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Abstract

We consider a minimal supersymmetric extension of the Standard Model, with right-handed

neutrinos and local B−L, the difference between baryon and lepton number, a symmetry which

is spontaneously broken at the scale of grand unification. To a large extent, the parameters of

the model are determined by gauge and Yukawa couplings of quarks and leptons. We show that

this minimal model can successfully account for the earliest phases of the cosmological evolution:

Inflation is driven by the energy density of a false vacuum of unbroken B−L symmetry, which

ends in tachyonic preheating, i.e. the decay of the false vacuum, followed by a matter dominated

phase with heavy B−L Higgs bosons. Nonthermal and thermal processes produce an abundance

of heavy neutrinos whose decays generate primordial entropy, baryon asymmetry via leptogenesis

and dark matter consisting of gravitinos or nonthermal WIMPs. The model predicts relations

between neutrino and superparticle masses and a characteristic spectrum of gravitational waves.
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1 Introduction

Today, we have the Standard Model of particle physics as well as the ΛCDM model of cosmology,

which describe a wealth of experimental and observational data with an accuracy far beyond expec-

tation [1]. On the other hand, despite this success, it is obvious that both standard models do not

represent a final theory. The symmetry structure of the Standard Model, the smallness of neutrino

masses and the discovery of a Higgs boson [2, 3] with a mass in between the vacuum stability and

the triviality bound point towards grand unification as the next step beyond the Standard Model.

Similarly, the parameters of the ΛCDM model, the abundance of matter and dark matter, the ap-

parent cosmological constant and the temperature anisotropies of the cosmic microwave background

(CMB) ask for an explanation which requires physics beyond the Standard Model.

Supersymmetry is an attractive framework to extrapolate the Standard Model of particle physics

to the energy scale of grand unification, ΛGUT ∼ 1016 GeV. It also introduces natural dark matter

candidates [4–6] and scalar fields which can realize inflation, thereby providing an important link

between particle physics and cosmology. Moreover, neutrino masses require right-handed neutrinos

whose large Majorana masses can account for the tiny masses of the known neutrinos via the

seesaw mechanism. These Majorana masses break the symmetry B−L, the difference between

baryon and lepton number, and their decays can generate a baryon asymmetry via leptogenesis [7].
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Extrapolating the feature of the Standard Model that all masses are generated by spontaneous

symmetry breaking suggests that also B−L is a spontaneously broken local symmetry.

Following these arguments, we arrive at a minimal supersymmetric extension of the Standard

Model, which is described by the superpotential

W =
√
λΦ

(
v2
B−L
2
− S1S2

)
+

1√
2
hni n

c
in
c
iS1 + hνij5

∗
in

c
jHu +WMSSM , (1)

where S1 and S2 are the chiral superfields containing the Higgs field responsible for breaking B−L,

and the nci denote the superfields containing the charge conjugates of the right-handed neutrinos.

The symmetry-breaking sector of Eq. (1), involving the superfields S1, S2 and Φ, is precisely

the superpotential of F-term hybrid inflation, with Φ being a singlet whose scalar component φ

acts as the inflaton [8, 9]. vB−L is the scale at which B−L is broken. The B−L charges are

qS ≡ qS2 = −qS1 = 2, qΦ = 0, and qnci = 1. h and λ denote coupling constants and WMSSM

represents the MSSM superpotential,

WMSSM = huij10i10jHu + hdij5
∗
i10jHd . (2)

For convenience, all superfields have been arranged in SU(5) multiplets, 10 = (q, uc, ec) and

5∗ = (dc, l), and i, j = 1, 2, 3 are flavor indices. We assume that the color triplet partners of the

electroweak Higgs doublets Hu and Hd have been projected out. The vacuum expectation values

vu = 〈Hu〉 and vd = 〈Hd〉 break the electroweak symmetry. In the following, we will assume large

tanβ = vu/vd, implying vd � vu ' vEW =
√
v2
u + v2

d. We will restrict our analysis to the case of a

hierarchical heavy (s)neutrino mass spectrum, M1 �M2,M3, where Mi = hni vB−L. Furthermore,

we assume the heavier (s)neutrino masses to be of the same order of magnitude as the common

mass mS of the particles in the symmetry-breaking sector, for definiteness we set M2 = M3 = mS .

