
Scalar potentials, propagators and global symmetries in AdS/CFT

Borut Bajc a, b, ∗ and Adrián R. Lugo a, c, †
a J. Stefan Institute, 1000 Ljubljana, Slovenia
b Department of Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
c Instituto de Física de La Plata-CONICET and Departamento de Física; Facultad de Ciencias Exactas,
Universidad Nacional de La Plata, Argentina‡

Abstract

We study the transition of a scalar field in a fixed AdSd+1 background between
an extremum and a minimum of a potential. We first prove that two conditions
must be met for the solution to exist. First, the potential involved cannot be
generic, i.e. a fine-tuning of their parameters is mandatory. Second, at least
in some region its second derivative must have a negative upper limit which
depends only on the dimensionality d. We then calculate the boundary propa-
gator for small momenta in two different ways: first in a WKB approximation,
and second with the usual matching method, generalizing the known calcula-
tion to arbitrary order. Finally, we study a system with spontaneously broken
non-Abelian global symmetry, and show in the holographic language why the
Goldstone modes appear.

1 Introduction
The simplest example of AdS-CFT correspondence [1–3] is gravity plus a real scalar field system in
asymptotic anti-de-Sitter (AdS) space (for a partial list see [4–10]).

Apart from some special cases (see for example [11]) it is expected that the even simplified version
of such systems, i.e. the no-back-reaction limit where the gravitational coupling κ → 0, would give the
relevant information (for some reviews on this subject see for example [12–15]). Recently this has been
done in [16], where the potential of the real scalar field has been approximated by a piece-wise quadratic
potential in order to allow analytic treatment. It has been then shown that: a) in order for the solution
between the UV extremum and the IR minimum to exist, there must be some non-trivial constraint among
parameters in the potential; b) at least one region needs V �� < −d2/4, where d is the dimension of the
boundary; c) a solution of such a system has vanishing action and d) the propagator in the boundary
theory exhibits a simple 1/q2 pole as predicted by the Goldstone theorem applied to the spontaneously
broken dilatation invariance [17].

The last two points has been considered in more detail in [18] (see also [19] and [20]) following
an inspiring paper [21], where it was explicitly shown that even such a simplified system has a BPS
type solution which exhibits the Goldstone theorem for a spontaneously broken conformal invariance in
subtle way, i.e. mixing the normalizable and non-normalizable modes in the bulk at the next-to-leading
order of the matching method.

The purpose of this contribution is twofold. First, we would like to shed more light on the first
two issues, i.e. on the constraints the potential must satisfy for allowing a solution. Second, we would
like to see the 1/q2 propagator of the Goldstone in a different way, generalize the matching method at all
orders, and present few examples of its use.
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The plan of the paper is the following. After setting the notation and main formulae in Section
2,we summarize in Section 3 the wall solution found in [16]. In Section 4 we then explain the reason
for a fine-tuning of the potential parameters and explicitly show how one can find BPS-type solutions
to the first order equation of motion even in this no-backreaction limit, i.e. generalize the usual κ �= 0
expression of the potential through the superpotential to the κ → 0 limit. With it we can prove in Section
5 in complete generality that for the solution to exist, the second derivative of the scalar potential must be
smaller than −d2/4 in at least some region. In section 6 we find the same 1/q2 propagator in the q → 0
limit of the dilaton using then WKB approximation, while a long Section 7 is devoted to a detailed
analysis of the matching method to all orders. This is then used in Section 8 to show in an explicit
example what exactly makes the Goldstone boson of a global symmetry massless in the holographic
language. We conclude in section 9 with a brief summary of the results.

2 The no back-reaction limit (κ → 0)
We will consider in most of this paper a real scalar field t in d+1 dimensions with bulk euclidean action

S(bulk)[t] =

�
dd+1x

�
det gab

�
1

2
gab ∂at ∂bt+ V (t)

�
(1)

in a non-dynamical AdSd+1 background

g =
1

z2
�
dz2 + δµν dxµ dxν

�
(2)

where (xµ) are the QFT coordinates with xd ≡ i x0 the euclidean time and the AdS scale has been set to
1. The boundary is located at z = 0 (UV region) while the horizon is at z = ∞ (IR region).

The dimensionless field variable t is normalized to have extrema of the potential at t = 0, 1. More
precisely, we will consider potentials ( throughout the paper we will indicate with a dot the derivative
w.r.t. the bulk coordinate z and with a prime a field derivative)

V (0) = 0 , V �(0) = 0 ; V (1) < 0 , V �(1) = 0 , V ��(1) > 0 (3)

i.e. t = 1 will be the true minimum, while at the origin the potential can have a minimum (being a false
vacuum thus) or even a maximum, provided that it is in the Breitenlöhner-Freedman conformal window
−d2/4 < V ��(0) < 0.

We will be interested in regular, Poincarè invariant solutions t = t(z) that interpolate between the
UV (extremum at t = 0) and IR (true minimum at t = 1) regions. They obey the equation of motion

z2 ẗ(z)− (d− 1) z ṫ(z) = V �(t) (4)

and necessary behave in the UV and IR as

t(z)
z→0−−−→ aUV zΔ

UV
; t(z)

z→∞−−−→ 1 + aIR zd−ΔIR
(5)

respectively, where

ΔUV/IR ≡ d

2
+ νUV/IR ; νUV/IR ≡

�
d2

4
+m2

UV/IR (6)

with m2
UV ≡ V ��(0) and m2

IR ≡ V ��(1) > 0 (t = 1 is a minimum according to (3))1.

We recall as a last remark that the symmetries of AdS space translate in the scale invariance of
equation (4), i.e. if t(z) is a solution so it is t(λz), a fact of great relevance.

1In the window − d2

4
< V ��(0) < 0 the term zd−ΔUV

could also be present in the small z power expansion of t(z). From
the AdS/CFT point of view this term is interpreted as a source that breaks explicitly the scale invariance of the boundary QFT;
then we should not expect a Goldstone mode to appear, situation we are not interested in. These domain walls are interpreted
as dual to renormalization group flows generated by deformation of the UV CFT by a relevant operator, i.e. one of dimension
less than d [15].

26



Borut Bajc and Adrián R. Lugo

3 Analytic solutions for approximated bulk potentials
In this section we shortly summarize the results presented in [16].

