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3 Eötvös Loránt University, Budapest, Hungary.

4 Wigner Research Center for Physics, Hungarian Academy of Sciences, Budapest, Hungary.

5 MIT, Cambridge, Massachusetts, USA.
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∗

Abstract

A novel approach, the identity method, was used for particle identification and the study of

fluctuations of particle yield ratios in Pb+Pb collisions at the CERN Super Proton Synchrotron

(SPS). This procedure allows to unfold the moments of the unknown multiplicity distributions of

protons (p), kaons (K), pions (π) and electrons (e). Using these moments the excitation function of

the fluctuation measure νdyn[A,B] was measured, with A and B denoting different particle types.

The obtained energy dependence of νdyn agrees with previously published NA49 results on the

related measure σdyn. Moreover, νdyn was found to depend on the phase space coverage for [K,p]

and [K,π] pairs. This feature most likely explains the reported differences between measurements

of NA49 and those of STAR in central Au+Au collisions.

∗ Corresponding author: a.rustamov@cern.ch
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I. INTRODUCTION

By colliding heavy ions at high energies one hopes to heat and/or compress the matter to

energy densities at which the production of the Quark-Gluon Plasma (QGP) begins [1, 2].

Lattice QCD calculations can study this non-perturbative regime of QCD [3] and allow a

quantitative investigation of the QGP properties. A first order phase boundary is expected

to separate high temperature hadron matter from the QGP for large net baryon density

and is believed to end in a critical point [4]. A wealth of ideas have been proposed to

explore the properties and the phase structure of strongly interacting matter. Event-by-event

fluctuations of various observables may be sensitive to the transitions between hadronic and

partonic phases [5, 6]. Moreover, the location of the critical point may be signalled by a

characteristic pattern in the energy and system size dependence of the measured fluctuation

signals.

Pb+Pb reactions were investigated at the CERN SPS since 1994 by a variety of experi-

ments at the top SPS energy. Many of the predicted signals of the QGP were observed [7],

but their uniqueness was in doubt. Motivated by predictions of the Statistical Model for the

Early Stage of nucleus-nucleus collisions [8] of characteristic changes of hadron production

properties at the onset of QGP creation (onset of the deconfinement) the NA49 experiment

performed a scan of the entire SPS energy range, from 158A down to 20A GeV. The pre-

dicted features were found at an energy of about 30A GeV in central Pb+Pb collisions [9],

thereby indicating the onset of deconfinement in collisions of heavy nuclei in the SPS beam

energy range. These observations have recently been confirmed by the RHIC beam energy

scan and the expected trend towards higher energy is consistent with LHC data [10].

Motivated by these findings the NA49 Collaboration has started to explore the phase

diagram of strongly interacting matter, with the aim of searching for indications of the first

order phase transition and the critical point by studying several measures of fluctuations. In

particular, the energy dependence of dynamical event-by-event fluctuations of the particle

composition was investigated using the measure σdyn(A/B) with A and B denoting the

multiplicities of different particle species. An increasing trend of σdyn for both K/p and K/π

ratios towards lower collision energies was observed [11–13]. In contrast, recent results of the

STAR experiment from the Beam Energy Scan (BES) at the Relativistic Heavy Ion Collider

(RHIC) show practically no energy dependence of the related event-by-event fluctuation

3



measure νdyn [14] for [K, p] and [K, π] pairs [15]. The comparison between NA49 and

corresponding STAR results was performed using the relation

νdyn = sgn(σdyn)σ2
dyn. (1)

However, the accuracy of this relation decreases inversely with multiplicity, i.e. at lower

energies this relation is only approximate. In order not to rely on this approximation the

fluctuation measure νdyn was directly reconstructed in this paper using a novel identification

scheme, the Identity Method [16, 17]. The procedure avoids event-by-event particle ratio fits

and the use of mixed events necessary to subtract the artificial correlations introduced by

the fits. Moreover, the much improved statistical power allows to study the effects of the

different phase space coverage of the NA49 (forward rapidities) and STAR (central rapidity,

without low-p⊥ range) experiments.

The paper is organized as follows. Details about the detector setup and the data are

given in section II. Section III discusses the event and track selection criteria. The novel

features of this analysis, i.e. the particle identification procedure and the extraction of the

moments of the multiplicity distributions, are discussed in sections IV and V, respectively.

Section VI presents the estimates of statistical and systematic uncertainties. Results on νdyn

and their phase-space dependence are discussed in sections VII and VIII. Finally, section IX

summarizes the paper.

