple, this solution had many

drawbacks and limitations, for example lack of a

subscriptions mechanism, making it necessary to pull data

from the FECs, weak protection of the latter from the

increasing number of clients and a very basic settings

management.

Toward the end of the 90s, X/Motif was on the way to

become obsolete and finding developers skilled in this

technology was increasingly difficult. Work started on a

new Controls Middleware (CMW) [1] library and on a

new front-end framework called the Font-End Software

Architecture (FESA) [2]. At the same time the decision

was taken to implement the new high-level controls

system using object-oriented methodology and the Java

programming language. Work began to port the existing

X/Motif applications to Java, replacing the legacy

protocol with CMW in the hardware access layer.

However, with most of the efforts focused on the LHC,

no major architectural modifications were made, leaving

the system with the long-standing issues described

previously.

With growing maintenance costs and difficulties in

introducing new functionality, in autumn 2007 a new

project called Injectors Controls Architecture (InCA) [3]

was mandated to homogenize the controls software across

CERN accelerators.

INJECTOR CONTROLS ARCHITECTURE

InCA is a platform integrating specific applications

developed for the LHC injector accelerators with modules

implemented for the LHC, as well as new components

required to fulfil the specific operational needs of the PS

complex.

Architecture

InCA is based on a classical 3-tier architecture (Figure

1). At the bottom, there are the FECs, dedicated to the

real-time control of the hardware, managed by three

different frameworks: FESA, Function Generation

Controller (FGC) [4], controlling the power converters

and the legacy GM framework, being progressively

replaced by FESA.

Figure 1: Main Components of the Injectors Controls

Architecture (InCA)

In the middle tier there are components providing high-

level services. Among them the LHC Software

Architecture (LSA) [5], responsible for the settings

management, the Acquisition Core (AcqCore) responsible

for the monitoring, processing and redistribution of

hardware values and the Configuration Service that

provides efficient retrieval of configuration data.

Finally, in the top tier, there are client applications

accessing the middle-tier services, consisting of generic

applications provided by the InCA team that allow control

and surveillance of all the equipment in a standard way,

and many specific applications, developed by the

operations crew, dedicated to a concrete type of

equipment or operational scenario.

The overall architecture choice was correct but

comprehensive performance tests showed the low-level

libraries could not cope with the load that the AcqCore

exerted while monitoring and republishing all hardware

parameter values. Therefore we implemented

subscriptions on demand – a mechanism that creates new

subscriptions from InCA server to the FECs when

requested for the first time and stops them when the last

interested client application had been closed for a

predefined amount of time.

Dealing with Legacy Applications

By the time of the first operational deployment of InCA

in the PS machine in 2010, all the generic applications

had been implemented in Java and integrated with InCA.

There was however an important number of specific

applications used operationally still implemented in

X/Motif. As the migration of these applications to Java

was not feasible in time for the operational deployment of

InCA, two dedicated gateways were provided to allow

integration between these applications and the InCA

server, as seen in Figure 1.

Instead of directly sending new settings to the FECs,

the RPC calls from these applications are redirected to a

dedicated process (implemented in C++), which

subsequently forwards the calls to a Java process using

the XML-RPC protocol. The Java gateway calls the InCA

server as any other Java client.

This solution has proven to be reliable. However due to

the three additional hoops (two gateways and the InCA

server), the interaction with the FECs became an order of

magnitude slower, with possible delays up to a few

seconds. Despite these delays, we decided to not invest

additional time on optimizations due to the tight deadlines

to complete crucial features before the first operational

deployment. A positive side effect is the incentive it has

given the operations crew to rapidly renovate these

applications in Java.

DEVELOPMENT PROCESS

To properly manage such a large project we needed a

structured methodology. First we studied the Rational

Unified Process (RUP) but we concluded that it was too

heavy for our needs. We looked then into agile

methodologies and settled on Scrum [6], which gave

structure to the development process while being

lightweight.

Each four-week development cycle, shown in Figure 2,

ended by a demo meeting where the new features were

presented in front of all developers and representatives of

the operations crew.

Figure 2: InCA development cycle.

Although this methodology has many positive

elements, with time we realized that it was not ideal to

our environment.

What worked well for the InCA team were the planning

meetings, organized at the beginning of each iteration,

allowing all the developers to have an overview of the

features that would be worked on next. The iteration

meetings, held twice a week, improved knowledge

sharing, allowing close follow-up of the progress and a

more efficient resolution of many issues arising during

development. Also the demo meeting, being a small

milestone, played a meaningful role in motivating the

team to complete the planned work on time.

