

LHCb Luminosity Monitoring and Control

R. Jacobsson (LHCb)

Reyes Alemany-Fernandez, Fabio Follin (LHC)

Outline

- LHCb physics strategy
- LHCb key requirements
- Luminosity control motivations
- Luminosity monitoring and control implementation
- Performance
- Conclusion

Complementary paper:

"Online Luminosity Optimization at the LHC", F. Follin, R. Alemany, R. Jacobsson, THPPC123

14th ICALEPCS, San Francisco, 6 – 11 October 2013

LHCb New Physics Search Strategy

- Focus on measuring *indirect* effects of New Physics in CP violation and Rare decays using FCNC processes mediated by loop (box and penguin) diagrams
 - Strongly suppressed processes allow distinguishing NP sources
 - Virtual effects allow probing energies much higher than the E_{cms} of the LHC
 - → Complementary to the direct searches by Atlas and CMS

• While initial aim of LHCb was b-physics, has also demonstrated that it can do

- Charm physics (oscillations, CP violation)
- QCD physics (PDFs via Z/W production, Central Exclusive Production,...)

➔ In beyond design conditions, LHCb has earned the title of « General Purpose Forward Detector »

14th ICALEPCS, San Francisco, 6 – 11 October 2013

<u>2</u>

Key Requirements for Flavour Physics at LHC

- Collect high statistics of a large variety of B and D final states in an environment with very large background
 - >100 000 $b\overline{b}$ pairs per second at LHCb interaction point and $c\overline{c}$ production 20x more
 - Fast and efficient trigger for both hadronic and leptonic final states
 - Requires reconstruction of decay chains
- Resolve fast oscillations, background reduction and flavour tagging
 - Very good vertex resolution
 - Determination of track parameters
 - Charge determination and momentum resolution
 - Mass resolution
 - K/π separation in a wide momentum range
 - γ / π^0 reconstruction, electron identification
 - Muon identification

➔ Difficult task in conditions of large event pileup

14th ICALEPCS, San Francisco, 6 – 11 October 2013

A typical (tagging) B and (signal) B event

Key Requirements for Flavour Physics at LHC

- Requirements from precision physics programme
 - Accurate knowledge about the integrated luminosity
 - Systematics errors must be negligible compared to statistical errors to reach sensitivity below the predictions of SM.
- Systematic effects from changing running configuration and conditions
 - → Attenuated by the initial design specification for nominal running conditions of LHCb
 - Maximize the probability of a single interaction per bunch crossing, minimizing pileup
 - \rightarrow Average number of interactions per bunch crossing $\mu \sim 0.4$
 - Valid up to June 2010...
 - In June 2010, LHC changed commissioning strategy:
 - Commissioning many bunches with low intensity → Commissioning bunch intensity
 - LHCb pileup reached ~3 due to chosen over-focussing!
 - → Detector and reconstruction performs well with event pileup
 - → Forced a healthy change of strategy in LHCb at all levels

Compensatory measure: Luminosity/pileup control

→ Experiment with luminosity control with separated beams for the first time July 18, 2010 By phone...!

14th ICALEPCS, San Francisco, 6 – 11 October 2013

LHCb Luminosity Control

- Direct tool to maximize LHCb physics yield
- Allows optimizing the efficiency of luminosity integration
 - → Running constantly at the optimal pileup for physics
- Stable luminosity (pileup) through fills (no decay!) / over months
 - Same trigger settings
 - Predictable detector performance and ageing

• Optimum luminosity is also a function of dynamic readout system parameters

- Full event readout rate (<1.1 MHz)
- Average number of interactions per crossing (<2.7)
- Max readout network through-put (<70 GB/s)
- High-Level Trigger CPU time/event at 1 MHz, ~30ms in 2011 and ~40ms in 2012
- Physics trigger overall dead-time (<5%)
- High Level Trigger output rate to storage (<~5 kHz)
- Detector stability, still exploring
- Translate into equivalent luminosity limits which may depend on experimental conditions (e.g. background) and system status
- → Target luminosity determined real-time with slow time constants of O(seconds)

Luminosity Control

• Many ways by which luminosity control may be performed

$$L = \frac{n_{bb} * N^2 * f_{rev}}{A} * R(\beta^*, \theta, \sigma_z, \phi_P, \delta_s, \delta_c, \Delta t)$$

• Simplest consist of semi-continuous adjustment of transversal offset of colliding beams

<u>6</u>

14th ICALEPCS, San Francisco, 6 – 11 October 2013

Richard Jacobsson

Luminosity Control Protocol

The luminosity adjustment is performed by an iterative procedure:

• LHCb Luminosity Controller publishes:

- Current Luminosity: Measured luminosity
- Luminosity Status : Depends on source of luminosity, reliable or not
- Target luminosity: Dynamically computed by LHCb leveling controller
- Leveling Request: Dynamical signal requesting leveling to target
 - Request will only ON if the LHCb data acquisition is running, even if it is far away from target
 - If request if OFF, target is not (should not be) considered
 - When luminosity is not reliable, request is OFF whatever target luminosity is
- Step size [percentage of beam sigma]: Depends on separation
- LHC Luminosity Leveling Application publishes:
 - XPlaneOptimizationDone : Set when the crossing plane optimization has been done
 - LHCb Luminosity Controller will only start requesting luminosity ramp when this is received
 - Must always be done before leveling starts.
 - Enable: ON if luminosity leveling application is running
 - Active: Leveling to target is in progress
 - StepSize : Beam movement used in the last leveling step in mm

14th ICALEPCS, San Francisco, 6 – 11 October 2013

Richard Jacobsson

Luminosity Monitoring

ODIN = Single FPGA-based readout master with two redundant "copies" for fail-over

Two different methods for offline and online determination of luminosity

ERN

CERN

LHCb Luminosity Control Procedure

ADJUST - idle

- 1. LHC luminosity control OFF, LHCb luminosity control OFF
- 2. Collapse separation bump to constant offset (e.g. ~2- 3σ) \rightarrow L ~ 1.5x10³² cm⁻²s⁻¹ in vertical
- 3. Optimize in horizontal (crossing plane) keeping vertical separation constant
- STABLE BEAMS ramp
 - 1. LHCb Vertex Locator (VELO) detector closing to its final data taking position with initial luminosity
 - 2. Luminosity increase to target over a few minutes
- Coast levelling
 - Continuous publication of instantaneous luminosity and target luminosity
 - Luminosity leveling requested when current luminosity and target different by > $\pm 3\%$

Luminosity Monitor

Procedure require no actions from the people on shift

ERN

14th ICALEPCS, San Francisco, 6 – 11 October 2013

Luminosity Control Performance

• 95% of integrated luminosity in 2011–2012 recorded within 3% of desired luminosity

14th ICALEPCS, San Francisco, 6 – 11 October 2013

Richard Jacobsson 13

LHC

Running conditions 2010 - 2012

14th ICALEPCS, San Francisco, 6 – 11 October 2013

ER

Conclusions

• Luminosity control has been part of routine operation in LHCb 2011 – 2012

- It has also been used in a similar way for the ALICE experiment
- Great experience in developing a close feed-back system between experiment and accelerator
- Allowed LHCb to venture well beyond the design specs and operating detector at twice the luminosity, collecting up 3x more luminosity in Run 1
- Operating LHCb constantly in the optimal conditions
- Important reduction in the systematics effects
- Stability of the detector performance and trigger configuration
- Luminosity control will continued to be a vital tool for LHCb in the future, both in Run 2 and after the LHCb upgrade
- Important experience to pave the way for luminosity control in the future by all experiments
 - Method of luminosity control may be different but procedure well established
 - Exploiting LHC at maximum benefits from handling procedures with mechanical routine

Acknowledgement:

Thanks to

- the many people from the machine who contributed to the vital task of ensuring the understanding of the effects of operating the LHC with offset collisions
- The LHC operators for their particular attention to the LHCb interaction point!

14th ICALEPCS, San Francisco, 6 – 11 October 2013

RESERVE SLIDES

14th ICALEPCS, San Francisco, 6 – 11 October 2013

Two different methods for offline and online determination of luminosity

- → Both implemented in ODIN hardware
- <u>Offline</u>:

 \odot

- Random sampling of beam-beam crossings with observables proportional to luminosity
- Random sampling of beam1 alone, beam2 alone, and empty crossings for background subtraction.
 - Luminosity trigger implemented in ODIN based on an advanced pseudo-random generator producing two 32-bit random numbers at 40 MHz
 - →Events carry special flags that allow offline analysis of any data set
- <u>Online:</u>
 - Counting of minimum bias trigger condition with maximum acceptance on beam-beam crossings
 - Transverse energy criteria, together with muon minimum bias and noPV condition as stability check
 - Conditions counted on beam1 alone and beam2 alone for background correction
 - Instantaneous luminosity determined from Poisson statistics ($P_0 = e^{-\mu}$)

$$\mu = -ln \frac{1 - \rho_{trg}}{f_{rev} * n_{bb}} \qquad \qquad L = \frac{\mu * f_{rev} * nbb}{\sigma_{mbias} * \varepsilon_{det}}$$

- LHC filling scheme loaded real-time into ODIN sequencer during filling of LHC
- Online integrated luminosity well within 1% of best value from offline

14th ICALEPCS, San Francisco, 6 – 11 October 2013