The interesting region for t is between the local minimum at 0 and the global minimum at 1.
We will divide this region into a number of sections, and in each of them the potential can be locally
approximated by a quadratic form:

V (t) =
A

2
t2 +B t+ C (7)

The minimum number of such sections is three: (1) 0 < t < t1, (2) t1 < t < t2, (3) t2 < t < 1. The
coefficients in (7) are parameterized in each region as

A =





A1 > 0
A2 < 0
A3 > 0

; B =





0
−A2 tM
−A3

;

C =





0
(A1 −A2) t1

2/2 +A2 tM t1
(A2 −A3) t2

2/2 +A3 t2 −A2 tM t2 + (A1 −A2) t1
2/2 +A2 tM t1

(8)

respectively. The strange choice of C’s is required by the continuity of the potential. Furthermore, we
will require the continuity of the first derivatives of the potential which yields to

t1 =
−A2 tM
A1 −A2

; t2 =
A3 −A2 tM
A3 −A2

(9)

relations that automatically satisfy 0 < t1 < tM < t2 < 1 for any 0 < tM < 1. In this way we remain
with four relevant parameters, the Ai’s and tM .

Similarly as in (6) we introduce

Δ±
i = d/2± νi ; νi

2 ≡ d2

4
+Ai (10)

We will consider the case of real ν1,3 > 1
2 (A1,3 > 0) and pure imaginary ν2 ≡ i ν̄2 (A2 < −d2

4 ) with
ν̄2 > 0.

The solution to (4) with the piece-wise quadratic potential (7) is known

tb(z) =





t1 (z/z1)
Δ+

1 , 0 < z < z1

tM +D+ (z/z2)
Δ+

2 +D− (z/z2)
Δ−

2 , z1 < z < z2

1− (1− t2) (z/z2)
Δ−

3 , z2 < z < ∞
(11)

Continuity of the solution and its derivative at z1,2 requires

D+ =
(1− tM )Δ−

2 Δ
−
3 (ν3 − iν̄2)

2iν̄2(A3 −A2)
, D− = D∗

+ (12)

tM =

�
1− Δ+

1

Δ−
3

�
ν23 + ν̄22
ν21 + ν̄22

�1/2�
z2
z1

�d/2
�−1

(13)

ν̄2 log (z2/z1) = (2k + 1)π − α1 − α3 (14)

with

αi ≡ arctan (ν̄2/νi) , i = 1, 3 (15)

Notice here two things:
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– there is one relation (fine-tuning) among the potential parameters Ai, tM , see eqs. (13) and (14),
– ν2 needs to be purely imaginary.

The whole procedure can be repeated with more intervals, but these two conclusions still remain:
A non-trivial fine-tuning among parameters is needed, and at least in one interval ν2 = d2/4+V �� needs
to be negative. In the next two sections we will try to understand better these two issues.

4 Why the potential cannot be generic
Eqs. (13) and (14) represent the quantization condition on the potential for the solution to exist at all.
As it has been noted in [16] and remarked before, this follows from the invariance of the equation of
motion under dilatations z → λz for any positive real λ. There is thus an infinite family of solutions:
the location of the domain wall is not determined. In our previous example this is seen explicitly by
the fact that the coordinates z1 and z2 cannot be determined both, but due to dilatation invariance of the
original equation of motion only their ratio. The four equations (functions and derivatives at z1,2) cannot
be satisfied by only three parameters D+,−, z2/z1, so a non-trivial relation among potential parameters
follow. This simple counting can be easily generalized to an arbitrary number of intervals.

What happens if a fine-tuned potential changes a bit, i.e. if we relax the constraint among the
potential parameters? The numerical output will make t(z) diverge, so that for z → ∞ limit it will
not reach the unit value. In other words, the transition is not from the extremum in the origin to the
minimum at t = 1, but it escapes to infinity. In order to make the field land to the minimum, one needs a
constrained value for the model parameters.

There are two simple ways to see why there must be some constraint among the model parameters,
if we are looking for a solution of (4).

First of all, we have a second order differential equation. In the limit z → 0 this non-linear
equation can be linearized, call the two independent solutions of this linearized version t+(z) and t−(z).
Let they be defined so that for z → 0, t+(z) ∝ zΔ

UV
with ΔUV given in (6) and t−(z) ∝ zd−ΔUV

.
This second t−(z) is interpreted in the AdS-CFT dictionary as a source. All solutions to the original
full non-linear equations have to evolve only towards t+(z) for z → 0 in order for the source to vanish.
There is however no guarantee that these solutions are finite for z → ∞. In general it will not be the
case, only solutions which evolve to some linear combination a t+(z) + b t−(z) for z → 0 will be finite
in the opposite limit at z → ∞. We can enforce b = 0 and thus have a t(z) sourceless at z → 0 and
finite at z → ∞ only by carefully choosing the parameters of the original Lagrangian, i.e. the potential.
From here the fine-tuning among parameters.

Another way perhaps more familiar of setting the problem is through the linearized perturbation
equation around the assumed solution t(z). If we write the perturbation as ξ(z; q) eiq·

x
L , such equation

results (82). We can rewrite this linearized equation for perturbations in a Schrödinger-like form. Taking
ξ(z; q) = z

d−1
2 f(z; q) we get,

f̈(z; q)−
�
q2 +

1

z2

�
d2 − 1

4
+ V ��(t(z))

��
f(z; q) = 0 (16)

Now, well-known symmetry arguments (in this case related to dilatation invariance) show that ξ(z; 0) ∼
z ṫ(z) solves equation (82) with q2 = 0. But (16) is a second order linear differential equation with two
independent solutions and then standard quantum mechanics arguments work. By definition, necessary
f(z; 0) ∼ z

1
2
−νIR for z → ∞ and the solution that goes as z

1
2
+νIR must be discarded. Similarly,

f(z; 0) ∼ z
1
2
+νUV for z → 0 and the solution that goes as z

1
2
−νUV must be discarded too. The only way

for this solution of (16) to exist is that in both cases we remain with the same function. As the “energy"
is zero it cannot be quantized as it is usually the case in QM, so z ṫ(z) can exist only when a fine-tuned
relation among parameters in the potential holds, and so also the solution t(z) of (4) exists only in this
case.
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4.1 Fine-tuning the cosmological constant on the boundary
As it has been explained in [24] the fine-tuning needed for the potential parameters is nothing else than
the requirement for a vanishing cosmological constant on the boundary. To see it more explicitly we
have of course to reintroduce gravity, i.e. a non-zero κ.

Let us thus consider the gravity-scalar system defined by the action,

S =

�
dd+1x

�
|g|
�

1

2κ2
(R+ d (d− 1))− 1

2
DM t DM t− V (t)

�
(17)

The following equations of motion follow,

RMN = −d gMN + κ2
�
TMN − TP

P

d− 1
gMN

�

DKDKt = V �(t) (18)

where the energy momentum-tensor for the scalar field is,

TMN = DM t DN t−
�
1

2
DKt DKt+ V (t)

�
gMN (19)

We are going to consider the ansatz,

g = dρ2 +A2(ρ) ĝ
t = t(ρ) (20)

where ĝ ≡ ηmn ω̂
m ω̂n is the metric ({ω̂m} is a vielbein) on a d-dimensional space-time with generic

coordinates Ω . In the obvious local basis,

ωm ≡ A(ρ) ω̂m , m = 0, 1, . . . , d− 1 ; ωd ≡ dρ (21)

the connections are,

ωm
n = ω̂m

n ; ωm
d =

A�(ρ)
A(ρ)

ωm (22)

where only in this subsection a prime means d/dρ.

