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A search for the D0 → π+π−μ+μ− decay, where the muon pair does not originate from a resonance, is
performed using proton–proton collision data corresponding to an integrated luminosity of 1.0 fb−1

recorded by the LHCb experiment at a centre-of-mass energy of 7 TeV. No signal is observed
and an upper limit on the relative branching fraction with respect to the resonant decay mode
D0 → π+π−φ(→ μ+μ−), under the assumption of a phase-space model, is found to be

B
(

D0 → π+π−μ+μ−)
/B

(
D0 → π+π−φ

(→ μ+μ−))
< 0.96

at 90% confidence level. The upper limit on the absolute branching fraction is evaluated to be
B(D0 → π+π−μ+μ−) < 5.5 × 10−7 at 90% confidence level. This is the most stringent to date.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction

Flavour-changing neutral current (FCNC) processes are rare
within the Standard Model (SM) as they cannot occur at tree
level and are suppressed by the Glashow–Iliopoulos–Maiani (GIM)
mechanism at loop level. In contrast to the B meson system, where
the high mass of the top quark in the loop weakens the suppres-
sion, the GIM cancellation is almost exact [1] in D meson decays,
leading to expected branching fractions for c → uμ+μ− processes
in the range (1 − 3) × 10−9 [2–4]. This suppression allows for sub-
leading processes with potential for physics beyond the SM, such
as FCNC decays of D mesons, and the coupling of up-type quarks
in electroweak processes illustrated in Fig. 1, to be probed more
precisely.

The total branching fraction for these decays is expected to
be dominated by long-distance contributions involving resonances,
such as D0 → π+π−V (→ μ+μ−), where V can be any of the
light vector mesons φ, ρ0 or ω. The corresponding branching frac-
tions can reach O(10−6) [2–4]. The angular structure of these
four-body semileptonic D0 decays provides access to a variety of
differential distributions. Of particular interest are angular asym-
metries that allow for a theoretically robust separation of long- and
short-distance effects, the latter being more sensitive to physics
beyond the SM [4]. No such decays have been observed to date and
the most stringent limit reported is B(D0 → π+π−μ+μ−) < 3.0×
10−5 at 90% confidence level (CL) by the E791 Collaboration [5].
The same processes can be probed using D+

(s) → π+μ+μ− decays.
Upper limits on their branching fractions have been recently set

✩ This is an open-access article distributed under the terms of the Creative Com-
mons Attribution License, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author and source are credited.

Fig. 1. Leading Feynman diagrams for the FCNC decay D0 → π+π−μ+μ− in the
SM.

to B(D+ → π+μ+μ−) < 7.3 × 10−8 and B(D+
s → π+μ+μ−) <

4.1 × 10−7 at 90% CL by the LHCb Collaboration [6].
This Letter presents the result of a search for the D0 →

π+π−μ+μ− decay, in which the muons do not originate from
a resonance, performed using D∗+ → D0π+ decays, with the D∗+
meson produced directly at the pp collision primary vertex. The
reduction in background yield associated with this selection vastly
compensates for the loss of signal yield. No attempt is made to dis-
tinguish contributions from intermediate resonances in the dipion
invariant mass such as the ρ0. Throughout this Letter, the inclusion
of charge conjugate processes is implied. The data samples used in
this analysis correspond to an integrated luminosity of 1.0 fb−1 at√

s = 7 TeV recorded by the LHCb experiment.
The analysis is performed in four dimuon mass ranges to ex-

clude decays dominated by the contributions of resonant dimuon
final states. The regions at low and high dimuon masses, away
from the η, ρ0 and φ resonant regions, are the most sen-
sitive to non-SM physics and are defined as the signal re-
gions. The signal yield is normalised to the yield of resonant
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D0 → π+π−φ(→ μ+μ−) decays, isolated in an appropriate
dimuon range centred around the φ pole.