On the other hand, for the Scrum methodology to work

well, all members of the team need to be relatively easily

interchangeable i.e. all developers know and can work on

all parts of the project. Due to different levels of

knowledge about existing components and different areas

of expertise among the InCA developers, several Scrum

principles could not be applied properly. For example it

was difficult to fully engage participants during the

planning and demo meeting, when items outside of their

core responsibilities were discussed. In addition, support

issues and activities related to other projects that some of

the developers were involved in, heavily interfered with

planned tasks. This required the developer to often switch

context and meant a change of priorities for features

foreseen for the iteration.

After the first deployment of InCA in the PS machine,

we started to adjust the development process into a form

of Scrum-ban [7], i.e. a mixture of the Scrum and Kanban

[8] methodologies. This is more suitable for maintenance

projects with frequent and unexpected user requests and

support issues.

DEPLOYMENT METHODOLOGY

To prepare for the first operational deployment in the

PS, every 3-4 months, we organized dedicated Machine

Development (MD) sessions. During these one-day

sessions, InCA was deployed in a full scale on the

operational accelerator. The goal of these sessions was to

validate a set of features in the operational environment.

The tests were carried out by both the operations crew,

performing functional tests according to prepared

scenarios, and the InCA team, doing detailed checks of

generic applications and executing non-functional tests

such as verifying the performance and scalability of the

system. All the problems spotted during these sessions

were noted down and fixed before the next MD day.

The MD sessions played a key role in validating the

overall system. They also allowed the operations crew to

gain confidence in the new system before the operational

deployment. But even though they were carefully

planned, due to their limited duration it was difficult to

test all possible use cases, considering different types of

beams and diverse groups of users. In addition we

focused on operational tools and scenarios, giving less

attention to specialist applications such as those used by

the Radio Frequency (RF) experts. As a consequence we

experienced some problems within the first weeks after

the operational deployment that could have been avoided.

These problems were fortunately not critical and could be

quickly resolved.

Before the final deployment we also organized several

training sessions to familiarize the users with the new

system and to train them with the new set of tools.

We have applied the same strategy for all subsequent

InCA deployments on the other accelerators, adjusting the

procedure according to the feedback from the previous

sessions.

InCA Mode

Even with several testing sessions in the operational

environment, due to the importance of the system, we had

to be prepared for unforeseen critical problems that could

block operation for a significant period of time. To

mitigate such risks, we designed and implemented the

InCA client libraries in a way which allowed to quickly

disable the use of the InCA services and to switch back to

a non-InCA mode in which the applications worked as

they did before the operational deployment of InCA.

To bypass the InCA server, it was sufficient to modify

a dedicated JVM property or an environment variable and

restart the Java or X/Motif application. In addition, using

a single configuration file kept in a network location, we

were able to toggle the InCA mode globally for all

applications.

The global switch has never been used, however the

local ones turned out to be very useful for diagnostics as

they allowed comparing behaviour with and without the

InCA server involvement.

OPERATIONAL SUPPORT

InCA is a critical system used 24/7 to control most of

the accelerator’s equipment. More serious problems could

stop operation and delivery of the beam to various

experiments and to the LHC. Therefore it was essential to

put in place a reactive support. This was especially

important within the first months after the operational

deployment. We decided to involve all InCA developers

in the support to avoid the same people to be called in

systematically. The support was organized in weekly

shifts.

Each week, one member of the team is responsible for

the diagnostics and resolution of all problems, playing the

role of a front person. In case he is not able to diagnose or

solve the problem by himself, he redirects the issue to the

appropriate developer and ensures a proper follow up. At

the end of each week, a support meeting takes place with

all the developers and some of the user representatives,

where the last 7 days’ issues are discussed and explained

to the whole team.

Thanks to this organization, most of the issues are

handled directly by the support person, offloading time

from the other developers and minimizing the number of

interruptions they would be exposed to otherwise. The

support meeting improves the knowledge sharing and

decreases the diagnostic time in case of similar issues

appearing in the future.

One area where we could have improved is the training

of the participating developers. A more thorough training

would have given everyone a more detailed knowledge of

the components and layers of the system, especially those

they were not directly involved with. Without this,

sometimes the support person could not even perform the

initial diagnostics without the involvement of the

responsible developer.

GRAPHICAL USER INTERFACES

The greatest control system, providing rich

functionality and being fast and reliable, will not be

successful without good GUIs.

Users perceive the quality of the overall system through

the graphical tools that they use in their daily work. These

tools must not only be free of bugs, but also intuitive and

easy to use for the occasional and advanced users. If this

is not the case, instead of being helpful they might

become a source of frustration or even a cause of

operational errors.

Proliferation of Applications

One significant source of issues was the number of

different applications used to perform settings-related

operations e.g. to initialize, change, copy or rollback

settings. Historically different developers implemented

them at different moments in time, having SPS and LHC

requirements in mind and not covering the LHC injectors’

needs. Other tools existed in the PS complex in the pre-

InCA times and were only slightly adapted to use InCA

for settings management. Because of this situation, the

operations crew was sometimes confused about which

application should be used to perform a given task.