The two-forms defining the curvature tensor result,

Rmn = R̂mn − A�(ρ)2

A(ρ)2
ωm ∧ ωn ; Rmd = −A��(ρ)

A(ρ)
ωm ∧ ωd (23)

Finally the Ricci tensor components are,

Rmn =
1

A(ρ)2
R̂mn −

�
A��(ρ)
A(ρ)

+ (d− 1)
A�(ρ)2

A(ρ)2

�
ηmn

Rdd = −d
A��(ρ)
A(ρ)

Rmd = 0 (24)

and the Ricci scalar,

R =
1

A(ρ)2
R̂− 2 d

A��(ρ)
A(ρ)

− d (d− 1)
A�(ρ)2

A(ρ)2
(25)

With (20) and (24) the equations (18) become,

R̂mn −A2

�
A��(ρ)
A(ρ)

+ (d− 1)
A�(ρ)2

A(ρ)2
− d+

2κ2

d− 1
V (t)

�
ηmn = 0
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A��(ρ)
A(ρ)

− 1 +
κ2

d

�
t�(ρ)2 +

2

d− 1
V (t)

�
= 0

t��(ρ) + d
A�(ρ)
A(ρ)

t�(ρ)− dV

dt
(t) = 0 (26)

We have now two possible cases.

Case I: Vacuum solutions

Let us consider t(ρ) = tv an extremum of the potential, V �(tv) = 0, and let us take V (tv) = 0.
Then there exist three non equivalent, exact solutions to the gravity equations in (26),

g = dρ2 + e2ρ ĝ ; R̂mn = 0
g = dρ2 + cosh2 (ρ) ĝ ; R̂mn = −(d− 1) ηmn

g = dρ2 + sinh2 (ρ) ĝ ; R̂mn = +(d− 1) ηmn (27)

We recognize the first case as plane AdS1,d if ĝ is identified with the flat Minkowski metric, the maxi-
mally symmetric case. On the other hand, the second/third solutions correspond to Einstein space-times
of negative/positive curvature, being the most symmetric choices for ĝ the spaces AdS1,d−1/dS1,d−1

with scale L = 1. However from (18) we see that in any case the equation for the bulk metric g is just
RMN = −d gMN ; so the maximally symmetric choices should lead to the same space, i.e. the three
cases in (27) must correspond to AdS1,d sliced differently. 2 An observation: z ≡ e−ρ is the usual
coordinate with z = 0 the boundary and z = ∞ the horizon iff the ρ-coordinate is the one defined in the
patch of the first solution, i.e. ρ represents different coordinates in each line of (27).

Case II: Domain wall solutions

In this case the profile of the scalar must be non trivial; in particular we are interested in interpo-
lating solutions like the ones considered in the papers. We can however always take the weak gravity,
decoupling limit κ → 0, and we must solve the scalar equation in the background (27). Now, if we
consider the flat slicing, we found the need of fine-tuning the potential in order to get a solution. The
question is: if we interpret the other two slicings as leading to AdS and dS space-time geometries of the
boundary theory instead of Minkowski, is it necessary to fine-tuning the potential to get a domain wall
solution also in these cases?

With the new variable z = e−ρ (and for simplicity keeping the same notation for t = t(z)) the
equation to solve is,

z2ẗ(z)− (d− 1) + k(d+ 1)z2

1− kz2
zṫ(z)− dV

dt
(t) = 0 (28)

where k = +1, 0,−1 in the dS, Minkowski, AdS slicing. There is no dilatation symmetry anymore,
so no need for fine-tuning. In the language of the piece-wise-quadratic potential, all the coordinates of
different intervals can be determined, and not only ratios. No relations among parameters is needed for
the solution to exist. It is now clear the physical meaning of it: it is just the fine-tuning of the boundary
cosmological constant.

4.2 The BPS solutions
A solution that spontaneously breaks conformal invariance makes the on-shell action vanish (see for
example [23]). This is a hint that the solution may be of the BPS type, i.e. it solves a first order
equation [16]. Instead of proving this statement, we will show how one can define the superpotential that

2In fact the third form can be found in equation (3.1) of [25].
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allows a smooth κ → 0 limit. Let’s go back to (17). We will search for solutions to the equations of
motion of the form

g =
1

z2

�
d�x2 + L2 dz2

F (z)

�

t = t(z) (29)

The b.c. at the boundary z = 0 are,

t(z) → 0 ; F (z) → 1 (30)

where,
V (0) = 0 ; V �(t)|t=0 = 0 (31)

This assures for the solution to be asymptotically AdS with fixed radius L = 1.

At the horizon z = ∞ we impose,

t(∞) < ∞ ; F (z) = Fh +O
�
1

z

�
(32)

The equations of motion result

z F �(z) = κ2 z2 F (z) ṫ2(z)

zd+1 F
1
2 (z)

d

dz

�
F

1
2 (z)

zd−1

dt

dz
(z)

�
= V �(t) (33)

With no back-reaction (κ = 0), F (z) = 1 and it is the second equation to solve, just the scalar fields in
the AdS background. When back-reaction is taken into account (κ > 0) we can use the superpotential
trick. The usual choice is consider potentials which can be written as

V (t) =
1

2
W �2(t)− dκ2

4
W 2(t) +

d

κ2
(34)

Then it is possible to show that a solution of,

F (z) =
κ4

4
W 2(t)

��
t=t(z)

t�(z) =
2

κ2 z

W �(t)
W (t)

����
t=t(z)

(35)

solves (33).

This ansatz implicitly assume that κ �= 0. On the other side, if we want eventually to get the
no-backreaction limit κ → 0, we choose a potential of the form

V (t) =
1

2
W �2(t) − dW (t)− κ2 d

4
W 2(t) (36)

It is then possible to show that a solution of,

F (z) = H2(W (t))
��
t=t(z)

z ṫ(z) =
W �(t)

H(W (t))

����
t=t(z)

(37)

where

H(W ) ≡ 1 +
κ2

2
W (38)
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is a solution of (33). The κ → 0 limit is now small and points toward the potential

V (t) =
1

2
W �2(t) − dW (t) (39)

and the following BPS like equation,

z ṫ(z) = W �(t(z)) (40)

whose solutions satisfy also the full second order equation of motion (4) and for which the action (17)
vanishes.

At least for polynomial superpotentials and potentials the fine-tuning for vanishing boundary cos-
mological constant is simply the special form (39). With this we mean that all coefficients of the poly-
nomial in the potential are not independent and thus the potential itself is not generic.