Key parameters of the analysis are then the B−L breaking scale vB−L, the mass of the lightest of

the heavy (s)neutrinos M1, and the effective light neutrino mass parameter m̃1, cf. [10],

vB−L '
v2

EW

mν
, M1 � vB−L , m̃1 ≡

(hν†hν)11v
2
EW

M1
. (3)

Here, mν =
√
m2m3 ∼ 3×10−2 eV is the geometric mean of the two light neutrino mass eigenvalues

m2 and m3, characterizing the light neutrino mass scale. In addition to the chiral superfields, the

model also contains a vector supermultiplet V ensuring invariance under local B−L transformations

and the gravity supermultiplet consisting of the graviton G and the gravitino G̃.

In the following sections, we shall show that this Minimal Supersymmetric Model (MSM),

whose parameters are largely fixed by low-energy experiments, provides a consistent description of

the transition from an inflationary phase to the hot early universe. During this ‘pre- and reheating’

process, the matter-antimatter asymmetry and the dark matter abundance are generated. Most of

our discussion will be based on Refs. [10–12].

Our work is closely related to previous studies of thermal leptogenesis [13, 14] and nonthermal

leptogenesis via inflaton decay [15–18], where the inflaton lifetime determines the reheating tem-

perature. In supersymmetric models with global B−L symmetry, the scalar superpartner Ñ1 of
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the lightest heavy Majorana neutrino N1 can play the role of the inflaton in chaotic [19, 20] or

hybrid [21, 22] inflation models. Local B−L breaking in connection with hybrid, shifted hybrid

and smooth hybrid inflation has been considered in Ref. [23]. One of the main motivations for

nonthermal leptogenesis has been that the ‘gravitino problem’ for heavy unstable gravitinos [24–28]

can be avoided by means of a low reheating temperature. In the following, we shall assume that

the gravitino is either the lightest superparticle (LSP) or very heavy, m
G̃

& 10 TeV. In the first

case, gravitinos, thermally produced at a reheating temperature compatible with leptogenesis, can

explain the observed dark matter abundance [29]. For very heavy gravitinos, thermal production

and subsequent decay into a wino or higgsino LSP can yield nonthermal WIMP dark matter [30–32].

The MSM, defined in Eq. (1), postdicts the earliest phases of the cosmological evolution. The

energy density of a false vacuum with unbroken B−L symmetry drives inflation. Consistency with

the measured amplitude of the temperature anisotropies of the cosmic microwave background fixes

vB−L, the scale of B−L symmetry breaking, to be the GUT scale. Inflation ends by tachyonic

preheating [33], i.e. the decay of the false vacuum, which sets the stage for a phase dominated

by nonrelativistic matter in the form of heavy B−L Higgs bosons. The further development is

described by Boltzmann equations. Nonthermal and thermal processes produce an abundance of

heavy neutrinos whose decays generate primordial entropy, baryon asymmetry via leptogenesis

and gravitino dark matter from scatterings in the thermal bath. This whole pre- and reheating

process is imprinted on the spectrum of primordial gravitational waves [34]. It is remarkable that

the initial conditions of the radiation dominated phase are not free parameters of a cosmological

model. Instead, they are determined by the parameters of a Lagrangian, which in principle can be

measured by particle physics experiments and astrophysical observations. The consistency of hybrid

inflation, leptogenesis and dark matter entails interesting relations between the lightest neutrino

mass m1, the gravitino mass and possibly wino or higgsino masses.

The paper is organized as follows. In Sec. 2, we discuss F-term hybrid inflation. Corrections from

supersymmetry breaking lead to a two-field model which can account for all results deduced from

the recently released PLANCK data. Sec. 3 deals with tachyonic preheating and the important

topic of cosmic string formation, with emphasis on the current theoretical uncertainties. The

description of the reheating process by means of Boltzmann equations and the resulting relations

between neutrino masses and superparticle masses are the subject of Sec. 4. The predictions of

the gravitational wave spectrum due to inflation, cosmic strings, pre- and reheating are reviewed

in Sec. 5. Finally, observational prospects are addressed in Sec. 6.

2 Inflation

The superpotential of the MSM, cf. Eq. (1), allows for a phase of F-term hybrid inflation. For

|φ| & vB−L, the B−L Higgs fields are fixed at zero, B−L is unbroken and the energy density of the

universe is dominated by the false vacuum energy density, ρ0 ' (λ/4) v4
B−L ≡ V0, generated by the

non-vanishing vacuum expectation value (vev) of the auxiliary field Fφ and inducing spontaneous
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supersymmetry breaking. Here, we briefly review the dynamics and predictions of this inflation

model, with particular focus on the status of F-term hybrid inflation in the light of the recent

PLANCK results [35].