2. The LHCb detector and trigger

The LHCb detector [7] is a single-arm forward spectrometer
covering the pseudorapidity range 2 < η < 5, designed for the
study of particles containing b or c quarks. The detector includes
a high-precision tracking system consisting of a silicon-strip ver-
tex detector surrounding the pp interaction region, a large-area
silicon-strip detector located upstream of a dipole magnet with
a bending power of about 4 Tm, and three stations of silicon-
strip detectors and straw drift tubes placed downstream. The com-
bined tracking system provides a momentum measurement with
relative uncertainty that varies from 0.4% at 5 GeV/c to 0.6%
at 100 GeV/c, and impact parameter resolution of 20 μm for
tracks with large transverse momentum. Different types of charged
hadrons are distinguished by information from two ring-imaging
Cherenkov detectors [8]. Photon, electron and hadron candidates
are identified by a calorimeter system consisting of scintillating-
pad and preshower detectors, an electromagnetic calorimeter and a
hadronic calorimeter. Muons are identified by a system composed
of alternating layers of iron and multiwire proportional cham-
bers [9].

The trigger [10] consists of a hardware stage, based on informa-
tion from the calorimeter and muon systems, followed by a soft-
ware stage, which applies a full event reconstruction. The hardware
trigger selects muons with transverse momentum, pT, exceeding
1.48 GeV/c, and dimuons whose product of pT values exceeds
(1.3 GeV/c)2. In the software trigger, at least one of the final state
muons is required to have momentum larger than 8 GeV/c, and
to have an impact parameter, IP, defined as the minimum distance
of the particle trajectory from the associated primary vertex (PV)
in three dimensions, greater than 100 μm. Alternatively, a dimuon
trigger accepts events with oppositely charged muon candidates
having good track quality, pT exceeding 0.5 GeV/c, and momentum
exceeding 6 GeV/c. In a second stage of the software trigger, two
algorithms select D0 → π+π−μ+μ− candidates. The first algo-
rithm, used to increase the efficiency in the highest dimuon mass
region, requires oppositely charged muons with scalar sum of pT
greater than 1.5 GeV/c and dimuon mass greater than 1 GeV/c2.
A second algorithm selects events with two oppositely charged
muons and two oppositely charged hadrons with no invariant mass
requirement on the dimuon.

Simulated events for the signal, using a phase-space model,
and the normalisation mode, are used to define selection criteria
and to evaluate efficiencies. The pp collisions are generated us-
ing Pythia 6.4 [11] with a specific LHCb configuration [12]. Decays
of hadronic particles are described by EvtGen [13]. The interac-
tion of the generated particles with the detector and its response
are implemented using the Geant4 toolkit [14,15] as described in
Ref. [16].

3. Candidate selection

Candidate D0 → π+π−μ+μ− decays are required to originate
from D∗+ → D0π+ decays. The D0 candidate is formed by com-
bining two pion and two muon candidates where both pairs con-
sist of oppositely charged particles. An additional pion track is
combined with the D0 candidate to build the D∗+ candidate. The
χ2 per degree of freedom of the vertex fit is required to be less
than 5 for both the D∗+ and the D0 candidates. The angle between
the D0 momentum vector and the direction from the associated PV
to the decay vertex, θD0 , is required to be less than 0.8◦ . Each of
the four particles forming the D0 meson must have momentum

exceeding 3 GeV/c and pT exceeding 0.4 GeV/c. The tracks must
be displaced with respect to any PV and have χ2

IP larger than 4.
Here χ2

IP is defined as the difference between the χ2 of the PV fit
done with and without the track under consideration.

Further discrimination is achieved using a boosted decision tree
(BDT) [17–19], which distinguishes between signal and combinato-
rial background candidates. This multivariate analysis algorithm is
trained using simulated D0 → π+π−μ+μ− signal events and a
background sample taken from data mass sidebands around the
D0 → π+π−μ+μ− signal mass region. Only 1% of the candidates
in the sidebands are used in the training. The BDT uses the fol-
lowing variables: θD0 , χ2 of the decay vertex and flight distance of
the D0 candidate, p and pT of the D0 candidate and of each of the
four final state tracks, χ2 of the vertex and pT of the D∗+ candi-
date, χ2

IP of the D0 candidate and of the final state particles, the
maximum distance of closest approach between all pairs of tracks
forming the D0 and D∗+ candidates, and the pT and χ2

IP of the
bachelor pion from the D∗+ candidate.