Before ending this section, let us see some examples of superpotentials W (t) (in [18] we already
showed another choice).

4.2.1 The Z2 symmetric case

An interesting case consists of the sixth order potential with the Z2 symmetry t → −t. The ansatz for
the superpotential

W (t) = Δ

�
1

2
t2 − 1

4
t4
�

(41)

leads to the solution,

t(z) =
zΔ

(1 + z2Δ)1/2
(42)

From here we see that

ΔUV = Δ , ΔIR = d+ 2Δ (43)

4.2.2 A case with ΔUV and ΔIR independent

In the examples of [18] and above a correlation between the UV and IR Δ’s was present. This is however
not a generic feature of the system. In fact, choosing for example

W (t) = −1

4

�
ΔIR − (d+ΔUV )

�
t4 +

1

3

�
ΔIR − (d+ΔUV )−ΔUV

�
t3 +

ΔUV

2
t2 (44)

we get the solution

z(t) =

�
ΔUV +

�
ΔIR − (d+ΔUV )

�
t

1− t

� 1

ΔIR−d
�

t

ΔUV + (ΔIR − (d+ΔUV )) t

� 1

ΔUV

(45)

which has the limits (5) with

aUV =
�
ΔUV

�ΔIR−(d+ΔUV )
ΔIR−d ; aIR = −

�
ΔIR − d

�−ΔIR−(d+ΔUV )
ΔUV (46)

The parameters ΔUV > d/2 (corresponding to the maximum or minimum in the UV) and ΔIR >
d+ΔUV (minimum in the IR) can be otherwise arbitrary.
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5 V��(t) < −d2/4

As we said before, in a piece-wise quadratic potential at least in some interval the second derivative of
the potential must be smaller than −d2/4 for the solution to exist. Let us here show this statement for a
general potential V (t) characterized by (39). Let us define

F ≡
�

dµ W �(t)2
�
V ��(t) +

d2

4

�����
t=t(z)

(47)

where t(z) is the solution of the BPS equation (40) and to simplify the notation we will use in this
subsection the abbreviation �

dµ · · · ≡
� ∞

0
dz z−d−1 . . . (48)

and omit the field dependence. Our aim is to show that the quantity F is non-positive, so that V �� <
−d2/4 at least in some region.

First we rewrite (47) using (39)

F =

�
dµ

�
W �2 W ��2 +W �3 W ��� − d W �2 W �� +

d2

4
W �2
�

(49)

Now we use (assuming vanishing boundary terms, which is easily verified)
�

dµ W �2 =
2

d

�
dµ W �2 W �� (50)

�
dµ W �3 W ��� =

�
dµ
�
d W �2 W �� − 2 W �2 W ��2� (51)

to rewrite (49) as

F =
d

2

�
dµ W �2 W �� −

�
dµ W �2 W ��2 (52)

Finally we use the Schwartz inequality

�
dµ f g ≤

��
dµ f2

� 1
2
��

dµ g2
� 1

2

(53)

to derive from (50) �
dµ W �2 ≤ 4

d2

�
dµ W �2 W ��2 (54)

Using then (53) we get first

�
dµ W �2 W �� ≤

��
dµ W �2

� 1
2
��

dµ W �2 W ��2
� 1

2

(55)

from which finally it follows
F ≤ 0 (56)

This proves our statement: the inequality V �� < −d2/4 is valid at least in some region of z for any
potential V of the form (39).

Notice that since at the horizon (z → ∞) the potential has a minimum and at the boundary (z = 0)
a minimum or a maximum in the conformal window (i.e. V �� + d2/4 > 0), there are always an even
number of times that V �� crosses the particular value −d2/4.
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6 The WKB approximation method
Here we shall try to apply the WKB method in order to compute the two-point correlation function of
operators dual through the AdS/CFT correspondence to a bulk scalar field. The recipe to get it is to
consider the solution to the perturbation equation (82), and identify the propagator by looking at the
behavior near the boundary z → 0,

ξ(z; q) ∼ zd−ΔUV
+G2(q) z

ΔUV
(57)

The straightest way of doing it is to consider the Schrödinger-type equation (16) with “potential"

Q(z; q) ≡ q2 +
1

z2

�
d2 − 1

4
+ V ��(t(z))

�
(58)

where we remember that t(z) is the solution of (4). For simplicity we consider the case V ��(0) ≡ m2
UV >

0, although it is not necessary for the argument.

The WKB approximation results a good one if the slowly varying “Compton length" condition
holds, �����

d|Q(z; q)|− 1
2

dz

����� =
�����

Q̇(z; q)

2 |Q(z; q)| 32

������ 1 (59)

This condition applied to (58) reads,
���d2−1

4 + V ��(t(z))− 1
2 V

���(t(z)) z ṫ(z)
���

���d2−1
4 + V ��(t(z)) + q2 z2

���
3
2

� 1 (60)

From here is straightforward to see that the WKB solution is trustable for any q2 around z = 0 and
z = ∞ if,

νUV � 1

2
; νIR � 1

2
(61)

respectively, with νUV/IR as in (6). Furthermore, Q(z; q) is positive near z = 0 (and diverges quadrat-
ically there), but it is also positive for large z (going to q2 from above). What happens in the middle?
From section 5 we know that for q small enough Q(z; q) must become negative; then for some zM where
t(zM ) = tM it should have a local minimum. Then there must exist zi = zi(q), z1(q) < zM < z2(q)
such that,

zi
2 Q(zi; q) =

d2 − 1

4
+ V ��(t(zi)) + q2 zi

2 = 0 ; i = 1, 2 (62)

Near these zeroes of Q(z; q) the WKB approximation breaks down.

If we admit that V ��(tM ) is large enough then it is seen from (60) that in the region near zM the
WKB solution is trustable too. Therefore, calling I, II, III the regions near z = 0, zM and z � 1
respectively, we can write the approximate WKB solution in each region as,

ξI(z; q) = C+
I z

d
2

exp
�� z

z1
dz
z

�
z2Q(z; q)

�

(z2Q(z; q))
1
4

+ C−
I z

d
2

exp
�
−
� z
z1

dz
z

�
z2Q(z; q)

�

(z2Q(z; q))
1
4

(63)

ξII(z; q) = CII z
d
2

exp
�
i
� z
z1

dz
z

�
−z2Q(z; q)

�

(−z2Q(z; q))
1
4

+ C∗
II z

d
2

exp
�
−i
� z
z1

dz
z

�
−z2Q(z; q)

�

(−z2Q(z; q))
1
4

(64)
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ξIII(z; q) = C+
III z

d
2

exp
�� z

z2
dz
z

�
z2Q(z; q)

�

(z2Q(z; q))
1
4

+ C−
III z

d
2

exp
�
−
� z
z2

dz
z

�
(z2Q(z; q)