2.1 Scalar potential

At the high energy scales involved in inflation, supergravity corrections to the Lagrangian become

important, resulting in a tree-level scalar F- and D-term potential given by

V F
SUGRA = eK/M

2
Pl

∑
αβ̄

Kαβ̄ DαW Dβ̄W ∗ − 3
|W |2

M2
Pl

 , V D
SUGRA =

1

2
g2

(∑
α

qαKα zα

)2

, (4)

where DαW = Wα + KαW/M
2
Pl; the subscript α (ᾱ) denotes the derivative with respect to the

(complex conjugate of the) scalar component zα of the superfield Φα carrying U(1) gauge charge

qα. Moreover, Kαβ̄ is the inverse Kähler metric and MPl = 2.4 × 1018 GeV denotes the reduced

Planck mass. For a canonical Kähler potential,

K =
∑
α

|zα|2 , (5)

the D-term scalar potential reduces to the expression familiar from global supersymmetry, but an

important supergravity contribution arises from the F-term potential, V F
SUGRA ⊃ |zα|2ρ0/M

2
Pl. This

yields large contributions to the masses of the scalar fields zα of the theory. For the superpotentialm

in Eq. (1), this stabilizes the singlet sneutrinos and the MSSM scalars at a vanishing field value.

The B−L Higgs boson masses also obtain various supergravity contributions. However, these are

suppressed by factors of (vB−L/MPl)
2 or (φ/MPl)

2 compared to the leading order terms, which

match the result found in global supersymmetry,

(
mS
±
)2

= λ

(
|φ|2 ± 1

2
v2
B−L

)
,
(
mS
f

)2
= λ |φ|2 . (6)

The F-term supergravity contribution discussed above does not give a mass term to the inflaton

φ because, after expanding eK/M
2
Pl in Eq. (4), the term in question is canceled by the correspond-

ing term in DφWDφ̄W
∗. The leading order supergravity contribution to the inflaton mass thus

stems from the term proportional to |φ|4v4
B−L/M

4
Pl in the scalar potential [36]. In addition, since

supersymmetry is broken during inflation, we need to take the one-loop Coleman-Weinberg (CW)

potential for the inflaton field into account, obtained by integrating out the heavy B−L Higgs

bosons,

V1` =
1

64π2
STr

[
M4

(
ln

(
M2

Q2

)
− 1

2

)]
'
λ2v4

B−L

64π2

[
ln

(
2|φ|2

v2
B−L

)
+O

(
v4
B−L

4|φ|4

)]
, (7)

Here, STr denotes the supertrace running over all degrees of freedom of S1 and S2. M is the

corresponding mass matrix, cf. Eq. (6), and Q an appropriate renormalization scale, which we have

set to Q2 = λv2
B−L/2.
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From the resulting scalar potential, V = V F+D
SUGRA + V1`, we find the following picture: For

|φ| > vB−L/
√

2, the complex scalars s1,2 ∈ S1,2 are fixed at zero and φ slowly rolls towards the

origin. At |φ| = vB−L/
√

2,
(
mS
−
)2

becomes negative, triggering a tachyonic instability. The Higgs

fields acquire a vev and B−L is broken. Both the Higgs (which, now that B−L is broken, is best

parametrized in unitary gauge as a radial degree of freedom dubbed σ′ in Ref. [10], cf. also Ref. [37]

for the explicit relation between σ′ and the symmetry-breaking Higgs mass eigenstate in arbitrary

gauge) and the inflaton field then quickly fall into their true vacuum, |φ| → 0 and σ′ →
√

2 vB−L,

eliminating the vacuum energy contributions of the scalar potential and ending inflation.