The BDT discriminant is used to classify each candidate. Assum-
ing a signal branching fraction of 10−9, an optimisation study is
performed to choose the combined BDT and muon particle iden-
tification (PID) selection criteria that maximise the expected sta-
tistical significance of the signal. This significance is defined as
S/

√
S + B , where S and B are the signal and background yields

respectively. The PID information is quantified as the difference in
the log-likelihood of the detector response under different particle
mass hypotheses (DLL) [8,20]. The optimisation procedure yields
an optimal threshold for the BDT discriminant and a minimum
value for DLLμπ (the difference between the muon and pion hy-
potheses) of 1.5 for both μ candidates. In addition, the pion candi-
date is required to have DLLKπ less than 3.0 and DLLpπ less than
2.0, and each muon candidate must not share hits in the muon
stations with any other muon candidate. In the 2% of events in
which multiple candidates are reconstructed, the candidate with
the smallest D0 vertex χ2 is chosen.

The bachelor π+ of the D∗+ → D0π+ decay is constrained to
the PV using a Kalman filter [21]. This constraint improves the res-
olution for the mass difference between the D∗+ and the D0 can-
didates, 	m ≡ m(π+π−μ+μ−π+) − m(π+π−μ+μ−), by a factor
of two, down to 0.3 MeV/c2. Candidates are selected with a 	m
value in the range 140.0–151.4 MeV/c2.

Candidates from the kinematically similar decay
D0 → π+π−π+π− form an important peaking background due
to the possible misidentification of two oppositely charged pi-
ons as muons. A sample of this hadronic background is retained
with a selection that is identical to that applied to the signal
except that no muon identification is required. These candidates
are then reconstructed under the D0 → π+π−μ+μ− hypothesis
and a subsample of the candidates, in which at least one such
pion satisfies the muon identification requirements, is used to de-
termine the shape of this peaking background in each region of
dimuon mass, m(μ+μ−). Under the correct mass hypotheses the
D0 → π+π−π+π− candidates are also used as a control sample
to check differences between data and simulation that may affect
the event selection performance. Moreover, they are used to de-
termine the expected signal shape in each m(μ+μ−) region by
subdividing the D0 → π+π−π+π− sample in the same regions of
m(π+π−).

Another potential source of peaking background is due to
Λc(2595)+ → Σc(2455)0π+ decays, followed by the Σc(2455)0 →
Λ+

c π− and then Λ+
c → pK −π+ decays, with the two pions in the

decay chain misidentified as muons and the proton and the kaon
misidentified as pions. Therefore, the DLLKπ and DLLpπ require-
ments are tightened to be less than zero for the low-m(μ+μ−)
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Table 1
D0 → π+π−μ+μ− fitted yields in the four m(μ+μ−) regions. The corresponding signal fractions under the assumption of a phase-space model,
as described in Section 7, are listed in the last column.

Range description m(μ+μ−) [MeV/c2] D0 → π+π−μ+μ− yield Fraction

low-m(μ+μ−) 250–525 2 ±2 30.6%
ρ/ω 565–950 23 ±6 43.4%
φ 950–1100 63 ±10 10.1%
high-m(μ+μ−) > 1100 3 ±2 8.9%

Fig. 2. Distributions of m(π+π−μ+μ−) for D0 → π+π−μ+μ− candidates in the (a) low-m(μ+μ−), (b) ρ/ω, (c) φ , and (d) high-m(μ+μ−) regions, with 	m in the range
144.4–146.6 MeV/c2. The data are shown as points (black) and the fit result (dark blue line) is overlaid. The components of the fit are also shown: the signal (filled area),
the D0 → π+π−π+π− background (green dashed line) and the non-peaking background (red dashed-dotted line).
region, where the baryonic background is concentrated, suppress-
ing this background to a negligible level.

Another potentially large background from the D0 → π+π−η
decay, followed by the decay η → μ+μ−γ , does not peak at
the D0 mass since candidates in which the m(μ+μ−) is within
±20 MeV/c2 of the nominal η mass are removed from the final fit.
The remaining contribution to low values of the m(π+π−μ+μ−)

invariant mass is included in the combinatorial background.

