
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 137.138.125.163

This content was downloaded on 08/07/2014 at 08:35

Please note that terms and conditions apply.

 The Versatile Transceiver: towards production readiness

View the table of contents for this issue, or go to the journal homepage for more

2013 JINST 8 C03004

(http://iopscience.iop.org/1748-0221/8/03/C03004)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1748-0221/8/03
http://iopscience.iop.org/1748-0221
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


2
0
1
3
 
J
I
N
S
T
 
8
 
C
0
3
0
0
4

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: November 18, 2012
ACCEPTED: January 13, 2013

PUBLISHED: March 4, 2013

TOPICAL WORKSHOP ON ELECTRONICS FOR PARTICLE PHYSICS 2012,
17–21 SEPTEMBER 2012,
OXFORD, U.K.

The Versatile Transceiver: towards production
readiness

C. Soós,1 M. Barros Marin, S. Détraz, L. Olanterä, C. Sigaud, S. Storey, J. Troska,
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ABSTRACT: Detectors involved in the upgrade programme of the LHC will need high-speed op-
tical links to transfer readout and control data. The link front-end will be based on a radiation
tolerant opto-electronic module, the Versatile Transceiver (VTRx), developed under the Versatile
Link project. In this contribution we present a test system and protocol to be used to verify the
compliance of the VTRx modules to the specifications, and a Versatile Link demonstrator based on
the VTRx and the Gigabit Link Interface Board. Finally, we introduce the Small Footprint VTRx
which is being designed for the CMS Tracker upgrade.
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1 Introduction

The high data rate and the presence of increased radiation at the upgraded LHC experiments call
for high-speed optical links based on radiation tolerant front-end interfaces. In addition, merging
the detector data readout with the timing and control distribution on the same optical link requires
bi-directional functionality. The Versatile Transceiver (VTRx) developed in the framework of the
Versatile Link project [1, 2] addresses these needs. Single-mode and multi-mode transceiver vari-
ants are available for readout systems using different fibre plants. For detector systems where
the number of readout channels exceeds that of control channels, the Versatile Twin Transmitter
(VTTx) can be deployed to increase the readout density. The VTRx and VTTx operate at 4.8 Gb/s
data rate and use radiation hard ASICs sourced from the GigaBit Transceiver (GBT) project [3].The
paper will summarize these variants, their main characteristics, and indicate the production quanti-
ties to be used by early adopters.

Following the feasibility study and an extensive prototyping phase, the Versatile Link project
moved into a pre-production readiness phase at the end of 2011. Packaged VTRx and VTTx
modules are being produced in small series to verify manufacturability and to provide samples
to early adopters. The fully functional prototypes supporting either single-mode or multi-mode
operation are built using the GBT chipset ASICs [4, 5] and commercial off-the-shelf components
that were previously qualified for use in radiation environments [6, 7]. During the procurement
phase, transceiver components will be purchased from different vendors and transceiver modules
will be produced in larger quantities. Section 4 describes an easy-to-execute test protocol and a
dedicated VTRx/VTTx test system which will be used to evaluate the components and to screen
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Table 1. Available VTRx and VTTx variants.

Variant Laser Driver TOSA type ROSA type
Single-mode VTRx GBLD 1310 nm EEL 60 µm InGaAs
Multi-mode VTRx GBLD 850 nm VCSEL 70 µm GaAs
Multi-mode VTTx GBLD 850 nm VCSEL n.a.
Multi-mode VTTx COTS LDD 850 nm VCSEL n.a.

problems during manufacturing, and to verify the module compliance with the Versatile Link spec-
ifications [8]. In addition, we have implemented a Versatile Link demonstrator using the Gigabit
Link Interface Board (GLIB) [9] which allows the user to get started using the VTRx and to eval-
uate the performance of the Versatile Link. The architecture of the demonstrator and some tests
results will be presented in section 5.

Finally, section 6 will introduce a new flavour of the transceiver which is proposed for the
Phase II upgrade of the CMS Tracker system. The Small Footprint VTRx (SF-VTRx) will allow a
more compact placement on the detector module by reducing the real-estate used for electrical and
optical connections.