2.2 Slow-roll inflation

In the slow-roll approximation, the dynamics of the homogeneous inflaton field is governed by

3Hφ̇ = −∂V/∂φ∗ , where H denotes the Hubble parameter. For a scalar potential only depending

on the absolute value of φ, cf. Eq. (7), we can rewrite this in terms of the radial and angular

component of φ = 1√
2
ϕe−iθ,

3Hϕ̇ = −V ′(ϕ) , θ̇ = 0 . (8)

Turning to the quantum fluctuations of the inflaton field which are visible today in the CMB,

we now evaluate the scalar potential and its derivatives at ϕ = ϕ∗, the value of ϕ at N∗ ≈ 55

e-folds before the end of inflation, when the reference scale commonly used to describe the CMB

fluctuations left the horizon. With ϕf denoting the value of the inflaton at the end of inflation,1

ϕ∗ is given by

ϕ2
∗ ≈ ϕ2

f +
λ

4π2
M2

PlN∗ (9)

Of particular interest in the following will be the predictions from F-term hybrid inflation for the

amplitude of the scalar fluctuations As, the scalar spectral index ns and the tensor-to-scalar ratio r,

As =
H2

8π2εM2
Pl

∣∣∣∣
ϕ∗

≈ 1

3

(
vB−L
MPl

)4

N∗ ,

ns = 1− 6ε+ 2η|ϕ∗ ≈ 1− 1

N∗
,

r =
At
As

= 16ε

∣∣∣∣
ϕ∗

≈ λ

2π2

1

N∗
,

(10)

where At = 2H2/(π2M2
Pl)|ϕ∗ denotes the amplitude of the tensor fluctuations, and ε and η are the

so-called slow-roll parameters,

ε =
M2

Pl

2

(
V ′

V

)2

, η = M2
Pl

V ′′

V
. (11)

Moreover, in Eq. (10) we have employed the approximation2 ϕ2
∗ � ϕ2

f .

1Here, ϕf is determined by either mS
−(ϕc) = 0, cf. Eq. (6), or by the violation of the slow-roll condition, i.e.

|η(ϕη)| = 1, cf. Eq. (11), whatever occurs earlier: ϕf ≈ max{vB−L,
√
λMPl/(

√
8π)}.

2Note that, for small values of λ, the two terms in Eq. (9) can be of similar importance, leading to a slight deviation

from the results listed in Eq. (10).
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Figure 1: Scalar potential for inflation along the real axis in the complex φ field space after adding a constant

term W0 to the superpotential. Slow-roll inflation is possible both for θ = 0 and θ = π. Here λ = 4.5 × 10−6,

vB−L = 2.9× 1015 GeV and mG̃ = 47.5 TeV.

2.3 F-term hybrid inflation in the light of PLANCK

Comparing these results with the recently published PLANCK data [35,38],

As = (2.18± 0.05)× 109 , ns = 0.963± 0.0007 , r < 0.26 , (12)

we find that the B−L breaking scale is fixed to vB−L ≈ 8 × 1015 GeV by requiring the correct

normalization of As, the spectral index ns ≈ 0.98 is rather large and the tensor-to-scalar ratio is

easily below the current bound. In particular, the large value for ns has raised the question whether

F-term hybrid inflation is still viable in view of the PLANCK results. To answer this question,

we must go beyond the approximations leading to Eq. (10). First, we will drop the approximation

ϕ2
∗ � ϕ2

f , leading to corrections of the predictions listed in Eq. (10). Second, taking into account soft

supersymmetry breaking, the superpotential receives a constant term W0 = m
G̃
M2

Pl proportional

to the gravitino mass [39], leading to an additional contribution to the scalar potential, studied e.g.

in Refs [40,41],

Vm
G̃

= −2
√
λv2

B−LmG̃
|φ| cos θ . (13)

This term breaks the degeneracy appearing in Eq. (7), which only depends on the absolute value |φ|
of the inflaton field but not on its phase θ. As a result, the inflationary predictions found in Ref. [40]

assuming θ = π differ from those in Ref. [41], which uses θ = 0.3 In particular, for sufficiently large

Vm
G̃

, we find a hill-top potential for θ = 0, while for θ = π, one still finds a monotonously decreasing

potential along the inflationary trajectory (along the arrows in Fig. 2), cf. Fig. 1.

3Note that Refs. [40,41] use a different sign convention in the superpotential, implying θ → θ + π.
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Figure 2: Inflationary trajectories in the full two-field inflation model. Selection of possible trajectories (solid green

lines) in the scalar potential V (φr, φi) depicted by the dot-dashed orange contour lines and the shading. Lines of

constant N are marked by the dashed blue contours, with the beginning and end of inflation (N = N∗ and N = 0,

respectively) marked by thicker contours.

