
C
ER

N
-A

C
C

-2
01

3-
02

35
05

/1
0/

20
13

CERN-ACC-2013-0235

Roman.Gorbonosov@cern.ch

Report

Plugin-Based Analysis Framework for LHC
Post-Mortem Analysis

R. Gorbonosov, G. Kruk, M. Zerlauth, V. Baggiolini
CERN, Geneva, Switzerland

Keywords: Electronics and Controls, LHC

Abstract

Plugin-based software architectures [1] are extensible, enforce modularity and allow several teams to
work in parallel. But they have certain technical and organizational challenges, which we discuss in
this paper. We gained our experience when developing the Post-Mortem Analysis (PMA) system,
which is a mission critical system for the Large Hadron Collider (LHC). We used a plugin-based
architecture with a general-purpose analysis engine, for which physicists and equipment experts code
plugins containing the analysis algorithms. We have over 45 analysis plugins developed by a dozen of
domain experts. This paper focuses on the design challenges we faced in order to mitigate the risks of
executing third-party code: assurance that even a badly written plugin doesn't perturb the work of the
overall application; plugin execution control which allows to detect plugin misbehaviour and react;
robust communication mechanism between plugins, diagnostics facilitation in case of plugin failure;
testing of the plugins before integration into the application, etc.

Presented at:

14th International Conference on Accelerator and Large Experimental Physics Control Systems
S. Francisco, USA

Geneva, Switzerland
October, 2013

1

PLUGIN-BASED ANALYSIS FRAMEWORK FOR LHC
POST-MORTEM ANALYSIS

R. Gorbonosov, G. Kruk, M. Zerlauth, V. Baggiolini, CERN, Geneva, Switzerland

Abstract

Plugin-based software architectures [1] are
extensible, enforce modularity and allow several
teams to work in parallel. But they have certain
technical and organizational challenges, which we
discuss in this paper.

We gained our experience when developing the
Post-Mortem Analysis (PMA) system, which is a
mission-critical system for the Large Hadron Collider
(LHC). We used a plugin-based architecture with a
general-purpose analysis engine, for which
physicists and equipment experts code plugins
containing the analysis algorithms. We have over 45
analysis plugins developed by a dozen of domain
experts.

This paper focuses on the design challenges we
faced in order to mitigate the risks of executing
third-party code: assurance that even a badly
written plugin doesn't perturb the work of the overall
application; plugin execution control which allows to
detect plugin misbehaviour and react; robust
communication mechanism between plugins,
diagnostics facilitation in case of plugin failure;
testing of the plugins before integration into the
application, etc.

INTRODUCTION

The Post-Mortem Analysis (PMA) is a mission-
critical system for safe operation of the Large
Hadron Collider (LHC). Its main goal is to perform
an exhaustive analysis of the behaviour and state of
the key LHC components (power converters,
quench protection systems, interlock systems,
collimators, beam-loss monitors, kickers and many
others) in the event of a beam dump and decide if it
is safe to continue operation. Detailed domain
knowledge about the aforementioned components is
necessary to perform the analysis. Because there is
no single team possessing sufficient expertise about
all the LHC components, we decided to delegate the
coding of analysis algorithms to domain experts. In
other words, domain experts write software
components (“plugins”) with analysis algorithms,
and the core PMA team provides the general-
purpose analysis engine to execute these plugins.

Requirements and Constraints

A plugin-based architecture enforces design and
implementation decisions that both mitigate the risks
of executing third-party code and simplify the
implementation of plugins. In the case of the PMA
this is absolutely vital since domain experts

providing the analysis plugins are not professional
programmers, and are therefore prone to make
programming mistakes.

Another requirement which affected the design
and implementation of the PMA is that to yield the
overall result the plugins need to be executed in the
right order and they need to communicate with each
other, e.g. a subsequent plugin needs to be able to
consume the output of previous plugins.

Workflow

The PMA workflow is shown in Fig. 1. Each box
represents an analysis plugin. Typically (but not
necessarily) the leftmost plugins focus on a single
domain (power converters, collimators, etc.). The
main purpose of these plugins is to filter out all the
normal data since such data is not interesting for
problem detection. The plugins in the middle
represent cross-domain analysis. These plugins
consume the results of single-domain analysis and
perform data correlation in order to find
discrepancies. At the right there are one or several
plugins producing overall result(s) of the analysis.

Figure 1: PMA workflow.