4. Mass fit

The shapes and yields of the signal and background contribu-
tions are determined using an unbinned maximum likelihood fit
to the two-dimensional [m(π+π−μ+μ−π+),	m] distributions in
the ranges 1810–1920 and 140–151.4 MeV/c2, respectively. This
range is chosen to contain all reconstructed D0 → π+π−μ+μ−
candidates.

The D0 → π+π−μ+μ− data are split into four regions of
m(μ+μ−): two regions containing the ρ/ω and φ resonances
and two signal regions, referred to as low-m(μ+μ−) and high-
m(μ+μ−), respectively. The definitions of these regions are pro-
vided in Table 1.

The D0 mass and 	m shapes for D0 → π+π−μ+μ− candi-
dates are described by a double Crystal Ball function [22,23], which
consists of a Gaussian core and independent left and right power-
law tails, on either sides of the core. The parameters of these

shapes are determined from the D0 → π+π−π+π− control sam-
ple independently for each of the four m(μ+μ−) regions.

The D0 → π+π−π+π− peaking background is also split into
the predefined dimuon mass regions and is fitted with a double
Crystal Ball function. This provides a well-defined shape for this
prominent background, which is included in the fit to the signal
sample. The yield of the misidentified component is allowed to
vary and fitted in each region of the analysis. The combinatorial
background is described by an exponential function in the D0 can-
didate mass, while the shape in 	m is described by the empirical
function f	(	m,a) = 1−e−(	m−	m0)/a , where the parameter 	m0
is fixed to 139.6 MeV/c2. The two-dimensional shape used in the
fit implicitly assumes that m(π+π−μ+μ−π+) and 	m are not
correlated.

All the floating coefficients are allowed to vary independently
in each of the m(μ+μ−) regions. Migration between the regions is
found to be negligible from simulation studies. The yield observed
in the φ region is used to normalise the yields in the signal re-
gions.

One-dimensional projections for the D0 candidate invariant
mass and 	m spectra, together with the result of the fits, are
shown in Figs. 2 and 3, respectively. The signal yields, which in-
clude contributions from the tails of the m(μ+μ−) resonances
leaking into the low- and high-m(μ+μ−) ranges, are shown in Ta-
ble 1. No significant excess of candidates is seen in either of the
two signal regions.
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Fig. 3. Distributions of 	m for D0 → π+π−μ+μ− candidates in the (a) low-m(μ+μ−), (b) ρ/ω, (c) φ , and (d) high-m(μ+μ−) regions, with the D0 invariant mass in the
range 1840–1888 MeV/c2. The data are shown as points (black) and the fit result (dark blue line) is overlaid. The components of the fit are also shown: the signal (filled

0 + − + −
area), the D → π π π π background (green dashed line) and the non-peaking background (red dashed-dotted line).

The yields in the signal regions are compatible with the ex-
pectations from leakage from the m(μ+μ−) resonant regions. The
number of expected events from leakage is calculated assuming
the m(μ+μ−) spectrum given by a sum of relativistic Breit–
Wigner functions, describing the η, ρ/ω and φ resonances.
The contribution from each resonance is scaled according to
the branching fractions as determined from resonant D0 →
K +K −π+π− and D0 → π+π−π+π− decays [24]. The resulting
shape is used to extrapolate the yields fitted in the φ and ρ
regions into the m(μ+μ−) signal regions. An additional extrap-
olation is performed using the signal yield in the m(μ+μ−) range
773–793 MeV/c2, where the contribution from the ω resonance is
enhanced. In this approach the interference among different reso-
nances is not accounted for and a systematic uncertainty to the
extrapolated yield is assigned according to the spread in their
extrapolations. The expected number of leakage events is esti-
mated to be 1 ± 1 in both the low- and high-m(μ+μ−) regions.
This precision of this estimate is dominated by the systematic
uncertainty.