�

(z2Q(z; q))
1
4

(65)

where the coefficients are related by,

C±
I =

1± 3

2
Im
�
CII e±iπ

4

�
↔ CII =

1

2
e+iπ

4 C+
I + e−iπ

4 C−
I = (C∗

II)
∗ (66)

C±
III =

3± 1

2
Im
�
CII ei(ϕ(q)∓

π
4
)
�

↔

CII = e−iϕ(q)

�
−1

2
e−iπ

4 C+
III + e+iπ

4 C−
III

�
= (C∗

II)
∗ (67)

and,

ϕ(q) ≡
� z2(q)

z1(q)

dz

z

�
−z2Q(z; q) (68)

Now, imposing finiteness when z → ∞ implies C+
III = 0. By using the relations (66) and (67)

we get all the constants in terms of C−
III ; in particular for the solution near z = 0 we get,

ξI(z; q) = C−
III


2 cosϕ(q) z

d
2

exp
�� z

z1(q)
dz
z

�
z2Q(z; q)

�

(z2Q(z; q))
1
4

+ sinϕ(q) z
d
2

exp
�
−
� z
z1(q)

dz
z

�
z2Q(z; q)

�

(z2Q(z; q))
1
4


 (69)

From here we should be able to extract the propagator as a function of q2, at least for q not so large. But
we know from section 4 that for q = 0 (69) must be equal to z t�(z) and thus going only as zΔ

UV
for

z → 0. We will show now that this implies the constraint ϕ(0) = k π with k an integer. First we rewrite

exp

�
±
� z

z1(q)

dz

z

�
z2Q(z; q)

�
=

�
z

z1(q)

�±
√

ν2UV −1/4

(70)

× exp

�
±
� z

z1(q)

dz

z

��
z2Q(z; q)−

�
ν2UV − 1/4

��

Since we are interested only in νUV � 1/2 and leading behavior at z → 0, we can see with the help of
(70) that the first term on the r.h.s. of (69) goes like zΔ

UV
, while the second goes like zd−ΔUV

. Since
this last one should not be present in the solution z t�(z) of the q = 0 perturbation, we have to impose
(otherwise no solution with the right asymptotic behavior exists)

ϕ(0) ≡
� z2(0)

z1(0)

dz

z

�
−z2Q(z; 0) = k π (71)

This means that only potentials which satisfy this constraint are acceptable. This is the WKB analog of
the fine-tuning mentioned before.

This simple conclusion is the reason for the 1/q2 behavior of the boundary propagator. In fact, it
is easy to derive the form of the propagator in the WKB approximation; from (57) we get:

G2(q) =
2 exp

�
−2
� z1(q)
0

dz
z

��
z2Q(z; q)−

�
ν2UV − 1/4

��

(z1(q))
2
√

ν2UV −1/4 tanϕ(q)
(72)
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Clearly, due to (71), we get for q → 0 the usual Goldstone pole

G2(q) ≈
2 exp

�
−2
� z1(0)
0

dz
z

��
z2Q(z; 0)−

�
ν2UV − 1/4

��

(z1(0))
2
√

ν2UV −1/4(dϕ(q)/dq2)q2=0

× 1

q2
(73)

where
dϕ(q)

dq2

����
q2=0

= −1

2

� z2(0)

z1(0)
dz

z�
−z2Q(z; 0)

(74)

Although the denominator vanishes at the integration boundaries, the integral itself is finite.

7 The matching method to all orders
Let t(z) be the solution of the equation of motion (4) that behaves for z → 0 (UV) and z → ∞ (IR) as,

t(z)
z→0−−−→ aUV zΔ

UV
+ (1 + bUV zαUV + . . . ) ; t(z)

z→∞−−−→ 1 + aIR zΔ
IR
− (1 + bIR zαIR + . . . )

(75)
respectively. Here αUV > 0 and αIR < 0, while that

Δ
UV/IR
± ≡ d

2
± νUV/IR ; νUV/IR ≡

�
d2

4
+m2

UV/IR (76)

with m2
UV ≡ V ��(0) and m2

IR ≡ V ��(1) > 0. Note that in order for t(z) to be finite in the asymptotic
expansions (75) neither ΔUV

− appears in the UV nor ΔIR
+ in the IR.

Let us introduce for further use the following expansions of the functions ξ±(z)

ξ±(z) = a
UV/IR
± z

Δ
UV/IR
±/∓ ξ̄

UV/IR
± (z) ; ξ̄

UV/IR
± (z)

z→0/∞−−−−−→ 1 (77)

that follow by plugging (75) in the definitions

ξ+(z) ≡ z ṫ(z) (78)

ξ−(z) ≡ ξ+(z)

�� z

zi

dy
yd−1

ξ2+(y)
+

ξ−(zi)
ξ+(zi)

�
(79)

where zi and ξ−(zi) are integration constants. We find

a
UV/IR
+ ≡ aUV/IR Δ

UV/IR
+/− ; a

UV/IR
− ≡

�
a
UV/IR
+ (d− 2Δ

UV/IR
+/− )

�−1
(80)

Clearly the UV/IR expansion of ξ+(z) can not contain the z
Δ

UV/IR
−/+ -power, but ξ−(z) could contain the

z
Δ

UV/IR
+/− -power.

Our aim is to solve the equation for perturbations around the solution t(z), i.e. if we write (for a
general treatment see for example the appendix of [16])

t(z; q) ≡ t(z) + ξ(z; q) eiq·
x
L (81)

then the second equation in (18) gives to first order in ξ(z; q)

z2 ξ̈(z; q)− (d− 1) z ξ̇(z; q)−
�
q2 z2 + V ��(t(z))

�
ξ(z; q) = 0 (82)

We will do it in two different approximations.
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7.1 The large z expansion.
We write (82) as

z2 ξ̈(z; q)− (d− 1) z ξ̇(z; q)−
�
q2 z2 +m2

IR

�
ξ(z; q) = δ(z) ξ(z; q) (83)

and consider δ(z) ≡ V ��(t(z))− V ��(1) small in the sense,

|δ(z)| = |V ��(t(z))− V ��(1))| � V ��(1) −→ z > z∞ ≡
����

V ��(1)
V ���(1) aIR

����
1

ΔIR

(84)

independently of the value of q. Then the solution for z > z∞ can be hopefully expanded in orders of
δ(z),

δ(z) = V ���(1) aIR zΔ
IR

(1 + bIR zαIR + . . . ) (85)

The order zero term is the solution to the l.h.s. of (83) equal to zero, which is given by,

ξ∞(z; q) ≡ 2

Γ(νIR)

�q
2

�νIR
z

d
2 KνIR(qz) (86)

where we have dropped the solution that diverges in the IR and fixed the normalization in such a way
that ξ∞(z; 0) = zΔ

IR
− . It is not difficult to see that the expansion for large z > z∞ is of the form,

ξ(z; q) = ξ∞(z; q)

�
1 +

f0(qz)

z−ΔIR
−

+ . . .

