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Abstract  
 
Plugin-based software architectures [1] are extensible, enforce modularity and allow several teams to 
work in parallel. But they have certain technical and organizational challenges, which we discuss in 
this paper. We gained our experience when developing the Post-Mortem Analysis (PMA) system, 
which is a mission critical system for the Large Hadron Collider (LHC). We used a plugin-based 
architecture with a general-purpose analysis engine, for which physicists and equipment experts code 
plugins containing the analysis algorithms. We have over 45 analysis plugins developed by a dozen of 
domain experts. This paper focuses on the design challenges we faced in order to mitigate the risks of 
executing third-party code: assurance that even a badly written plugin doesn't perturb the work of the 
overall application; plugin execution control which allows to detect plugin misbehaviour and react; 
robust communication mechanism between plugins, diagnostics facilitation in case of plugin failure; 
testing of the plugins before integration into the application, etc. 
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Abstract 
 

Plugin-based software architectures [1] are 
extensible, enforce modularity and allow several 
teams to work in parallel. But they have certain 
technical and organizational challenges, which we 
discuss in this paper. 

We gained our experience when developing the 
Post-Mortem Analysis (PMA) system, which is a 
mission-critical system for the Large Hadron Collider 
(LHC). We used a plugin-based architecture with a 
general-purpose analysis engine, for which 
physicists and equipment experts code plugins 
containing the analysis algorithms. We have over 45 
analysis plugins developed by a dozen of domain 
experts.  

This paper focuses on the design challenges we 
faced in order to mitigate the risks of executing 
third-party code: assurance that even a badly 
written plugin doesn't perturb the work of the overall 
application; plugin execution control which allows to 
detect plugin misbehaviour and react; robust 
communication mechanism between plugins, 
diagnostics facilitation in case of plugin failure; 
testing of the plugins before integration into the 
application, etc. 

 
INTRODUCTION 

 

The Post-Mortem Analysis (PMA) is a mission-
critical system for safe operation of the Large 
Hadron Collider (LHC). Its main goal is to perform 
an exhaustive analysis of the behaviour and state of 
the key LHC components (power converters, 
quench protection systems, interlock systems, 
collimators, beam-loss monitors, kickers and many 
others) in the event of a beam dump and decide if it 
is safe to continue operation. Detailed domain 
knowledge about the aforementioned components is 
necessary to perform the analysis. Because there is 
no single team possessing sufficient expertise about 
all the LHC components, we decided to delegate the 
coding of analysis algorithms to domain experts. In 
other words, domain experts write software 
components (“plugins”) with analysis algorithms, 
and the core PMA team provides the general-
purpose analysis engine to execute these plugins.  
 
Requirements and Constraints 
 

A plugin-based architecture enforces design and 
implementation decisions that both mitigate the risks 
of executing third-party code and simplify the 
implementation of plugins. In the case of the PMA 
this is absolutely vital since domain experts 

providing the analysis plugins are not professional 
programmers, and are therefore prone to make 
programming mistakes.  

Another requirement which affected the design 
and implementation of the PMA is that to yield the 
overall result the plugins need to be executed in the 
right order and they need to communicate with each 
other, e.g. a subsequent plugin needs to be able to 
consume the output of previous plugins. 
 
Workflow 

 

The PMA workflow is shown in Fig. 1. Each box 
represents an analysis plugin. Typically (but not 
necessarily) the leftmost plugins focus on a single 
domain (power converters, collimators, etc.). The 
main purpose of these plugins is to filter out all the 
normal data since such data is not interesting for 
problem detection. The plugins in the middle 
represent cross-domain analysis. These plugins 
consume the results of single-domain analysis and 
perform data correlation in order to find 
discrepancies. At the right there are one or several 
plugins producing overall result(s) of the analysis. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1: PMA workflow. 
 
PROBLEMS, RISKS AND SOLUTIONS 

 

This section describes problems and risks we 
faced as well as design and implementation 
solutions we have put in place to deal with those 
problems and risks. All the decisions are guided by 
2 main principles: 
1. lack of domain experts programming experience 

should not compromise overall system stability 
and reliability 

2. implementation of analysis plugins should be 
made as simple as possible, domain experts 
should be able to focus on their business-logic 
only 
 

Plugins Execution 
 

As described above, the PM analysis plugins are 
executed in a well-defined sequence where each 
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plugin waits for the relevant data to be ready before 
starting the execution.  