2 Towards production

2.1 Prototypes

Four different VTRx and VTTx variants are available for users that are ready to integrate the mod-
ules into their upgraded readout systems. The variants and their main components are summarized
in table 1. The transmitter path of VTRx modules consists of the radiation-tolerant GigaBit Laser
Driver (GBLD) and a commercial Transmitter Optical Sub-Assembly (TOSA). The single-mode
version is based on an Edge Emitter Laser (EEL) operating at 1310 nm, while the multi-mode
variant uses a Vertical Cavity Surface Emitting Laser (VCSEL) operating at 850 nm. On the re-
ceiver side the Receiver Optical Sub-Assembly (ROSA) includes the radiation-tolerant GigaBit
TransImpedance and limiting Amplifier (GBTIA) and either a 60 µm InGaAs or a 70 µm GaAs
commercial PIN photodiode to support single-, or multi-mode operations respectively. There are
two multi-mode VTTx variants available: the radiation hard version uses the GBLD while the ra-
diation soft version is based on a commercial off-the-shelf laser diode driver (COTS LDD). In both
cases the modules are assembled with VCSELs operating at 850 nm.

Fully functional prototypes of the above mentioned variants have been fabricated in small
quantities. The prototypes were tested in the laboratory and the results are discussed in section 2.2.
The picture of a multi-mode VTRx prototype is shown in figure 1.

2.2 Test results

The performance of the prototypes listed in table 1 was evaluated by measuring the transmit op-
tical eye diagram of the VTRx and VTTx modules, as well as the receiver electrical eye and the
receiver sensitivity of the VTRx modules. The measured parameters have been compared with the
specifications.

– 2 –
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Figure 1. Picture of a multi-mode VTRx variant showing the main components of the transceiver module.

MM VTRx vs. SM VTRx

0.5 1 1.5 2 2.5
OMA
   

0.4
0.8

1.2
1.6

2
EH
  

0.4

0.8

1.2

1.6

2
ER

  

0.4
0.8

1.2
1.6

2T
r

   

0.3
0.6

0.9
1.2

1.5
T

f
   

0.5

1

1.5

2

2.5
T

j
   

0.9
1.8

2.7
3.6

4.5 D
j

   

 

 

Specifications
GBLD + MM VCSEL
GBLD + SM EEL

MM VTTx − COTS vs. GBLD

0.4 0.8 1.2 1.6 2
OMA
   

0.3
0.6

0.9
1.2

1.5
EH
  

0.4

0.8

1.2

1.6

2
ER

  

0.4
0.8

1.2
1.6

2T
r

   

0.4
0.8

1.2
1.6

2
T

f
   

0.7

1.4

2.1

2.8

3.5
T

j
   

2.3
4.6

6.9
9.2

12 D
j

   

 

 

Specifications
COTS + MM VCSEL
GBLD + MM VCSEL

(a) (b)

Figure 2. Radar plots showing normalized eye diagram parameters for single-mode and multi-mode VTRx
variants (a) as well as for multi-mode VTTx variants based on a commercial laser driver or the GBLD (b).

The eye diagram parameters presented hereafter have been normalized using the target values
listed in table 2. Following normalization parameters that do not meet the specifications are rep-
resented by numbers smaller than 1. The radar plot in figure 2.a shows the results measured using
the multi-mode and single-mode VTRx variants. The plot confirms that specifications, represented
by a dotted line, are met in both cases. Figure 2.b summarizes the parameters obtained by measur-
ing COTS-based and GBLD-based VTTx prototypes. The better timing and jitter characteristics
of the commercial laser driver can be explained by the fact that the device is designed for 10G
applications.

The receiver sensitivity of the single-mode and multi-mode transceiver prototypes have been
measured using a bit error rate (BER) tester. The BER curves and the corresponding sensitivity lim-
its (vertical dashed lines) are shown in figure 3. According to the Versatile Link specifications [8]
these limits are defined as -15.4 dBm and -13.1 dBm for the single-mode and multi-mode cases,
respectively. Results show that the specifications have been met in both cases.
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Table 2. Target eye diagram parameters.

Parameter Target Unit
Optical Modulation Amplitude (OMA) 300 µW
Eye Height (EH) 0.6*OMA µW
Extinction Ratio (ER) 3 dB
Rise time (tr) 70 ps
Fall time (t f ) 70 ps
Total jitter (Tj) at BER=10−12 52 ps
Deterministic jitter (D j) 26 ps
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Figure 3. Bit error rate curves measured using a single-mode and a multi-mode VTRx.