PROBLEMS, RISKS AND SOLUTIONS

This section describes problems and risks we
faced as well as design and implementation
solutions we have put in place to deal with those
problems and risks. All the decisions are guided by
2 main principles:
1. lack of domain experts programming experience

should not compromise overall system stability
and reliability

2. implementation of analysis plugins should be
made as simple as possible, domain experts
should be able to focus on their business-logic
only

Plugins Execution

As described above, the PM analysis plugins are
executed in a well-defined sequence where each

…
…

single
domain

single
domain

single
domain

cross
domain

cross
domain

overall
result

plugin waits for the relevant data to be ready before
starting the execution.

A simplistic approach to implement this
behaviour could be to simply link together the
plugins using the observer (or any other notification)
pattern. In this design, analysis plugins execute in a
pretty autonomous manner. They notify each other
once they produce data and each plugin decides
itself when it has all the required data to start
execution (Fig. 2a). Although this approach seems
quite natural at first sight, it violates both guiding
principles. It violates the first one because if (due to
a programming error) the first analysis plugin logic
fails with an exception, and does not send any
notification to the other plug-ins, those plugins do
not start and the whole analysis execution gets
stuck. It violates the second principle because in
addition to writing their analysis code, the domain
experts have to write code to keep track of incoming
data and to send notifications.

In our PMA design, it is the framework that
controls the analysis execution entirely (Fig. 2b).
The framework triggers the execution of a plugin
and monitors its progress. Once a plugin has
finished executing, successfully or with exception,
the framework takes over and calculates which
plugin(s) should be triggered next, and so on. This
guarantees the execution of all the analysis logic
and simplifies the code of plugins.

Figure 2a:
Simplistic approach.

Figure 2b:
PMA approach.

Plugins misbehaviour

So far we have described how the PMA
framework deals with a plugin that throws an
exception. There are several ways a badly written
plugin can fail: it can block, access resources or
services (ex. file system, database, etc.) too often or
even start producing an enormous number of result
data (e.g. if it ends up executing an infinite loop).

A simplistic approach would let analysis code
access the resources and services directly (Fig. 3a).
Being the simplest first attempt such approach
however violates the first guiding principle: if an
analysis plugin is stuck in an infinite loop it will never
finish, the dependent plugins will never be triggered
and the whole analysis execution is compromised. If
an analysis plugin overloads services used by other
plug-ins it can potentially bring the services down,
thus preventing other analysis logic from finishing
successfully.

Figure 3a:
Simplistic approach.

Figure 3b:
PMA approach.

In the PMA framework, each analysis plugin is

executed in a separate thread – this guarantees that
a blocked plugin does not stop the overall analysis
execution. Also, the framework does not give
analysis plugins direct access to any resources or
services (Fig. 3b). Instead plugins are executed in a
special environment which provides access to
resources and services via proxies. Those proxies
can intercept calls of the plugin to external
resources and allow the framework to abort the
plugin if any misbehaviour is detected.

Inter-Plugin Communication

As mentioned, analysis plugins should be able to
consume results of other plugins. In order to make
such communication reliable, it is necessary to
define a clear data contract between communicating
plugins:
- the data container and data format to use: the

consuming plugin should know how to fetch the
necessary information from the incoming data
container (ex. XML, JSON, collection of
individual information pieces, hash maps, etc.)

- the data content: which information is expected
and how it is represented (ex. strings, numbers,
functions, etc.)

The first simplistic approach is to allow for a very
loose contract, where each plugin just produces
data in its own data format. While this is flexible for
each data producer, it is very chaotic and redundant
for the overall system: a consumer plugin has to use
specific code for each plugin it receives data from.

A better approach is to define a standard data
container shared by all plugins: this at least
standardizes the way the information is accessed.
The standard container should be flexible enough to
accommodate all possible sizes and types of
information (currents, beam-losses, images, etc.)
produced by different plugins. It is clear that usually
standardization and flexibility contradict each other.
In PMA we’ve chosen maps with key-value pairs as
data containers exchanged between plugins.

However, a standard flexible data container still
gives no guarantee that the content of the data
container is valid and complete. This can produce

finished

throws
exception

waits
forever

finished

throws
exception

starts

PM
A

fr
am

ew
or

k

analysis
plug-in

analysis
data store DB

external
services

execution
log

analysis
plug-in

analysis
data store DB

execution
log

PMA execution

environment

quite misleading results. For example, Fig. 4 shows
two plugins communicating with each other. The
plugin at the left has finished successfully but it has
produced incomplete data. The data is consumed
by the plugin at the right which fails because of this
missing information. The problem is detected in the
right-hand (consumer) plugin but in reality the root
cause of the problem lies in the left-hand (producer)
plugin. This example breaks the first guiding
principle of PMA development mentioned above.