5. Branching fraction determination

The D0 → π+π−μ+μ− branching fraction ratio for each
m(μ+μ−) signal region i is calculated using

B(D0 → π+π−μ+μ−)i

B(D0 → π+π−φ(→ μ+μ−))

=
Ni

D0→π+π−μ+μ−

ND0→π+π−φ(→μ+μ−)

× εD0→π+π−φ(→μ+μ−)

ε i
D0→π+π−μ+μ−

. (1)

The yield and efficiency are given by ND0→π+π−μ+μ− and
εD0→π+π−μ+μ− , respectively, for the signal channel, and by
ND0→π+π−φ(→μ+μ−) and εD0→π+π−φ(→μ+μ−) for the reference
channel. The values for the efficiency ratio εD0→π+π−μ+μ−/

εD0→π+π−φ(→μ+μ−) in the low-m(μ+μ−) and high-m(μ+μ−)

regions, as estimated from simulations, are 0.24 ± 0.03 and

0.69±0.11, respectively, where the uncertainty reflects the limited
statistics of the simulated samples. The efficiencies for reconstruct-
ing the signal decay mode and the reference mode include the
geometric acceptance of the detector, the efficiencies for track re-
construction, particle identification, selection and trigger. Both effi-
ciency ratios deviate from unity due to differences in the kinematic
distributions of the final state particles in the two decays. More-
over, tighter particle identification requirements are responsible for
a lower efficiency ratio in the low-m(μ+μ−) region. The accuracy
with which the simulation reproduces the track reconstruction and
particle identification is limited. Therefore, the corresponding effi-
ciencies are also studied in data and systematic uncertainties are
assigned.

An upper limit on the absolute branching fraction is given using
an estimate of the branching fraction of the normalisation mode.
The D0 → π+π−φ(→ μ+μ−) branching fraction is estimated us-
ing the results of the amplitude analysis of the D0 → K +K −π+π−
decay performed at CLEO [25]. Only the fit fraction of the de-
cay modes in which the two kaons originate from an intermedi-
ate φ resonance are considered and the D0 → π+π−φ(→ μ+μ−)

branching fraction is calculated by multiplying this fraction by the
total D0 → K +K −π+π− branching fraction and using the known
value of B(φ → μ+μ−)/B(φ → K +K −) [24]. There are several
interfering contributions to the D0 → π+π−φ(→ K +K −) ampli-
tude. Considering the interference fractions provided in Ref. [25],
the following estimate for the branching fraction is obtained,
B(D0 → π+π−φ(→ μ+μ−)) = (5.2 ± 0.6) × 10−7. This estimate
includes only the statistical uncertainty and refers to the baseline
fit model used for the CLEO measurement. Similar estimates for
B(D0 → π+π−φ(→ μ+μ−)) are performed using all the alterna-
tive models considered in Ref. [25] assuming the interference frac-
tions to be the same as for the baseline model. The spread among
the estimates is used to assign a systematic uncertainty of 17%
on B(D0 → π+π−φ(→ μ+μ−)). The above procedure to estimate
B(D0 → π+π−φ(→ μ+μ−)) is supported by the narrow width of
the φ resonance resulting in interference effects with other chan-
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Table 2
Relative systematic uncertainties averaged over all the m(μ+μ−) regions for the
efficiency ratio.

Source Uncertainty (%)

Trigger efficiency 5
Hadron identification 4
Reconstruction and selection efficiency 5
Muon identification 1
Finite simulation sample size 12–16

Total 15–18

nels [25] that are negligible compared to the statistical uncertainty.
The estimate for B(D0 → π+π−φ(→ μ+μ−)) is (5.2 ± 1.1) ×
10−7, including both statistical and systematic uncertainties, and
is used to set an upper limit on the absolute D0 → π+π−μ+μ−
branching fraction.

A possible alternative normalisation, with respect to the ρ/ω
dimuon mass region, would be heavily limited by the low statis-
tics available and the relatively high contamination from D0 →
π+π−π+π− , as can be seen in Fig. 2(b).