A simplistic approach to implement this 
behaviour could be to simply link together the 
plugins using the observer (or any other notification) 
pattern. In this design, analysis plugins execute in a 
pretty autonomous manner. They notify each other 
once they produce data and each plugin decides 
itself when it has all the required data to start 
execution (Fig. 2a). Although this approach seems 
quite natural at first sight, it violates both guiding 
principles. It violates the first one because if (due to 
a programming error) the first analysis plugin logic 
fails with an exception, and does not send any 
notification to the other plug-ins, those plugins do 
not start and the whole analysis execution gets 
stuck. It violates the second principle because in 
addition to writing their analysis code, the domain 
experts have to write code to keep track of incoming 
data and to send notifications.  

In our PMA design, it is the framework that 
controls the analysis execution entirely (Fig. 2b). 
The framework triggers the execution of a plugin 
and monitors its progress. Once a plugin has 
finished executing, successfully or with exception, 
the framework takes over and calculates which 
plugin(s) should be triggered next, and so on. This 
guarantees the execution of all the analysis logic 
and simplifies the code of plugins. 
 
 
 
 
 
 

Figure 2a: 
Simplistic approach. 

Figure 2b: 
PMA approach. 

 
Plugins misbehaviour 
 

So far we have described how the PMA 
framework deals with a plugin that throws an 
exception. There are several ways a badly written 
plugin can fail: it can block, access resources or 
services (ex. file system, database, etc.) too often or 
even start producing an enormous number of result 
data (e.g. if it ends up executing an infinite loop).  

A simplistic approach would let analysis code 
access the resources and services directly (Fig. 3a). 
Being the simplest first attempt such approach 
however violates the first guiding principle: if an 
analysis plugin is stuck in an infinite loop it will never 
finish, the dependent plugins will never be triggered 
and the whole analysis execution is compromised. If 
an analysis plugin overloads services used by other 
plug-ins it can potentially bring the services down, 
thus preventing other analysis logic from finishing 
successfully. 

 

 
 
 
 
 
 
 

 
 

Figure 3a: 
Simplistic approach. 

Figure 3b: 
PMA approach. 

 
In the PMA framework, each analysis plugin is 

executed in a separate thread – this guarantees that 
a blocked plugin does not stop the overall analysis 
execution. Also, the framework does not give 
analysis plugins direct access to any resources or 
services (Fig. 3b). Instead plugins are executed in a 
special environment which provides access to 
resources and services via proxies. Those proxies 
can intercept calls of the plugin to external 
resources and allow the framework to abort the 
plugin if any misbehaviour is detected. 
 
Inter-Plugin Communication 

 

As mentioned, analysis plugins should be able to 
consume results of other plugins. In order to make 
such communication reliable, it is necessary to 
define a clear data contract between communicating 
plugins: 
- the data container and data format to use: the 

consuming plugin should know how to fetch the 
necessary information from the incoming data 
container (ex. XML, JSON, collection of 
individual information pieces, hash maps, etc.) 

- the data content: which information is expected 
and how it is represented (ex. strings, numbers, 
functions, etc.) 

 

The first simplistic approach is to allow for a very 
loose contract, where each plugin just produces 
data in its own data format. While this is flexible for 
each data producer, it is very chaotic and redundant 
for the overall system: a consumer plugin has to use 
specific code for each plugin it receives data from. 

A better approach is to define a standard data 
container shared by all plugins: this at least 
standardizes the way the information is accessed. 
The standard container should be flexible enough to 
accommodate all possible sizes and types of 
information (currents, beam-losses, images, etc.) 
produced by different plugins. It is clear that usually 
standardization and flexibility contradict each other. 
In PMA we’ve chosen maps with key-value pairs as 
data containers exchanged between plugins. 