II. EXPERIMENTAL SETUP AND THE DATA

This paper presents results for central Pb+Pb collisions at projectile energies of 20A, 30A,

40A, 80A and 158A GeV, recorded by the NA49 experiment (for a detailed description of the

NA49 apparatus cf. Ref. [18]). The principal tracking detectors are four large volume Time

Projection Chambers (TPC) with two of them, Vertex TPCs (VTPC1 and VTPC2), placed

inside superconducting dipole magnets with a combined maximum bending power of 9 Tm

for a length of 7 m. Care was taken to keep the detector acceptance approximately constant

with respect to midrapidity by setting the magnetic field strength proportional to the beam

energy. Particle identification in this analysis is achieved by simultaneous measurement of

particle momenta and their specific energy loss dE/dx in the gas volume of the main TPCs

(MTPC-L and MTPC-R). These are located downstream of the magnets on either side of

4



Beam energy
√
sNN N events 〈Nall〉 〈Npos.〉

[GeV] [GeV]

20A 6.3 169k 63 46

30A 7.6 179k 113 75

40A 8.7 195k 159 99

80A 12.3 136k 315 181

158A 17.3 125k 560 310

Table I. The statistics corresponding to the 3.5% most central Pb+Pb collisions used in this

analysis.

the beam, have large dimensions (4 m × 4 m × 1.2 m) and feature 90 readout pad rows,

providing an energy loss measurement with a resolution of about 4%. In the experiment Pb

beams with an intensity of 104 ions/s were incident on a thin lead foil located 80 cm upstream

of the VTPC-1. For 20A - 80A GeV and 158A GeV the target thicknesses amounted to 0.224

g/cm2 and 0.336 g/cm2, correspondingly. The centrality of a collision was determined based

on the energy of projectile spectators measured in the veto calorimeter (VCAL) which is

located 26 m behind the target and covers the projectile-spectator phase space region. A

collimator in front of the calorimeter was adjusted for each energy in such a way that all

projectile spectator protons, neutrons and beam fragments could reach the veto calorimeter

while keeping the number of produced particles hitting the calorimeter as small as possible.

III. EVENT AND TRACK SELECTION CRITERIA

The only event selection criterion used in this analysis is a centrality cut based on the

energy (ECal) of forward going projectile spectators measured in VCAL. The data were

recorded with an online VCAL cut accepting the 7% and 10% most central Pb+Pb collisions

for 20A - 80A GeV and 158A GeV, respectively. Using an offline cut on ECal, event samples

of the 3.5% most central reactions were selected, which in the Glauber Monte Carlo Model

corresponds to about 367 wounded nucleons and an impact parameter range of 0 < b < 2.8
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fm [19]. To ensure better particle separation only the tracks with large track length (better

energy loss resolution) in the MTPCs were used for further analysis. For this purpose we

distinguish between the number of potential and the number of reconstructed dE/dx points.

The former was estimated according to the position of the track in space together with the

known TPC geometry, while the latter represents the number of track points reconstructed

by the cluster finder algorithm. In addition, to avoid the usage of track fragments (split

tracks from different TPCs which were not matched together), it is required that more than

50 % of potential points have to be found by the reconstruction algorithm. The following

track selection criteria, referred to as the ”loose cuts”, are used for the main analysis:

• The number of reconstructed points in the MTPCs should be more than 30.

• The ratio of the number of reconstructed points in all TPCs (VTPCs + MTPCs) to

the number of potential points in all TPCs should exceed 0.5.

These selections reduce the acceptance of the particles to the forward rapidity regions in

the center-of-mass reference frame. In order to study the systematic uncertainties of the

final results due to the applied track cuts another set of cuts (”tight cuts”) was employed

in addition to the ”loose cuts”:

• The number of potential points in at least one of the vertex TPCs (VTPC1 or VTPC2)

and in the MTPCs should be more than 10 and 30, respectively.

• The ratio of the number of reconstructed points to the number of potential points in

the selected TPC(s) should exceed 0.5.

• The distance between the closest point on the extrapolated track to the main vertex

position should be less than 4 cm in x (bending plane) and less than 2 cm in y (vertical).

The statistics used in this analysis, with applied ”loose cuts”, is shown in Table I.

IV. PARTICLE IDENTIFICATION

Particle identification (PID) in this analysis is achieved by correlating the measured par-

ticle momentum with its specific energy loss dE/dx in the gas volume of the MTPCs. The
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key problem of particle identification by dE/dx measurement is the fluctuation of ioniza-

tion losses. The energy loss distribution has a long tail for large values. Its shape was

first calculated in Ref. [20] and is referred to as the Landau distribution. To improve the

resolution of the dE/dx measurement, multiple samplings in pad rows along the track are

performed. An appropriate estimate of the dE/dx is then calculated as a truncated mean of

the distribution of deposited charge measurements. To obtain the contributions of different

particle species, fits of the inclusive dE/dx distributions (see Ref. [21] for details) were per-

formed separately for negatively and positively charged particles in bins of total laboratory

momentum p, transverse momentum (p⊥) and azimuthal angle (φ). Bins with less than 3000

entries were not used in the analysis to ensure sufficient statistics in each bin for the fitting

algorithm. The distribution of the number of measured dE/dx points in a representative

bin is illustrated in Fig. 1. As for each track the energy loss is measured multiple times,

the inclusive dE/dx distribution (averaged over all events for the particular bin) for each

particle type j (j = p, K, π, e) is represented by a weighted sum of Gaussian functions:

 # of dE/dx points
30 40 50 60 70 80 90

en
tr

ie
s

210

310

410

Figure 1. (Color Online) Distribution of number of measured dE/dx points along the tracks for

the phase space bin 5.2 < p [GeV/c] < 6.4, 0.4 < p⊥ [GeV/c] < 0.6 and 135 < φ [o] < 180 at 20A

GeV.
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Figure 2. (Color Online) Upper panel: Measured dE/dx values as function of reconstructed mo-

menta at 20A GeV for the phase space region 0.4 < p⊥ [GeV/c] < 0.6 and 135 < φ [o] < 180. Lines

correspond to calculations with the Bethe-Bloch (BB) formula for different particle types. Lower

panel: Projection of the upper plot to the vertical axis in the momentum interval 5.2 < p [GeV/c]

< 6.4 indicated by vertical dashed lines. Colored lines represent the dE/dx distribution functions

of different particles using Eq. (2) and the fit parameters listed in the figure.

Fj

(
dE

dx
≡ x

)
=

1

C

∑
n

Nn√
2πσj,n

exp

[
−1

2

(
x− xj

(1± δ)σj,n

)2
]
. (2)

Here, Nn is the number of tracks with n dE/dx measurements, xj is the fitted mean energy

loss (later referred to as position) of particle type j, and σj,n is the width of the Gaussian

distribution which depends on particle type j and the number of dE/dx measurements,

n. The asymmetry parameter δ was introduced to account for the tails of the Landau

distributions, which are still present even after truncation. The normalization constant C

in Eq.(2) is
∑

nNn, while σi,n is parametrized as:
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σj,n = σ0

(
xj
xπ

)α
1√
Nn

, (3)

where α was estimated from the data and set to 0.625 [21].

The parameterization of the total energy loss distribution is obtained by summing the

functions Fj over the particle types:

F (x) =
∑

j=p,K,π,e

AjFj(x) (4)

with Aj being the yield of particle j in a given bin. As a result of fitting this function to the

experimental dE/dx distributions one obtains in each phase space bin the yield of particle j,

Aj, the ratio of mean ionization loss xj/xπ, the parameter σ0, and the asymmetry parameter

δ. The total number of fitted parameters is 2(k+1) with k denoting the number of particles.

Obtained fit parameters, which are later used to access the dE/dx distribution functions

(DFs) of different particles, are stored in a lookup table. In the case of positive particles,

DFs of kaons are masked by the protons and the mean values for protons and kaons cannot

be fitted uniquely. To circumvent this problem the fitting procedure was performed in two

steps:

1. The fitting procedure is started with negatively charged particles. As for the studied

energy range the number of antiprotons is small, the pion and kaon peaks are essentially

separated. Furthermore, to enhance the statistics, integration is performed over the

transverse momentum bins at this stage.

2. The fitting procedure is repeated separately for negatively and positively charged

particles in bins of p, p⊥ and φ with the ratio xK/xπ fixed from step 1.

As an example, we present in the upper panel of Fig. 2 a plot of measured dE/dx values

versus the reconstructed momenta. The lower panel of Fig. 2 shows the projection of the

upper plot onto the dE/dx axis in the selected momentum interval indicated by dashed

vertical lines. The distribution functions of different particles obtained from Eq.(2) using

the fit parameters listed in the figure are displayed by colored lines.

In Fig. 3 the ratios of mean energy losses of different particles are compared to the corre-

sponding ratios from the Bethe-Bloch parameterization. Figure 4 demonstrates the separa-

tion between fitted mean energy loss values of kaons and protons quantified as |xp − xK | /σ
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with xp and xK denoting the mean energy loss values for protons and kaons respectively,

and σ stands for
√
σ2
p + σ2

K . Here the σj (j = p, K) is calculated as:

σj =
1

C

∑
n

σj,n, (5)

with C and σj,n defined in Eqs. (2) and (3).

p [GeV/c]1 10

πx/ ix

0.7

0.8

0.9

1

1.1

1.2
 (From BB)πx/px

 (From BB)πx/Kx

 (From Fit)πx/px

 (From fit)πx/Kx

Figure 3. (Color Online) Ratio of fitted mean energy losses (symbols) compared to corresponding

ratios from the Bethe-Bloch parametrization (curves) for 20A GeV data. The deviations of the

fitted values from the Bethe-Bloch curves are below 1 %.