6. Systematic uncertainties

Several systematic uncertainties affect the efficiency ratio. Dif-
ferences in the particle identification between the signal and the
normalisation regions are investigated in data. A tag-and-probe
technique applied to b → J/ψ X decays provides a large sample
of muon candidates to determine the muon identification efficien-
cies [20]. General agreement between simulation and data is found
to a level of 1%, which is assigned as a systematic uncertainty.

The particle identification performance for hadrons is investi-
gated by comparing the efficiency in D0 → π+π−π+π− candi-
dates in data and simulation as a function of the DLLKπ require-
ment. The largest discrepancy between data and simulation on the
efficiency ratio is found to be 4% and is taken as a systematic un-
certainty.

Several quantities, particularly the impact parameter, are known
to be imperfectly reproduced in the simulation. Since this may
affect the reconstruction and selection efficiency, a systematic un-
certainty is estimated by smearing track properties to reproduce
the distributions observed in data. The corresponding variation
in the efficiency ratio yields an uncertainty of 5%. The BDT de-
scription in simulation is checked using background-subtracted
D0 → π+π−π+π− candidates where no significant difference is
seen. Therefore, no extra systematic uncertainty is assigned.

The systematic uncertainty due to possible mismodelling of the
trigger efficiency in the simulation is assigned as follows. The trig-
ger requirements in simulations are varied reproducing the typical
changes of trigger configurations that occurred during data taking
and an alternate efficiency ratio is calculated in both the m(μ+μ−)

signal regions. The largest difference between the alternate and the
baseline efficiency ratio, 5%, is found in the low-m(μ+μ−) region.
This difference is assumed as the overall systematic uncertainty on
the trigger efficiency.

The uncertainties on the efficiency ratio due to the finite size
of the simulated samples in the low- and high-m(μ+μ−) regions
are 12% and 16% respectively. The production of significantly larger
sample of simulated events is impractical due to the low recon-
struction and selection efficiencies, particularly in the signal re-
gions. In addition, the statistical uncertainties of the fitted yields in
data, listed in Table 1, dominate the total uncertainty. The sources
of uncertainty are summarised in Table 2.

According to simulations, biases in the efficiency ratio intro-
duced by varying the relative contribution of D0 →
ρ0(→ ππ)φ(→ μμ) and three-body D0 → π+π−φ(→ μ+μ−)

Fig. 4. Observed (solid curve) and expected (dashed curve) CLs values as a func-
tion of B(D0 → π+π−μ+μ−)/B(D0 → π+π−φ(→ μ+μ−)). The green (yellow)
shaded area contains 68.3% and 95.5% of the results of the analysis on experiments
simulated with no signal. The upper limits at the 90(95)% CL are indicated by the
dashed (solid) line. (For interpretation of the references to colour in this figure leg-
end, the reader is referred to the web version of this article.)

decays are well within the assigned uncertainty. Varying the value
of B(D0 → π+π−φ(→ μ+μ−)) has a negligible effect on the
number of leakage events, and no additional systematic uncer-
tainty is assigned.

The systematic uncertainties affecting the yield ratio are taken
into account when the branching fraction limits are calculated. The
shapes of the signal peaks are taken from the D0 → π+π−π+π−
samples separately for each m(μ+μ−) region to account for varia-
tions of the shape as a function of m(μ+μ−). The impact of alter-
native shapes for the signal and misidentified D0 → π+π−π+π−
decays on the fitted yields and the final limit are investigated.
The signal and misidentification background shapes in the sig-
nal regions are fitted using the shapes obtained in the φ re-
gion, and from D0 → π+π−π+π− events reconstructed as D0 →
π+π−μ+μ− , but without any muon identification requirements.
The change in the result is negligible.

The absolute branching fraction limit includes an extra uncer-
tainty of 21% from the estimate of the branching fraction of the
normalisation mode.