However, a standard flexible data container still 
gives no guarantee that the content of the data 
container is valid and complete. This can produce 
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quite misleading results. For example, Fig. 4 shows 
two plugins communicating with each other. The 
plugin at the left has finished successfully but it has 
produced incomplete data. The data is consumed 
by the plugin at the right which fails because of this 
missing information. The problem is detected in the 
right-hand (consumer) plugin but in reality the root 
cause of the problem lies in the left-hand (producer) 
plugin. This example breaks the first guiding 
principle of PMA development mentioned above. 

 
 
 
 
 
Figure 4: Exchange of incomplete data. 
 
Another problem of using simple key-value maps 

appears while developing a consuming plugin: the 
developer has no clear idea which information is 
included in the data container and in which form. He 
has to talk to the other plugin developer (if possible) 
or examine the code of the producer plugin, which is 
cumbersome and error-prone. This complicates the 
task of the plugin developer a lot, thus breaking the 
second guiding principle. 

In order to ensure a clear contract between 
plugins in PMA, map data containers are wrapped 
into a data-specific Java class known as a “Java 
bean” [2] (Fig. 5).  

 

 
 
 
 
 
 
 
 

Figure 5: Java bean wrapper over map data 
container. 

 

The Java beans capture the data contract: they 
have a getter/setter for every piece of information in 
the data container as well as generic logic checking 
the data correspondence to the contract: presence 
of all the information pieces and their correct 
representation (strings, numbers, arrays, etc.). With 
tools provided as part of the PM framework, the 
beans are generated automatically based on a 
sample data – so they don’t require any routine 
coding. 

With Java beans, the PMA framework can at 
runtime check the consistency of the produced data 
thus eliminate the confusion shown in Fig. 4. In 
addition, the developer of a consuming plugin gets 
the full power of compilation check and IDE code-
completion. 

 
Versioning of Data Contracts 

 

Over time, the information produced by plugins 
can evolve, which means that the data contract has 
to evolve too. At the same time it must be still 
possible to process the data form the past. For 
example, we have the requirement to be able to re-
analyse the beam dumps from several years ago, 
typically with improved analysis logic or after fixing 
bugs. 

A simplistic approach to deal with such 
requirement is to force plugin developers to make 
their logic capable of dealing with different versions 
of data contracts. This approach however definitely 
makes the task of plugin developers more difficult 
thus violating the second guiding principle. 

To simplify the work of plugin developers, the 
PMA framework uses only the latest data contracts. 
But the data producers are required to provide 
converters every time they change their data format. 
These converters transform old data into the latest 
data contract, thus making it again usable by the 
latest version of the PMA framework. 

 
Plugin Testing 

 

After a plugin is developed and unit-tested it is 
necessary to test it in a real runtime environment 
before it can be deployed into the production 
environment. 

The first approach could be just to deploy it into a 
development version of the application and run 
some tests there. However, it is extremely difficult 
(especially for a non-professional programmer) to 
debug problems in a remotely running application. 
Also, every re-deployment, even to a development 
version of the application, usually requires an 
intervention of the PMA team, leading to an 
additional overhead. 

To deal with this problem the PMA framework 
provides plugin developers with a test environment 
which should be used before deploying plugins into 
a development version of the application. The test 
environment simulates the real application and 
provides read-only access to all the resources and 
services available in the real application. It also 
allows using fake data to simulate different test-
cases. The plugin developers can use the test 
environment locally profiting from all the debugging 
options provided by their IDE. 

 
CONCLUSIONS AND OUTLOOK 

 

The PMA framework has been used 
operationally for several years and proved to be 
very extensible, flexible and reliable. At CERN there 
are currently 4 mission-critical LHC applications 
based on the PMA framework: Global PMA [3], 
Injection Quality Check [4], External Post-
Operational Check of LHC beam-dump system [5] 
and Powering Event Analysis. In total there are over 
45 analysis plugins developed by a dozen of domain 
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experts. Such a broad adoption would have never 
been possible without a plugin-oriented architecture 
and the design decisions described in this article.  

A new area of work is to put in place a 
mechanism to hot-swap new versions of analysis 
modules without restarting the whole analysis 
application. Yet another functionality to work on is 
the implementation of automated tests in the real 
application for each module based on a set of 
incoming data representing possible use-cases. 
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