V. ANALYSIS METHOD

Most measures proposed for event-by-event fluctuations are defined as functions of mo-

ments of the unknown multiplicity distributions. In particular, the fluctuation measure νdyn

depends on the first and all second (pure and mixed) moments of the multiplicity distribu-

tions of the studied particles species. For example, second (pure) moment for pions and the

second mixed moment for protons and pions are defined as:

10



p [GeV/c]
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σ|/ kx- px|
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1

1.2

1.4

Figure 4. (Color Online) The difference between mean energy loss of kaons and protons normalized

to the dE/dx width for 20A GeV data.

〈N2
π〉 =

∞∑
Nπ=0

N2
πP (Nπ), (6)

and

〈NπNp〉 =
∞∑

Nπ=0

∞∑
Np=0

NπNpP (Np, Nπ), (7)

where, P (Nπ) is the probability distribution of pion multiplicity, while P (Np, Nπ) is the joint

probability distribution for pion and proton multiplicities. Nπ and Np in Eqs. (6) and (7)

stand for the pion and proton multiplicities.

The standard approach of finding the moments is to count the number of particles event-

by-event. However, this approach is hampered by incomplete particle identification (over-

lapping dE/dx distribution functions), which can be taken care of by either selecting suit-

able phase space regions (where the distribution functions do not overlap) or by applying

an event-by-event fitting procedure . The latter typically introduces artificial correlations

which are usually corrected for by the event mixing technique. Here a novel approach,
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called Identity Method [16, 17, 23], is applied for the first time. The method follows a prob-

abilistic approach which avoids the event-by-event fitting and determines the moments of

the multiplicity distributions by an unfolding procedure which has a rigorous mathematical

derivation [17]. Thus there is no need for corrections based on event mixing. The method

employs the fitted inclusive dE/dx distribution functions of particles, ρj(x), with j standing

for proton, kaon, pion and electron. Each event has a set of measured dE/dx values, xi,

corresponding to each track in the event. For each track in an event a probability wj was

estimated of being a particle j:
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Figure 5. (Color Online) Distributions of wj of Eq.(8) and Wj of Eq.(10) for different particle

types j for 20A GeV data.

wj(xi) ≡
ρj(xi)

ρ(xi)
, (8)
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20A GeV 30A GeV 40A GeV 80A GeV 160A GeV

〈Np〉 27.1 34.7 38.0 47.0 68.7

〈Nπ〉 30.5 66.4 103.0 226.7 414.6

〈NK〉 4.7 9.4 13.9 31.5 57.8〈
N2
p

〉
759.94 1238.09 1475.89 2254.35 4780.52〈

N2
π

〉
963.6 4485.36 10731.4 51764.4 172811.0〈

N2
K

〉
26.4 98.06 207.27 1030.06 3415.69

Cov[Np, Nπ] 2.13 4.34 9.05 22.62 44.03

Cov[Np, NK ] -0.75 -0.69 0.39 2.41 10.92

Cov[NK , Nπ] -1.02 -1.39 0.29 15.84 81.75

Table II. Upper part: mean multiplicities of p + p̄, π+ + π−, and K+ + K− for the 3.5% most

central Pb+Pb collisions calculated by summing the integrals of respective DFs over phase-space

bins. Lower part: reconstructed second moments of the multiplicity distributions of p+ p̄, π++π−,

and K+ + K− for the 3.5% most central Pb+Pb collisions. The mixed moments are presented

in terms of covariances, Cov[N1, N2] = 〈N1N2〉 − 〈N1〉〈N2〉. For 20A and 30A GeV, values for

Cov[Np, NK ] and Cov[Np, NK ] are negative. Numerical values with higher precision are available

in Ref [22]. These are required to reproduce the values of νdyn shown in this paper.

where the values of ρj(xi) = AjFj(xi) are calculated using the parameters stored in the

lookup table of fitted DFs in the appropriate phase space bin, and

ρ(xi) ≡
∑

j=p,K,π,e

ρj(xi). (9)

Note that the ρj functions are just DFs normalized to the total number of events. Further

an event variable (an approximation of the multiplicity of particle j in the event) Wj is

defined as:

Wj =
n∑
i=1

wj(xi), (10)

where n is the total number of selected tracks in the given event. Examples of distributions

of wj and Wj for π, K and p are shown in Fig. 5.
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As the introduced Wj quantities are calculated for each event, one obtains all second

moments of the Wj quantities by straightforward averaging over the events. Finally, using

the Identity Method one unfolds the second moments of the true multiplicity distributions

from the moments of the Wj quantities [17]. Obtained results (second moments) for the 3.5%

most central Pb+Pb collisions at different projectile energy are listed in the lower part of

Table II. The mean multiplicities (first moments) shown in the upper part of Table II are the

results of integration of the respective DFs. The Identity Method has been successfully tested

for numerous simulations in Ref. [23]. A direct experimental verification of the method can

be provided by investigating the energy dependence of the scaled variance ω of the negatively

charged pion multiplicity distribution, where ω is

ω =
Var(N)

〈N〉
=
〈N2〉 − 〈N〉2

〈N〉
. (11)

 [GeV]NNs
6 8 10 12 14 16 18

N
ω

0.6

0.8

1

1.2

1.4

π

negative pions

all negative tracks

Figure 6. (Color Online) The energy dependence of the scaled variance ω of the negatively charged

pion multiplicity distribution, reconstructed using the Identity Method, is plotted as blue squares.