When this problem became apparent, work started on a

single and coherent settings management tool, covering

the requirements of the operations crew of all the

concerned accelerators. Successive versions of this tool

were deployed into production in 2011 and 2012,

replacing progressively the existing applications.

Functionality of the remaining applications will be

included in a new version planned for early 2014.

Complexity and Ergonomics

Another source of trouble was the complexity of the

tools. Some of them, such as the generic Function Editor,

provide very rich functionality, starting from basic

operations to sophisticated, expert-oriented options.

Developing such tools, with requirements coming from

different accelerators and users, turned out to be much

more challenging than we initially assumed. The main

difficulty was not the implementation but the visual

design, the flow between various views and the way

different options were presented. With the initial version

of the Function Editor, many users felt lost in the number

of options, not knowing how to perform the simplest

operations. Even though we provided a comprehensive

help documentation available directly in the application,

most of the users preferred a more intuitive GUI with

small contextual help tips.

We realized when reviewing this tool, and also when

designing other applications, that we needed to stay in

close contact with the users. To show the users how each

aspect would look like and getting feedback from them

before starting the real implementation, we used Balsamiq

Mockups [9], a rapid wire-framing tool that allows easy

creation of graphical sketches reflecting the GUI to be

implemented.

The usage of this tool facilitated discussions with users

and speeded up iterations until a satisfactory design of the

GUI was found.

Configuration Tools

Many operational aspects of the existing control system

required proper configuration in the database. It was

agreed that the operations crew would take this

responsibility over. With InCA, many new features were

introduced, requiring additional configuration, making

this task more complex. With the main priority put on

providing the necessary functionality in the operational

applications, the importance of appropriate configuration

tools was neglected. The existing tools were not adequate

and contained a mixture of basic and advanced options.

As they started to be used regularly by the operations

crew, the number of wrong configurations started to

increase, contributing to about 30% of all reported issues.

To resolve this problem we decided to completely

review the configuration tools. The goal was to bring the

number of existing options to a minimum, by automating

configuration tasks or using reasonable default values,

and to make a clear distinction between the available

(visible) options to regular users and to experts.

The redesign has been completed in 2013 and new

configuration tools will be available to the operations

crew after the Long Shutdown in 2014.

HUMAN ASPECTS

An important aspect of the renovation process was the

acceptance of the system by the users’ community. The

first operational deployment of InCA confronted

substantial resistance from the operations crew, for

several reasons.

One reason was the fact that homogenization meant

moving from tools tailored to the needs of the individual

accelerators towards more generic applications. In

addition, InCA introduced several new concepts

compared to what already existed and changed slightly

the way the existing functionality could be used. The

result of these changes was that the operations crew had

to get accustomed to a new set of tools and to certain

extend also had to change their habits.

Other reasons were some missing functionality, still

under development, and teething problems in the new

tools, which lowered the trust in the system.

One of the key factors in rebuilding the confidence was

to maintain a close contact with all groups of users.

Reactive follow up of issues, a continuous presence in the

control room, listening and understanding individual

requirements and explaining any difficulties in

implementing them helped in increasing the bidirectional

understanding and facilitated the acceptance of the new

system by the users.

CONCLUSIONS

We successfully renovated the control system,

homogenizing it across the whole CERN accelerators

complex while respecting the specificities of individual

accelerators and user groups.

Facing a mixed reception of InCA by the users after the

first deployment, we significantly improved all the

aspects of the system during the last three years,

progressively gaining their trust. Many more

improvements are being developed now to be ready for

restart of all accelerators in 2014.

Since the PS deployment in 2010, InCA has been

deployed in the Booster and Linac2 in 2011, in SPS and

ISOLDE in 2012 and preparation is well on track for the

deployment in 2014 on the two remaining machines: AD

and CTF3.

REFERENCES

[1] K. Kostro et al., “The Controls Middleware (CMW) at

CERN”, ICALEPCS’03, Gyeongju, Korea

[2] M. Arruat et al., “Front-End Software Architecture”,

ICALEPCS’07, Knoxville, Tennessee, U.S.A.

[3] S. Deghaye et al., “CERN Proton Synchrotron Complex

High-Level Controls Renovation”, ICALEPCS’09, Kobe,

Japan

[4] Q. King et al., “Evolution of the CERN Power Converter

Function Generator/Controller for Operation in Fast Cycling

Accelerators”, ICALEPCS’11, Grenoble, France

[5] G. Kruk et al., “LHC Software Architecture (LSA) –

 Evolution Toward LHC Beam Commissioning”,

 ICALEPCS’07, Knoxville, Tennessee, U.S.A.

[6] en.wikipedia.org/wiki/Scrum_(development)

[7] en.wikipedia.org/wiki/Scrum_(development)#Scrum-ban

[8] en.wikipedia.org/wiki/Kanban_(development)

[9] http://balsamiq.com