�
(87)

where for completeness we quote the first correction,

f0(u) = V ���(1) aIR x−ΔIR
−

� u

∞

dx

xK2
νIR

(x)

� x

∞

dy

y1−ΔIR
−

K2
νIR

(y) (88)

However corrections to the leading term of ξ(z; q) in negative powers of z will not be relevant in the
matching procedure, at least not to compute the leading order behavior of the two-point function.

7.2 The small q expansion.
This time we write (82) as

zd−1 d

dz

�
z1−d dξ(z; q)

dz

�
− V ��(t(z))

z2
ξ(z; q) = q2 ξ(z; q) (89)

and consider q small in the sense,

q � |V ��(t(z))| 12
z

(90)

This condition certainly holds in the UV region near z = 0 , but also in the IR region if

q2 z2 � |V ��(t(z)| ∼ m2
IR −→ qz � mIR (91)

that is, when z is large and q small but qz fixed and small enough.

Under this condition we can try a solution for small q as a power series in q2,

ξ(z; q) =
�

m≥0

q2m ξ(m)(z; q) (92)

Plugging this expansion in (89) we get,

zd−1 d

dz

�
z1−d dξ(0)(z; q)

dz

�
− V ��(t(z))

z2
ξ(0)(z; q) = 0 (93)
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zd−1 d

dz

�
z1−d dξ(m)(z; q)

dz

�
− V ��(t(z))

z2
ξ(m)(z; q) = ξ(m−1)(z; q) ; m = 1, 2, . . .

(94)

The solution to lowest order is,

ξ(0)(z; q) = C
(0)
+ (q) ξ+(z) + C

(0)
− (q) ξ−(z) (95)

where C
(0)
± (q) are integration constants. With ξ(0)(z; q) we can determine ξ(1)(z; q) from (94), and so

on.

This iterative procedure yields the solution in the following form. First we introduce the set of
functions,

f
(k)
ij (z) ≡

� z

zi

dw

wd−1
ξi(w) ξ

(k)
j (w) ; i, j = +,− , k = 0, 1, . . .

ξ
(0)
± (z) ≡ ξ±(z) (96)

where
ξ
(k)
± (z) ≡ −f

(k−1)
−± (z) ξ+(z) + f

(k−1)
+± (z) ξ−(z) , k = 1, 2, . . . (97)

All of them are obtained iteratively: first, from (96) with k = 0 we get f (0)
ij (z), then we go to (97) with

k = 1 and get ξ(1)± (z), then we come back to (96) with k = 1 and get f (1)
ij (z) and so on. The functions

ξm(z; q) can be expressed in terms of the ξ
(k)
± (z)’s yielding the full expansion (92) in the form,

ξ(z; q) =
�

m≥0

q2m
m�

k=0

�
C

(m−k)
+ (q) ξ

(k)
+ (z) + C

(m−k)
− (q) ξ

(k)
− (z)

�
(98)

where the C
(k)
± ’s are, as in (95), the integration constants of the homogeneous solution in (94). After

some rearrangement, we can write (98) as,

ξ(z; q) = C+(q)
�

m≥0

q2m ξ
(m)
+ (z) + C−(q)

�

m≥0

q2m ξ
(m)
− (z) (99)

where we have redefined the coefficients

C±(q) ≡
�

k≥0

C
(k)
± (q) q2k (100)

We should not be surprised of this expression; after all (89) is a second order linear differential equation
and both sums in (99) are linearly independent solutions of it as it can be quickly checked. Note further-
more that they are holomorphic in q2; the reason behind this fact can be traced directly to the assumption
(92).

7.3 The two-point function.
For qz � mIR expansion (99) hopefully holds, and it can be used to compute the two-point correlation
function at low momenta as follows. After adjusting the constant of integration in (75) to get rid of the
zΔ

UV
+ term in ξ−(z), we parametrize the z → 0 behavior as

ξ(z; q) →
��
1− q2�UV

−+(q)
�
C+(q)− q2�UV

−−(q)C−(q)
�
aUV
+ zΔ

UV
+ + . . . (101)

+
��
1 + q2�UV

+−(q)
�
C−(q) + q2�UV

++(q)C+(q)
�
aUV
− zΔ

UV
− + . . .
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where
�UV
+±(q) = −

�

m≥0

q2m
� zi

0
dw w1−d ξ+(w) ξ

(m)
± (w) (102)

while we were unable to find a closed expression for �UV
−± without specifying the potential.

Applying the holographic recipe (57) the two-point function results,

G2(q)
q→0−−−→ aUV

+ /aUV
−�

q2 �UV
++(q) +

C−(q)
C+(q)

�
q→0

(103)

The knowledge of the leading order behavior of the quotient C−(q)/C+(q) for q → 0 will allow
to compute the leading power in q of G2(q). The zi-dependence of the coefficients �UV

++ (and the zi-
independence of the physics) gives a hint that this power is −2, as we will confirm below.

7.4 The infrared expansion

Here we define the functions F̄ (m)
ij (z) and the constants ϕ̄(m)

ij by means of the integrals,

aIRi aIRj σ
(m)
j

� z

zi

dw w1+2m+Δ(i)+Δ(j)−d ξ̄
(0)
i (w) ξ̄

(m)
j (w)

≡ ϕ̄
(m)
ij +

aIRi aIRj σ
(m)
j z2+2m+Δ(i)+Δ(j)−d

2 + 2m+Δ(i) +Δ(j) − d
F̄

(m)
ij (z) ; m = 0, 1, . . . (104)

where ϕ̄
(m)
ij is defined to be the only z-independent part in the large z expansion, and

σ
(m)
± ≡ Γ(1∓ νIR)

22mm!Γ(1∓ νIR +m)
; m = 0, 1, . . . (105)

With them we can calculate (m = 1, 2, . . . ),

ϕ
(m)
ij ≡ ϕ̄

(m)
ij +

m−1�

k=0

�
ϕ̄
(k)
i− ϕ

(m−1−k)
+j − ϕ̄

(k)
i+ ϕ

(m−1−k)
−j

�
(106)

ξ̄
(m)
± (z) ≡ 1

νIR

�
(νIR ∓m) F̄

(m−1)
∓± (z) ξ̄

(0)
± (z)±m F̄

(m−1)
±± (z) ξ̄

(0)
∓ (z)

�
(107)

The general form of ξ(m)
± (z) for m = 1, 2, . . . , results,

ξ
(m)
± (z) = aIR± σ

(m)
± zΔ

IR
∓ +2m ξ̄

(m)
± (z) (108)

+
m−1�

k=0

�
−aIR+ σ

(k)
+ ϕ

(m−1−k)
−± zΔ

IR
− +2k ξ̄

(k)
+ (z) + aIR− σ

(k)
− ϕ

(m−1−k)
+± zΔ

IR
+ +2k ξ̄

(k)
− (z)

�

where the ingredients to construct it are iteratively computed as described above.