The red triangles are estimates based on direct event-by-event counting of all negative particles.

The remarkable agreement between these results is an experimental verification of the Identity

Method.

For this purpose two independent analyses were performed: (i) using the reconstructed

moments for negatively charged pions (from the Identity Method) and (ii) counting the

negatively charged particles event-by-event (i.e., without employing the Identity Method).
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The results of these analyses are presented in Fig. 6 by blue squares for case (i) and by

red triangles for case (ii). As the majority of negative particles are pions the remarkable

agreement between the results of these two independent approaches is a direct experimental

verification of the Identity Method.

VI. STATISTICAL AND SYSTEMATIC ERROR ESTIMATES

sample number
5 10 15 20 25 30

]- π++ π,p
[p

+
dy

n
ν

-0.02

-0.01

0

0.01

0.02

Figure 7. (Color Online) Reconstructed values νdyn[p + p̄, π+ + π−] as a function of subsample

number. The dashed red line indicates the averaged value of νdyn over subsamples.

The statistical errors of the reconstructed moments of the multiplicity distributions result

from the errors on the parameters of the fitted distributions ρj(x) and from the errors

of the Wj quantities. Typically these two sources of errors are correlated. Fluctuation

observables are usually built up from several moments of the multiplicity distributions.

Since the standard error propagation is impractical, the subsample approach was chosen

to evaluate the statistical uncertainties. One first randomly subdivides the data into n

subsamples and for each subsample then reconstructs the moments Mn listed in Table II. In

the second step the statistical error of each moment M is calculated as:

σ〈M〉 =
σ√
n
, (12)

where

〈M〉 =
1

n

∑
Mn, (13)
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and

σ =

√∑
(Mi − 〈M〉)2

n− 1
. (14)

The same procedure is followed for the fluctuation quantities, e.g., νdyn, which are functions

of the moments. An example is shown in Fig. 7.

Next, systematic uncertainties of the analysis procedure are discussed. One possible

source of systematic bias might be the specific choice of event and track cuts. In order to

obtain an estimate of this uncertainty, results for the moments were derived for ”loose” and

”tight” cuts (see scetion III). The small observed differences were taken as one component

of the systematic error.

 [GeV]NNs
6 8 10 12 14 16 18

]- π++ π,-
+

K
+

[K
dy

n
ν

-0.01

0

0.01

mixed events
mixed events with 0.5% shift
mixed events with -0.5% shift

Figure 8. (Color Online) νdyn[K+ + K−, π+ + π−] for mixed events is shown versus energy by

red open circles. Solid (open) red triangles represent the results obtained with the kaon positions

shifted artificially by 0.5% (-0.5%).

Possible biases of the identification procedure were studied using mixed events. Each

event i was constructed by randomly selecting a reconstructed track (including the dE/dx

measurement) from each of the following j events, with j corresponding to the number of

reconstructed tracks in the event i. The results for νdyn[K+ +K−, π+ +π−] for mixed events

are presented in Fig. 8 by red open circles. As expected the reconstructed values of νdyn are

vanishing independently of energy.
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Figure 9. (Color Online) Energy loss distributions in the selected phase space bin corresponding

to Fig. 2 with superimposed fit functions for protons, pions, kaons and electrons shown by colored

solid lines. The dashed green lines correspond to artificially shifted positions of kaons by 1% (b)

and -1% (c). The shifted distribution functions were used to investigate the systematic errors

stemming from the particle identification (dE/dx fitting) procedure. The corresponding residual

plots are also presented. The residuals are defined as the difference between data points and the

total fit function (indicated by sum), normalized to the statistical error of data points.