3 Procurement strategy

A purchasing strategy is being defined to supply optical link components to the following users
identified to date: ATLAS Small Wheel, ATLAS Liquid Argon Calorimeter, LHCb, and CMS
Hadron Calorimeter upgrade. Depending on quantity of components to be purchased and the
amount of CERN funds used to pay for the supply the following procedures are being investigated:

1. Market Survey, Invitation to Tender and Contract Placement;
2. Price Enquiry and Contract Placement;
3. Single-source purchase orders.

Procedure 1 will be used to procure the large number of multi-mode TOSA devices. For
purchasing moulded multi-mode variant of the plastic optical connector latch and to manufacture
VTRx and VTTx modules we will follow procedure 2. Finally, procedure 3 will be used for pur-
chasing ROSA devices and the machined version of the single-mode optical latch, as well as to
order single-mode TOSA devices which are known to meet our technical specifications and are
significantly more rad-hard than other candidate components that we tested. The procurement will
start in 2013 allowing enough time for purchasing all components required to manufacture the
modules in 2014.
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Figure 4. Experimental setup proposed for production testing of VTRx modules.

4 Quality assurance

Quality Assurance (QA) has been implemented via various measures taken throughout the different
phases of the Versatile Link project. During the feasibility study, all candidate components of
the VTRx and VTTx were thoroughly tested as part of the qualification process. Functional and
environmental tests have been conducted in the lab [10, 11] as well as in irradiation facilities [6, 7].
Similar tests will be carried out during the procurement procedure (see section 3) to evaluate the
performance of the devices proposed by the manufacturers. In addition, acceptance tests will be
done to control the quality of the delivered parts. However, since these time consuming tests cannot
be done for each manufactured module a different procedure is being defined for production testing.

The purpose of the production test is to verify that the manufactured modules function properly
and that the measured parameters are within the limits set by the specifications. Unlike during full
characterization, in production testing the measurement time must be optimized to allow testing of
several thousand modules within a reasonable time. The test setup should support quasi-automated
testing and the role of the human operator should be limited to the replacement of the device under
test.

The test procedure consists of measuring the light-current (LI) characteristics, the transmit
optical eye, the receive electrical eye and the bit error rate (BER). The proposed test setup is shown
in figure 4. The test pattern is generated using a Pattern Generator (PG) which is connected either
to the reference transmitter or to the Device Under Test (DUT) through a high-speed analogue
switch, which allows the rerouting of the signals for different measurement configurations. The
optical output of the DUT is connected to an oscilloscope which will measure the LI curve and the
TX optical eye. The optical signal from the reference transmitter is fed through a Variable Optical
Attenuator (VOA) before reaching the receiver side of the DUT. The average optical power of the
attenuated signal is measured using an Optical Power Meter (OPM) attached to the monitoring
output of the VOA. The electrical output from the DUT receiver is going through the analogue
switch, which can connect the signal either to the error detector (ED) to measure BER or to the
oscilloscope to capture the received electrical eye.

Based on the requirements we have built a test system using bench-top instruments. For mul-
tiplexing multi-gigabit signals we identified a high-bandwidth passive switch. We ordered an eval-
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Figure 5. GLIB-based Versatile Link system demonstrator.

uation board from the chip vendor, but it did not arrive in time and we could not evaluate its
performance before submitting the paper. However, we were able to use the system to optimize the
test procedure and to develop the necessary software components, as well as to test the prototypes
mentioned in section 2.1.

5 System demonstrator

As presented in section 2.1, fully functional VTRx and VTTx prototypes are available for the in-
terested users. To start the system-level evaluation users will need to build their own test systems.
Moreover, in many cases this evaluation shall take place well before an appropriate front-end pro-
totype hosting the VTRx/VTTx becomes available. The purpose of the system demonstrator is to
provide a verified turn-key solution that speeds up the integration with the Versatile Link.

The architecture has been derived from the one shown in figure 4. However, instead of an
expensive and less portable pattern generator/error checker instrument the demonstrator is built
around the Gigabit Link Interface Boad (GLIB) which is an evaluation board developed at CERN.
The GLIB is an extensible platform that enables easy integration with VTRx/VTTx modules as
well as with commercial transceivers. The board features a large Field Programmable Gate Array
(FPGA) device which can be loaded with a firmware that implements the functions required to
operate the system. The demonstrator implements a multi-channel BER tester which supports
various test configurations using commercial transceivers and VTRx modules.