7. Results

The compatibility of the observed distribution of candidates
with a signal plus background or background-only hypothesis is
evaluated using the CLs method [26,27], which includes the treat-
ment of systematic uncertainties. Upper limits on the non-resonant
D0 → π+π−μ+μ− to D0 → π+π−φ(→ μ+μ−) branching frac-
tion ratio and on the absolute D0 → π+π−μ+μ− branching frac-
tion are determined using the observed distribution of CLs as a
function of the branching fraction in each m(μ+μ−) search region.
The extrapolation to the full m(μ+μ−) phase-space is performed
assuming a four-body phase-space model for D0 → π+π−μ+μ−
for which fractions in each m(μ+μ−) region are quoted in Ta-
ble 1. The observed distribution of CLs as a function of the total
branching fraction ratio for D0 → π+π−μ+μ− is shown in Fig. 4.
A similar distribution for the absolute branching fraction is shown
in Fig. 5. The upper limits on the branching fraction ratio and
absolute branching fraction at 90% and 95% CL and the p-values
(1 − CLb) for the background-only hypothesis are given in Table 3
and in Table 4. The p-values are computed for the branching frac-
tion value at which CLs+b equals 0.5. Despite the smaller event
yield for D0 → π+π−μ+μ− relative to D0 → π+π−φ(→ μ+μ−),
the upper limit on the total relative branching fraction is of order
unity due to several factors. These are the low reconstruction and
selection efficiency ratio in the signal region, the systematic and
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Fig. 5. Observed (solid curve) and expected (dashed curve) CLs values as a function
of B(D0 → π+π−μ+μ−). The green (yellow) shaded area contains 68.3% and 95.5%
of the results of the analysis on experiments simulated with no signal. The upper
limits at the 90(95)% CL are indicated by the dashed (solid) line. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 3
Upper limits on B(D0 → π+π−μ+μ−)/B(D0 → π+π−φ(→ μ+μ−)) at 90 and
95% CL, and p-values for the background-only hypothesis in each m(μ+μ−) region
and in the full m(μ+μ−) range (assuming a phase-space model).

Region 90% 95% p-value

low-m(μ+μ−) 0.41 0.51 0.32
high-m(μ+μ−) 0.17 0.21 0.12
Total 0.96 1.19 0.25

Table 4
Upper limits on B(D0 → π+π−μ+μ−) at 90 and 95% CL in each m(μ+μ−) region
and in the full m(μ+μ−) range (assuming a phase-space model).

Region 90% [×10−7] 95% [×10−7]

low-m(μ+μ−) 2.3 2.9
high-m(μ+μ−) 1.0 1.2
Total 5.5 6.7

statistical uncertainties, and the extrapolation to the full m(μ+μ−)

range according to a phase-space model.
It is noted that, while the results in individual m(μ+μ−) re-

gions naturally include possible contributions from D0 →
ρ(→ π+π−)μ+μ− since differences in the reconstruction and se-
lection efficiency with respect to the four-body D0 → π+π−μ+μ−
are negligible, the extrapolation to the full m(μ+μ−) phase-space
depends on the four-body assumption. Distinguishing a ρ compo-
nent in the dipion mass spectrum requires an amplitude analysis
which would be hardly informative given the small sample size
and beyond the scope of this first search.

Contributions for non-resonant D0 → π+π−μ+μ− events in
the normalisation mode m(μ+μ−) window are neglected in the
upper limit calculations. Assuming a branching fraction equal
to the 90% CL upper limit set in the highest m(μ+μ−) re-
gion, the relative contribution of the non-resonant mode is esti-
mated to be less than 3%, which is small compared with other
uncertainties.

8. Conclusions

A search for the D0 → π+π−μ+μ− decay is conducted us-
ing pp collision data, corresponding to an integrated luminosity
of 1.0 fb−1 at

√
s = 7 TeV recorded by the LHCb experiment. The

numbers of events in the non-resonant m(μ+μ−) regions are com-
patible with the background-only hypothesis. The limits set on
branching fractions in two m(μ+μ−) bins and on the total branch-
ing fraction, excluding the resonant contributions and assuming a
phase-space model, are

B(D0 → π+π−μ+μ−)

B(D0 → π+π−φ(→ μ+μ−))
< 0.96(1.19),

at the 90(95)% CL,

B(D0 → π+π−μ+μ−) < 5.5(6.7) × 10−7,

at the 90(95)% CL.

The upper limit on the absolute branching fraction is improved by
a factor of 50 with respect to the previous search [5], yielding the
most stringent result to date.
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