Furthermore, systematic uncertainties stemming from the quality of the fit functions

were investigated with the help of mixed events. Even though the 2-step fitting procedure

discussed in section IV was used to determine the DFs, it remains a challenge to properly

fit the kaon positions. In nearly all relevant phase-space intervals the measured energy

loss distributions of kaons are overlapping with those of pions and protons. To study the
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influence of possible systematic shifts in fit parameters on the extracted moments, the fitted

positions of kaons were shifted artificially by 0.5 % in both directions. The dashed-green

lines in Fig. 9 show the artificially shifted dE/dx distribution functions of kaons. Results

for νdyn[K+ +K−, π+ + π−] obtained with these shifted kaon distribution functions for the

mixed events are plotted as red triangles in Fig. 8. At lower beam energies one observes

a significant dependence of the results on kaon positions. In order to gain quantitative

estimates of a possible shift of the kaon position, we performed hypothesis testing using

the Kolmogorov-Smirnov (K-S) statistics. For this purpose we test the null hypothesis that

measured dE/dx distributions and fit functions are similar within a given significance level

of 10 %. We repeat the test by shifting the fitted kaon positions in both directions. The

obtained results from the K-S test in a selected phase space bin are presented in the left

panel of Fig. 10 for the 30A GeV data. The maximum value of the kaon position shift

is taken to be the abscissa of the intersection point of the red lines with the dashed line.

We conclude that with a 10 % significance level the null hypothesis is rejected for 0.09 and

0.15 % up and down shifts correspondingly. In the right panel of Fig. 10 the dependence

of the kaon position shift is presented as function of the momentum bin in a selected bin

of transverse momentum and azimuthal angle. The shift values for all other phase space

bins were obtained in a similar way. Emerging systematic errors on the fluctuation measure

νdyn, added in quadrature with other sources of systematics, are depicted in Fig. 11 by the

shaded bands (see the next section).

VII. RESULTS ON THE FLUCTUATION MEASURE νdyn

The measure νdyn[A,B] of dynamical event-by-event fluctuations of the particle compo-

sition is defined as [14]:

νdyn[A,B] =
〈A(A− 1)〉
〈A〉2

+
〈B(B − 1)〉
〈B〉2

− 2
〈AB〉
〈A〉 〈B〉

, (15)
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Figure 10. (Color Online) Left panel: The p-value of the K-S statistics as function of the artificially

introduced shifts in the fitted kaon positions for 30A GeV data. The direction of triangles indicates

the direction of introduced shifts. The null hypothesis is rejected when the p-value is below the

significance level of 10 %, indicated by the dashed line. The maximum value of the kaon shift

is taken as the abscissa of the intersection point of full red and dashed black lines. Right panel:

Maximum values of the kaon position shift as function of the momentum in a selected bin of

transverse momentum and azimuthal angle. Diamonds represent the statistical errors on kaon

positions obtained from fitting procedure. Note that the left plot corresponds to momentum bin

11.

νdyn × 1000 σstat. × 1000 σsys. × 1000

20A GeV -6.139 ± 0.243 +0.251
−0.190

30A GeV -5.282 ± 0.191 +0.206
−0.126

40A GeV -5.058 ± 0.125 +0.160
−0.068

80A GeV -4.361 ± 0.134 +0.346
−0.235

160A GeV -2.706 ± 0.329 ± 0.025

Table III. Numerical values of νdyn[p + p̄, π+ + π−] × 1000 with statistical and systematic error

estimates.

where A and B stand for multiplicities of different particle species. As seen from the defi-

nition, Eq.(15), the value of νdyn vanishes when the multiplicity distributions of particles A

and B follow the Poisson distribution and when there are no correlations between these par-

ticles (〈AB〉 = 〈A〉〈B〉). On the other hand, a positive correlation term reduces the value of
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Figure 11. (Color Online) Energy dependence of (a) νdyn[p+ p̄, π+ +π−], (b) νdyn[K+ +K−, p+ p̄]

and (c) νdyn[K+ + K−, π+ + π−]. Results from the Identity Method for central Pb+Pb data of

NA49 are shown by red solid circles. Published NA49 results, converted from σdyn to νdyn using

Eq. (1), are indicated by blue squares. Stars represent results of the STAR collaboration for central

Au+Au collisions. In addition, for cases (a) and (c), the energy dependence predicted by Eq.(18)

is displayed by the green curves, which are consistent with the experimentally established trend.

The systematic errors (see sections VI and VII) are presented as shaded bands.

νdyn, while an anticorrelation increases it. Inserting the values of the reconstructed moments

(see Ref. [22] for precise values) into Eq.(15) one obtains the values of νdyn[p+ p̄, π+ + π−],

νdyn[K+ +K−, p+ p̄] and νdyn[K+ +K−, π+ +π−]. These results are represented by red solid

circles in Fig. 11. Statistical errors σstat were estimated using the subsample method dis-

cussed in section VI. Systematic uncertainties due to the applied track selection criteria were

estimated by calculating νdyn separately for tracks selected by ”loose” (ν loosedyn ) and ”tight”
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νdyn × 1000 σstat. × 1000 σsys. × 1000

20A GeV 6.503 ± 2.226 +3.808
−4.92

30A GeV 2.210 ± 1.122 +2.985
−1.099

40A GeV -0.949 ± 0.759 +1.422
−0.693

80A GeV -2.498 ± 0.587 +0.513
−0.099

160A GeV -2.135 ± 0.460 ± 0.001

Table IV. Numerical values of νdyn[K+ + K−, p + p̄] × 1000 with statistical and systematic error

estimates.