7.5 The matching procedure.
According to (84) and (91), in the region

z > z∞ ; x ≡ qz � mIR (109)

both expansions (87) and (99) hold and therefore they should coincide exactly, i.e.

ξ∞(z; q)

�
1 +

f0(qz)

z−ΔIR
−

+ . . .

�
= C+(q)

�

m≥0

q2m ξ
(m)
+ (z) + C−(q)

�

m≥0

q2m ξ
(m)
− (z) (110)
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This equation must be used to compute the unknown coefficients C±(q). As we will see shortly, this
is not an easy task in general; fortunately the leading order behavior necessary to compute (103) is
relatively simple to get. To proceed we need the IR behavior of the ξ

(m)
± (z)’s. By plugging (108) in (99)

we get,

z−ΔIR
− ξ(z; q) = z−ΔIR

− r.h.s. (110)

=
��
1− q2 �IR−+(q)

�
C+(q)− q2 �IR−−(q)C−(q)

�
aIR+

�

m≥0

σ
(m)
+ x2m ξ̄

(m)
+

�
x

q

�

+
��
1 + q2 �IR+−(q)

�
C−(q) + q2 �IR++(q)C+(q)

� aIR−
q2νIR

�

m≥0

σ
(m)
− x2m+2νIR ξ̄

(m)
−

�
x

q

�

(111)

where we have introduced the holomorphic functions,

�IRij (q) ≡
�

m≥0

ϕ
(m)
ij q2m (112)

On the other hand, by using the series expansion of ξ∞
�
x
q ; q
�

valid for x < 1 we have,

z−ΔIR
− ξ∞(z; q) =

�

m≥0

�
σ
(m)
+ x2m + γ σ

(m)
− x2m+2νIR

�
; γ ≡ Γ(−νIR)

22 νIR Γ(νIR)
(113)

Now from (110) we have that at fixed x < minimum(mIR, 1), in the limit q → 0 equations (111) and
(113) should coincide. More specifically, if we introduce δC±(q) by,

C+(q) ≡ 1

D(q)

�
1

aIR+

�
1 + q2 �IR+−(q)

�
+

γ

aIR−
q2+2νIR �IR−−(q)

�
+ δC+(q)

C−(q) ≡ 1

D(q)

�
− 1

aIR+
q2 �IR++(q) +

γ

aIR−
q2νIR

�
1− q2 �IR−+(q)

��
+ δC−(q)

(114)

where,
D(q) = 1 + q2

�
�IR+−(q)− �IR−+(q)

�
+ q4

�
�IR++(q) �

IR
−−(q)− �IR+−(q) �

IR
−+(q)

�
(115)

then we should get,

lim
q→0




�

m≥0

σ
(m)
+ x2m

�
ξ̄
(m)
+

�
x

q

�
− 1

�
+ γ

�

m≥0

σ
(m)
− x2m+2νIR

�
ξ̄
(m)
−

�
x

q

�
− 1

�

+
��
1− q2 �IR−+(q)

�
δC+(q)− q2 �IR−−(q) δC−(q)

�
aIR+

�

m≥0

σ
(m)
+ x2m ξ̄

(m)
+

�
x

q

�

+
��
1 + q2 �IR+−(q)

�
δC−(q) + q2 �IR++(q)δC+(q)

� aIR−
q2νIR

�

m≥0

σ
(m)
− x2m+2νIR ξ̄

(m)
−

�
x

q

�
 = 0

(116)

While the first line is automatically zero, the second and third lines should be zero separately because
they present different power series 3. From the third line we get,

δC−(q)
q→0−−−→ −ϕ

(0)
++ q2 δC+(q) + q2νIR A(q) (117)

3A subtlety (not present in the case considered in the text) arises if ξ̄(m)
− (z) contains powers of the form z−2νIR−2n with

n ∈ ℵ; in that case it can be easily showed that the effect is that the coefficients of δC±(q) on the second line of (116) get
modified by holomorphic functions; this fact does not modify the subsequent arguments.
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where A(q)
q→0−−−→ 0. Then the second line of (116) yields,

δC+(q)
q→0−−−→ ϕ

(0)
−− q2νIR+2 A(q) ⇒ δC−(q)

q→0−−−→ q2νIR A(q) (118)

Going to (114) with (118) we get the leading behaviors,

C+(0) =
1

aIR+
; C−(q)|q→0 = − ϕ̄

(0)
++

aIR+
q2 (119)

This yields for the two-point function (103) the Goldstone pole,

G2(q)
q→0−−−→ α

q2
(120)

where by using (102) and (104), i.e.

ϕ̄
(0)
++ =

� ∞

zi

dw w1−d ξ+(w)
2 (121)

we get for the residue,

α =
2 νUV (aUV

+ )2�∞
0 dw w1−d ξ+(w)2

(122)

The result is reassuring in the sense that both contributions in the denominator of (103) add to yield a
zi-independent result.

8 Global symmetries and AdS/CFT
Let us now use all this machinery for a simple d-dimensional strongly coupled system with a sponta-
neously broken global symmetry. We would like to see explicitly what makes Nambu-Goldstone bosons
massless in the AdS/CFT picture: it is the square integrability of the solution ξ+(z) of the perturbation
equation. In other words, a normalizable perturbation is massless.

In general let the original symmetry group be G, spontaneously broken to H . The simplest ex-
ample seems to be SU(3) → SU(2) × U(1), i.e. G =SU(3) and H =SU(2)× U(1). A physically more
appealing case could be the case of the unification group SU(5) → SU(3) × SU(2) ×U(1), which will
not consider here though. The hope is that eventually one could then weakly couple the system to gauge
bosons, i.e. gauge it. Let’s consider a real adjoint transforming under SU(3) as Σ → UΣU †, which we
parametrize as

Σ =
1√
2



t/
√
3 + t3 t1 − it2 w1 − iw2

t1 + it2 t/
√
3− t3 w3 − iw4

w1 + iw2 w3 + iw4 −2t/
√
3


 (123)

and a complex fundamental (under SU(3), F → UF ):

F T =
�
T1 T2 H

�T (124)

The SU(2)×U(1) final symmetry will be preserved by �Σ� = tλ8 (with λ8 the Gell-Mann matrix)
and �F � = 0. To get it let the SU(3) invariant superpotential be

W = Δ

�
1

2
TrΣ2 +

√
6

3
TrΣ3

�
+ F †

�
m−

√
6αΣ

�
F (125)
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The strange relation between the Σ2 and Σ3 coefficients are chosen so that the straightforward
generalization of the potential (39)