Figure 4: Exchange of incomplete data.

Another problem of using simple key-value maps

appears while developing a consuming plugin: the
developer has no clear idea which information is
included in the data container and in which form. He
has to talk to the other plugin developer (if possible)
or examine the code of the producer plugin, which is
cumbersome and error-prone. This complicates the
task of the plugin developer a lot, thus breaking the
second guiding principle.

In order to ensure a clear contract between
plugins in PMA, map data containers are wrapped
into a data-specific Java class known as a “Java
bean” [2] (Fig. 5).

Figure 5: Java bean wrapper over map data
container.

The Java beans capture the data contract: they
have a getter/setter for every piece of information in
the data container as well as generic logic checking
the data correspondence to the contract: presence
of all the information pieces and their correct
representation (strings, numbers, arrays, etc.). With
tools provided as part of the PM framework, the
beans are generated automatically based on a
sample data – so they don’t require any routine
coding.

With Java beans, the PMA framework can at
runtime check the consistency of the produced data
thus eliminate the confusion shown in Fig. 4. In
addition, the developer of a consuming plugin gets
the full power of compilation check and IDE code-
completion.

Versioning of Data Contracts

Over time, the information produced by plugins
can evolve, which means that the data contract has
to evolve too. At the same time it must be still
possible to process the data form the past. For
example, we have the requirement to be able to re-
analyse the beam dumps from several years ago,
typically with improved analysis logic or after fixing
bugs.

A simplistic approach to deal with such
requirement is to force plugin developers to make
their logic capable of dealing with different versions
of data contracts. This approach however definitely
makes the task of plugin developers more difficult
thus violating the second guiding principle.

To simplify the work of plugin developers, the
PMA framework uses only the latest data contracts.
But the data producers are required to provide
converters every time they change their data format.
These converters transform old data into the latest
data contract, thus making it again usable by the
latest version of the PMA framework.

Plugin Testing

After a plugin is developed and unit-tested it is
necessary to test it in a real runtime environment
before it can be deployed into the production
environment.

The first approach could be just to deploy it into a
development version of the application and run
some tests there. However, it is extremely difficult
(especially for a non-professional programmer) to
debug problems in a remotely running application.
Also, every re-deployment, even to a development
version of the application, usually requires an
intervention of the PMA team, leading to an
additional overhead.

To deal with this problem the PMA framework
provides plugin developers with a test environment
which should be used before deploying plugins into
a development version of the application. The test
environment simulates the real application and
provides read-only access to all the resources and
services available in the real application. It also
allows using fake data to simulate different test-
cases. The plugin developers can use the test
environment locally profiting from all the debugging
options provided by their IDE.

CONCLUSIONS AND OUTLOOK

The PMA framework has been used
operationally for several years and proved to be
very extensible, flexible and reliable. At CERN there
are currently 4 mission-critical LHC applications
based on the PMA framework: Global PMA [3],
Injection Quality Check [4], External Post-
Operational Check of LHC beam-dump system [5]
and Powering Event Analysis. In total there are over
45 analysis plugins developed by a dozen of domain

throws
exception

produces
incomplete

result

data container
with missing data

Java bean:
double getCurrent()
String getMode()
String[] getFaults()
checkConsistency()

Map data container:
current: 25.8
mode: “ON”
faults: [“A”,“B”,“C”]

experts. Such a broad adoption would have never
been possible without a plugin-oriented architecture
and the design decisions described in this article.

A new area of work is to put in place a
mechanism to hot-swap new versions of analysis
modules without restarting the whole analysis
application. Yet another functionality to work on is
the implementation of automated tests in the real
application for each module based on a set of
incoming data representing possible use-cases.

REFERENCES

[1] http://en.wikipedia.org/wiki/Plugins
[2]http://www.oracle.com/technetwork/java/javase/d

ocumentation/spec-136004.html
[3] M. Zerlauth et al, “The LHC Post Mortem

Analysis Framework”, TUP021, ICALEPCS
2009, Kobe, Japan.

[4] L. N. Drosdal et al, “Automatic Injection Quality
Checks for the LHC”, WEPMU011, ICALECS
2011, Grenoble, France.

[5] N. Magnin et al, “External Post-Operational
Checks for the LHC Beam Dumping System”,
WEPMU023, ICALECS 2011, Grenoble, France.