νdyn × 1000 σstat. × 1000 σsys. × 1000

20A GeV 11.738 ± 2.207 +3.647
−4.183

30A GeV 5.651 ± 0.943 +2.672
−0.972

40A GeV 3.41816 ± 0.485 +1.241
−0.569

80A GeV 1.564 ± 0.322 +0.225
−0.212

160A GeV 1.523 ± 0.257 ± 0.139

Table V. Numerical values of νdyn[K+ +K−, π+ +π−]× 1000 with statistical and systematic error

estimates.

(νtightdyn ) cuts, while the systematic errors stemming from the uncertainty of the kaon fit were

estimated using the K-S test (see section III). The shift values of the fitted kaon positions,

obtained from the K-S test for each phase-space bin, were used to obtain the values of νupdyn

and νdown
dyn . Final results (red solid circles in Fig. 11) are then presented as:

νdyn[A,B] =
νloosedyn + νtightdyn

2
, (16)

the statistical errors are estimated using the Eq. 12, while the systematic errors, presented

with shaded areas in Fig. 11 are calculated as:

σk
sys = sgn

(
νkdyn − νdyn

)√√√√(νkdyn − νdyn)2 +

(
νloosedyn − ν

tight
dyn

2

)2

. (17)

with k=(up, down).
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These results (see Fig. 11 and Tables III, IV and V) are consistent with the values of νdyn

obtained via Eq. 1 from the previously published NA49 measurements of the related measure

σdyn [11, 12] (blue squares in Fig. 11). Note that the source of systematic errors due to the

uncertainties in kaon position were not considered in previously published NA49 results,

hence the presented systematic errors (blue horizontal bars) were underestimated. We thus

conclude that the increasing trend of the excitation functions of νdyn[K+ + K−, p + p̄] and

νdyn[K+ + K−, π+ + π−] towards low energies is confirmed by two independent analyses of

the NA49 data on central Pb+Pb collisions. Also presented in Fig. 11 are the STAR results

(black stars) from the RHIC Beam Energy Scan (BES) program [15] for central Au+Au

collisions, which clearly differ at low energies. However, as mentioned above, the phase

space coverage of NA49 and STAR are not the same. The consequences will be discussed

below.
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Figure 12. (Color Online) Phase-space coverage for identified pions, kaons and protons in the

acceptance of the NA49 experiment for Pb+Pb collisions at 30A GeV/c (upper panels). Lower

panels illustrate an example of a restriction of the phase-space coverage to better match the region

covered by STAR (indicated by solid lines) at the corresponding beam energy.
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VIII. PHASE SPACE DEPENDENCE OF νdyn MEASUREMENTS
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Figure 13. (Color Online) Phase space dependence of νdyn[K+ +K−, p+ p̄] for 30A GeV Pb+Pb

collisions of NA49. Red and green squares correspond to the phase space bins illustrated in the

upper and lower panels of Fig. 12 respectively. Blue squares are the NA49 results for other phase

space bins. The result of the STAR experiment is plotted as the purple star at the corresponding

NA49 phase space bin. The phase space region of the analysis is varied by an upper cut on the

momentum (see text).

The investigation presented in this section attempts to shed light on the cause of the

differences between the results from STAR and NA49 on fluctuations of identified hadrons.

Two sources were studied: the dependence of νdyn on the multiplicity of the particles entering

the analysis and a possible sensitivity of νdyn to the covered phase space region.

Indeed, it was found in Ref. [24] that νdyn exhibits an intrinsic dependence on the multi-

plicities of accepted particles. Since multiplicities increase with increasing collision energy,

this leads to a trivial energy dependence of νdyn:

νdyn[A,B](E) = νdyn[A,B](Eref )

[
1
〈A〉 + 1

〈B〉

]
E[

1
〈A〉 + 1

〈B〉

]
Eref

, (18)

where Eref is the energy at which the reference value of νdyn was chosen and the E denotes

the energy at which the value of νdyn is estimated. The energy dependence predicted by

Eq.(18), with a reference energy of Eref =
√
sNN ≈ 6.3 GeV (corresponding to 20A GeV
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Figure 14. (Color Online) Phase-space region dependence of (a) νdyn[p + p̄, π+ + π−], (b)

νdyn[K+ +K−, p+ p̄] and (c) νdyn[K+ +K−, π+ + π−] in central Pb+Pb collisions of NA49 (tri-

angles, squares, dots). Stars show measurements of the STAR collaboration. Results are plotted

versus the maximum proton rapidity (see text).

laboratory energy), is illustrated for νdyn[p + p̄, π+ + π−] and νdyn[K+ + K−, π+ + π−] in

Fig. 11(a and c) by the green curves. However, this scaling prescription cannot reproduce

the sign change observed for the energy dependence of νdyn[K+ + K−, p + p̄] as shown in

Fig. 11(b). Moreover, using the multiplicities of Table II and the corresponding numbers

for the STAR experiment [25] one would expect only about a factor 2 decrease of the value

of νdyn[K+ +K−, π+ + π−] at
√
sNN = 7.6 GeV which does not lead to agreement with the

STAR result.