Figure 5 shows a typical configuration which can be used to measure the system BER. The
VTRx is attached to the GLIB using an FMC-compatible mezzanine adapter. The optical signal
from the VTRx is fed through a Variable Optical Attenuator (VOA) and then looped back to the
commercial SFP+ transceiver integrated on-board the GLIB. The average power of the attenuated
signal, required to calculate the receiver sensitivity, is measured using an Optical Power Meter
(OPM). The instruments and the GLIB are controlled using LabVIEW running on a computer. The
data generation and the error detection are implemented in the FPGA firmware. The GLIB can
encode/decode the bit stream using the GBT protocol [12], thus allowing to measure the system-
level BER.
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Figure 6. Bit error rate curves of a multi-mode VTRx measured with a dedicated BER tester or the GLIB-
based demonstrator.

We built the system using the components described before and we tested some VTRx pro-
totypes with commercial SFP+ transceivers as a reference transmitter. We compared the results
with those measured using the instrument-based system presented in section 4. The two BER
curves shown in figure 6 have been measured using the same multi-mode VTRx and commer-
cial transceiver pair and either a dedicated pattern generator/checker (JBERT) or the GLIB-based
demonstrator (without error correction). The results reveal that the JBERT has slightly superior
performance, but the penalty associated with the usage of the GLIB is only 0.5 dB.

6 Small footprint Versatile Transceiver

The future front-end hybrid of the CMS Tracker detector, to be replaced during the LHC Phase-II
upgrade, will require a low-profile optical interface like in many other experiments. However, the
current version of the VTRx does not fit in the envelope allocated for the link interface. In addition,
the 45 x 15 x 8 mm3 volume will have to accommodate the future version of the GBT serializer
chip. In case of an SFP-like module, such as the VTRx, the PCB area under the transceiver cannot
be used. Eliminating the connector and integrating the optical components on the front-end could
reduce the footprint, but the advantages of the pluggable module concept would be lost as well.

To reduce the footprint of the transceiver and to allow tighter integration with the serializer
both the electrical and optical connections need to be modified as illustrated by the CAD drawing
shown in figure 7.a. The surface-mount electrical connector would allow the placement of the
serializer chip (GBTX) on motherboard in the area under the transceiver. On the optical interface,
the standard LC connector should be replaced by a custom connector, which will be held together
with the optical components (TOSA and ROSA) by using a modified plastic latch or a metal clip.
Figure 7.b shows the first version of the Small Footprint Versatile Transceiver (SF-VTRx) and one
of the VTRx prototypes photographed side-by-side. The picture allows to compare the size of the
two objects and it clearly demonstrates how the above mentioned modifications could enable a
more compact optical interface for the front-end hybrid.
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Figure 7. CAD drawing of the SF-VTRx (a) and a picture of the first prototype (b).
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Figure 8. Picture of the test board used for measuring the SF-VTRx prototypes (a) and the transmit optical
eye produced by one of the prototypes (b).

We have assembled two SF-VTRx prototypes using multi-mode VCSELs operating at 850 nm,
radiation hard GBLD chips and multi-mode ROSA devices based on the radiation hard GBTIA
and 70 µm GaAs photodiodes. The performance of the prototypes has been tested using a custom
designed board shown in figure 8.a. The transmit optical eye shown in figure 8.b has been measured
using the default laser driver settings. The extracted eye diagram parameters confirm that the
prototypes meet the Versatile Link specifications.

7 Summary

The Versatile Link project has moved to the pre-production readiness phase. Fully functional VTRx
and VTTx prototypes have been produced in small quantities and test results confirm that these pro-
totypes meet the Versatile Link specifications. The first Versatile Link users have been identified
and a tentative procurement strategy has been defined. A test setup supporting quasi-automated
production testing is being implemented. A system demonstrator based on the Gigabit Link In-
terface Board is available for users wishing to evaluate the performance of the Versatile Link and
the GBT protocol. The concept of the Small Footprint Versatile Transceiver has been introduced,
which is offering a low-profile, radiation-hard optical interface for the more long-term Phase-II
upgrade of the CMS Tracker detector.
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