V =
1

2

�
∂W

∂t

�2

+
1

2

3�

i=1

�
∂W

∂ti

�2

+
1

2

4�

a=1

�
∂W

∂wa

�2

+
2�

i=1

�
∂W

∂Ti

��
∂W

∂T ∗
i

�
+

�
∂W

∂H

��
∂W

∂H∗

�
− d W (126)

has an extremum at t = 0 and a minimum at t = 1 with all other fields vanishing, and the potential for t
is the same as in [18]:

W (t) = Δ

�
t2

2
− t3

3

�
(127)

V (t) =
1

2
W �2(t)− d W (t)

= Δ(Δ− d)
t2

2
−Δ(3Δ− d)

t3

3
+ 2Δ2 t

4

4
(128)

The solution to the e.o.m. is

t(z) =
zΔ

1 + zΔ
, ti, wa = 0 (129)

One can calculate the mass matrix

∂V

∂t2
≡ m2(t) = Δ(Δ− d)− 2Δ(3Δ− d)t+ 6Δ2t2 (130)

∂V

∂wa∂wb
≡ m2

w(t)δ
ab =

�
Δ(Δ− d)−Δ(3Δ− d)t+ 2Δ2t2

�
δab (131)

∂V

∂ti∂tj
≡ m2

t (t)δ
ij =

�
Δ(Δ− d) + 2Δ(3Δ− d)t+ 2Δ2t2

�
δij (132)

∂V

∂T ∗
α∂Tβ

≡ m2
T (t)δ

αβ =
�
m(m− d)− α(2m+Δ− d)t+ α(α+Δ)t2

�
δαβ (133)

∂V

∂H∗∂H
≡ m2

H(t) = m(m− d) + 2α(m+Δ− d)t+ 2α(2α−Δ)t2 (134)

with all other elements vanishing.

This means that it is easy to solve the perturbation equation since the different modes decouple.
In an obvious notation:

z2 ξ̈(z; q)− (d− 1) z ξ̇(z; q)−
�
q2 z2 +m2(t(z))

�
ξ(z; q) = 0 (135)

z2 ξ̈w(z; q)− (d− 1) z ξ̇w(z; q)−
�
q2 z2 +m2

w(t(z))
�
ξw(z; q) = 0 (136)

z2 ξ̈t(z; q)− (d− 1) z ξ̇t(z; q)−
�
q2 z2 +m2

t (t(z))
�
ξt(z; q) = 0 (137)

z2 ξ̈T (z; q)− (d− 1) z ξ̇T (z; q)−
�
q2 z2 +m2

T (t(z))
�
ξT (z; q) = 0 (138)

z2 ξ̈H(z; q)− (d− 1) z ξ̇H(z; q)−
�
q2 z2 +m2

H(t(z))
�
ξH(z; q) = 0 (139)

The first equation (135) has a well known solution at q2 = 0 (corresponding to the dilaton)
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ξ+(z) = z ṫ(z) (140)

The second one (136) is for the Goldstone-bosons of the global symmetry. Since

m2
w(t) =

1

t
V �(t) (141)

the well-behaved solution at q2 = 0 is simply

ξw+(z) = t(z) (142)

This is why it has a pole at q2 = 0. We just need to do the usual expansion derived in general in
the previous section, see also [18], with the result for the propagator

Gw
2 (q) =

α

q2
(143)

with the general expression

α =
2νUV

�
aUV
+

�2

(
�∞
0 dxx1−d

�
ξw+(x)

�2 (144)

In our specific case (136) we have

aUV
+ = 1 (145)

with the integral in the denominator finite.

Then, what about the third equation (137), i.e. for ξt? One can easily find the solution for q = 0:

ξt(z) = C1z
Δ(1 + zΔ)2 + C2

zd−Δ

1 + zΔ
2F1(1,−5 + d/Δ,−1 + d/Δ,−zΔ) (146)

For z → ∞ we get

ξt(z) → C1z
Δ(1 + zΔ)2 + C2

zd−Δ

1 + zΔ
z5Δ−dΓ(6− d/Δ)Γ(−1 + d/Δ)(1 + zΔ)3

2z3Δ
(147)

and so

C1 = −C2

2
Γ(6− d/Δ)Γ(−1 + d/Δ) (148)

In the opposite limit z → 0 (137) becomes

ξt(z) → C1

�
zΔ + . . .

�
+ C2

�
zd−Δ + . . .

�
(149)

so that due to (148) we get in the IR limit q → 0

Gt
2(0) =

C1

C2
= −1

2
Γ(6− d/Δ)Γ(1− d/Δ) (150)

Obviously there is no pole here at q = 0, a pole is expected at finite q. The reason for no pole at
q = 0 is thus due to the fact that there is no solution finite in the whole positive z-axis. This was true
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for ξ(z) = z ṫ(z) and ξw(z) = t(z), and this is why the next order in q was needed there. In other
words, if the integral in (122) is finite, the propagator obeys (120), if it is not, then the leading term in
this expansion is a constant.

Equations (138) and (139) for ξT and ξH seem to point to the same conclusion as for ξt: no pole,
i.e. no light degree of freedom. So if we would like one of the two to be light, i.e. for example ξH (the
analog of the light SM doublet in SU(5)), we would need to further fine-tune the system, similarly as one
obtains the usual doublet-triplet splitting in a SU(5) grand unified theory.

9 Summary of results
We have studied some simple examples of the AdS/CFT correspondence, i.e. the domain wall solution
in the AdS bulk of a scalar field in the limit of no gravity back-reaction. To obtain analytical results we
rewrote the bulk scalar potential in terms of an appropriate superpotential. The correspondence between
the two is a bit unusual, i.e. it is the one that survives the infinite Planck scale limit. Since the superpo-
tential was written as a simple polynomial of the scalar field, the potential itself is obviously tuned, i.e.
it is not the most general one of given order. We showed explicitly that such tuning of the parameters
is necessary for the solution to exist at all, and that it is just a consequence of a vanishing boundary
cosmological constant, in accord with a known result from the literature. We proved another general
requirement for the existence of such domain walls: the second field derivative of the potential must be
smaller than −d2/4 at least in some interval of the bulk coordinate, where d is the boundary space-time
dimension. We then found the solution of the perturbation equation for the dilaton mode by the WKB
approximation and by the matching method to all orders. We generalized in this way the known result
of a massless mode corresponding to the spontaneously broken Nambu-Goldstone excitation (dilaton)
due to the spontaneously broken translational symmetry in AdS. The existence of a massless mode is
essentially due to the existence of a normalizable mode at q2 = 0: this interpretation is confirmed in
the case of spontaneously broken internal global symmetries. We gave an explicit example in terms of a
SU(3) theory spontaneously broken by an adjoint vev to SU(2)→U(1).
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