Next, the sensitivity of νdyn to the covered regions of phase space will be studied since

these differ for the NA49 and STAR measurements. As an example Fig. 12 illustrates the
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phase space coverage for pions, kaons and protons at 30A GeV projectile energy in the

acceptance of the NA49 detector. In the same figure the acceptance of the STAR apparatus

at corresponding center-of-mass energy is presented by colored lines. The dependence of νdyn

on the selected phase space region was studied by performing the analysis in different phase

space bins stretching from a forward rapidity cut to mid-rapidity. Technically different phase

space bins were selected by applying upper momentum cuts to the reconstructed tracks where

the cut value corresponded to the momentum of a proton at p⊥=0 with a chosen maximum

rapidity. Thereafter this quantity will be called a proton rapidity cut. The upper panels of

Fig. 12 illustrate one such phase space bin for 30A GeV Pb+Pb data. The reconstructed

value of νdyn[K+ + K−, p + p̄] in this bin is plotted as a red square in Fig. 13. Similarly

the green square in Fig. 13 represents the reconstructed value of νdyn[K+ + K−, p + p̄]

corresponding to the phase space bin plotted in the lower panel of Fig. 12. Note that in

this particular bin the NA49 point is consistent with the STAR result, which is shown

by the purple star. This study demonstrates a strong dependence of the resulting value

of νdyn on the phase space covered by the measurement. Fig. 14 shows the dependence

of νdyn for different combinations of particles at different energies. At 20A and 30A GeV

νdyn[K+ +K−, p+ p̄] and νdyn[K+ +K−, π+ +π−] show a strong dependence on the extent of

the phase space region and eventually hit the STAR point in a particular bin. Interestingly

the acceptance dependence weakens above 30A GeV where no difference was observed with

STAR. It is also remarkable that νdyn[p+ p̄, π+ +π−] shows little dependence on the covered

phase space region. This detailed study of νdyn in different phase space regions appears to

explain to a large extent the difference between the STAR BES and NA49 measurements.

Some final remarks are in order concerning the properties and the significance of the

fluctuation measure νdyn. To reveal the physics underlying the studied event-by-event fluc-

tuations, the fluctuation signals measured in heavy-ion (A+A) collisions should be compared

systematically to a reference from nucleon-nucleon (N+N) collisions at corresponding ener-

gies per nucleon. It is however important to properly take into account trivial differences

between A+A and N+N collisions e.g. in the size of the colliding systems. An additional

complication in the experimental study of fluctuations in A+A collisions are unavoidable

volume fluctuations from event to event. To take account of these considerations a set of

”strongly intensive” fluctuation measures has been proposed in Ref. [26]. In fact, the scaled

νdyn (see Eq.(18)) is related to the strongly intensive measure ΣAB (cf. Eq.(13) in Ref. [26]):
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νdyn[A,B]Scaled ≡ νdyn[A,B]
1
〈A〉 + 1

〈B〉
= ΣAB − 1. (19)

Future studies of strongly intensive measures may lead to a better understanding of the

underlying source of correlations.

IX. SUMMARY

In summary several scenarios were investigated to understand the differences between

the NA49 and STAR measurements of the excitation functions of νdyn[K+ + K−, p + p̄]

and νdyn[K+ +K−, π+ +π−]. For this purpose the particle identification procedure formerly

employed by NA49 was replaced by a different approach, the Identity Method, to reconstruct

the fluctuation measure νdyn. The increasing trend of νdyn[K+ + K−, p+ p̄] and νdyn[K+ +

K−, π+ + π−] towards lower energies reported in previous publications of NA49 in terms

of the quantity σdyn was confirmed by this analysis. A detailed study of νdyn reveals a

strong dependence on the phase space coverage at low energies for νdyn[K+ +K−, p+ p̄] and

νdyn[K+ +K−, π+ +π−] which might explain the different energy dependences measured by

NA49 (central Pb+Pb collisions) and STAR (BES program for central Au+Au collisions).

As an outlook it is worth mentioning that since the Identity Method reconstructs first and

second moments of the multiplicity distributions of identified particles one will be able to

investigate the energy dependence of all the fluctuation measures proposed in Ref. [26].

These quantities are better suited for phase transition studies because (within the grand

canonical ensemble) they depend neither on the volume nor on its fluctuations which cannot

be tightly controlled in experiments.
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