Indeed, these are only two extreme cases for possible inflationary trajectories in the full two-field

inflation model resulting from Eqs. (7) and (13). In the two-field model, the end point of inflation

φf becomes a ‘critical line’ in the complex φ plane, with each point on this line representing a

possible end point for inflation. Hence, in contrast to the single-field case, there is an additional

degree of freedom, i.e. the choice of the inflationary trajectory labeled by θf . This is visualized in

Fig. 2, which shows a selection of possible inflationary trajectories (in green) in the scalar potential

(dot-dashed orange contour lines and shading). Contour lines denoting constant numbers of e-folds

N are shown as dashed blue lines, with the ‘critical line’, N = 0, and the onset of the last N∗

e-folds, N = N55, emphasized. To demonstrate the dependence of the model predictions on the

choice of the trajectory, Fig. 3 shows the predictions for the amplitude As and the spectral index ns

as functions of the final phase θf for λ = 4.5× 10−6, vB−L = 2.9× 1015 GeV and m
G̃

= 47.5 TeV.

For this parameter example, we see that θf ' 16◦ reproduces the correct amplitude, cf. Eq. (12),

while simultaneously yielding a value for the spectral index of ns = 0.965 in very good agreement

with the data.

A third possibility of manipulating Eq. (10) is by resorting to a non-minimal Kähler poten-

tial [42]. This introduces, in particular, a term quadratic in φ in the scalar potential. Tuning the

expansion coefficients of such a Kähler potential, the spectral index can be tuned to lower values,

achieving accordance with the PLANCK data even for θ = π. However, the quadratic term then

comes with a negative sign, implying, together with the positive |φ|4 term the existence of a hill-top

potential and a local minimum at |φ| 6= 0 where the inflaton can get trapped. Avoiding this requires

some fine-tuning in the initial conditions for |φ| [40].

On top of that, there are also further constraints which must be taken into account in a realistic

model. First, the superpotential in Eq. (1) will lead to the production of cosmic strings at the
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Figure 3: Amplitude and spectral index of the scalar primordial fluctuations for λ = 4.5×10−6, vB−L = 2.9×1015 GeV

and mG̃ = 47.5 TeV. The phase of the endpoint of inflation, θf , labels different inflationary trajectories.

end of inflation, due to the spontaneous breaking of U(1)B−L. We will come back to this point

in Sec. (3.2). Moreover, the abundance of nonthermally produced gravitinos, controlled by the

symmetry-breaking scale, the common mass of the inflaton and B−L Higgs in the true vacuum,

and the reheating temperature [43,44],

Y
G̃
∝
v2
B−Lm

2
S

TRH
, (14)

must be sufficiently low, so that the sum of nonthermal and thermal, cf. Sec. 4, gravitino abundance

does not produce a gravitino problem [24–28,45–47]. Note, however, that the nonthermal gravitino

abundance can be suppressed compared to the estimate in Eq. (14), if the massive particle governing

the universe during the reheating phase decays sufficiently fast.

Taking all of this together, we find that F-term hybrid inflation is indeed still viable in light of

the PLANCK data, however some tuning is required. Accepting a non-minimal Kähler potential

with some tuning in its coefficients as well as in the initial conditions for |φ|, accordance with the

PLANCK data can be achieved for θf ∼ π. Staying with a minimal Kähler potential, one has two

options to reproduce the experimental data. One possibility is to tune the amplitude of the linear

term in Eq. (13) against the CW term in Eq. (7) in the potential, leading to the situation shown in

Fig. 2. In this case, small values for ns can be achieved for θf ∼ 0, but again tuning of the initial

condition for the radial degree |φ| is necessary to prevent the inflaton from being trapped on the

wrong side of the hill-top potential.4 The second possibility is to allow the linear term to dominate

over the CW term. Then, however, the initial phase of φ must be tuned because otherwise one ends

up on a trajectory where inflation does not end, i.e. one risks to ‘miss’ the minimum generated by

the CW term at small |φ|, such that |φ| always remains larger than the critical value. For a more

detailed analysis of the full two-field inflation model, cf. Ref. [48].

In summary, successful inflation can be achieved, but it imposes constraints on the B−L break-

ing scale and on the coupling λ. In the context of the Froggatt-Nielsen flavor model used to

4Note that nevertheless an arbitrary amount of e-folds of inflation can be realized in this setup.
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parametrize the Yukawa couplings in Ref. [10], this then constrains the mass of the heaviest of the

right-handed neutrinos M1. In the following, we will thus consider the restricted parameter space

vB−L = 5× 1015 GeV , 109 GeV ≤M1 ≤ 3× 1012 GeV , 10−5 eV ≤ m̃1 ≤ 1 eV , (15)

where the variation of the effective light neutrino mass parameter m̃1 accounts for the uncertainties

of the Froggatt-Nielsen model. The values of vB−L and λ quoted here correspond to the option

of choosing θf = π and using a non-minimal Kähler potential, cf. Ref. [40]. For a discussion of

cosmological B−L breaking involving smaller values for vB−L, cf. Ref. [12].

3 Tachyonic Preheating and Cosmic Strings

The end of hybrid inflation induces a negative squared mass term for the B−L Higgs field σ′ in

the false vacuum, triggering the U(1)B−L breaking phase transition. The cosmological realization

of this phase transition is accompanied by two important nonperturbative processes: tachyonic

preheating [33] and the formation of cosmic strings [49].

3.1 Tachyonic preheating

Phase transition

Tachyonic preheating is a fast and nonperturbative process triggered by the tachyonic instability in

the scalar potential in the direction of the Higgs field. As the inflaton field passes a critical value φc,

the Higgs field σ′ acquires a negative effective mass squared −m2
σ, with m2

σ =
√

2λvB−L|φ̇c|t in the

linearized equation of motion for σ′ close to the instability φc. This causes a faster-than-exponential

growth of the quantum fluctuations of the Higgs field σ′k with wave numbers |~k| < mσ [50], while

the mean value of the Higgs field remains zero. Once the amplitude of these fluctuations, v(t) =
1√
2
〈σ′2〉 = 1√

2
〈σ′2(t,x)〉1/2x ,5 reaches 〈σ′2(t∗)〉 = O(v2

B−L), the curvature of the potential for the

homogeneous background field σ′ becomes positive and the usual oscillating behaviour of the modes

is re-established [33], while v(t) approaches vB−L. A direct consequence of the early phase of

exponential growth are high occupation numbers in the low-momentum Higgs modes and hence a

semi-classical situation with a large abundance of nonrelativistic B−L Higgs bosons.

A further result of this nonperturbative process is the formation of ‘bubble’-like inhomogeneities,

which randomly feature different phases of the complex Higgs field [50,51]. Their initial size is given

by the smallest scale amplified during tachyonic preheating, referred to as k−1
∗ . These bubbles

expand at the speed of light and eventually collide with each other. This phase of the preheating

process is an important source of gravitational waves (GWs), cf. [53], a point to which we will

return in Sec. 5. After this very turbulent phase, the true Higgs vev is reached in almost the entire

volume, with the regimes of false vacuum reduced to topologically stable cosmic strings, cf. Sec. 3.2,

separated by the characteristic length scale k−1
∗ ≈ (

√
2λvB−L|φ̇c|)−1/3.

5Here, bold letters indicate 3-vectors.
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Figure 4: Numerical and analytical results for particle production during tachyonic preheating, taken from Ref. [52].

Left panel: Evolution of the quantum fluctuations of the Higgs field φ(t) ≡ σ′(t)/
√

2, normalized to the symmetry-

breaking scale v ≡ vB−L, as well as the number density nB of bosonic particles coupled to it. Right panel: Spectrum

of occupation numbers for bosonic and fermionic particles coupled to the Higgs.

Secondary particle production

The mode equations for the particles coupled to the B−L Higgs field, i.e. for the gauge, Higgs,

inflaton and neutrino supermultiplets, feature masses proportional to v(t). The growth of 〈σ′2〉
during tachyonic preheating thus induces a rapid change of their effective masses. The resulting

particle production was studied in Ref. [52], with the results depicted in Fig. 4. Here, for sim-

plicity, an abrupt transition of the inflaton vev to zero is assumed, introducing the parameter

m = mσ(φ̇ct → φc).
6 The left panel shows the evolution of 〈σ′2〉 normalized to the symmetry-

breaking scale vB−L, calculated using a lattice simulation (green curve). For comparison, the red

curve shows an analytical approximation, v(t) =
vB−L

2

(
1 + tanh m(t−t∗)

2

)
. The pink and blue

curves depict the number densities of bosonic particles coupled to the Higgs, again calculated using

a lattice calculation and an analytical approximation, respectively. The right panel examines the

momentum distribution of these bosons (and also of fermions coupled to the Higgs), showing the

spectrum of occupation numbers. Again, both the numerical and analytical results are shown. We

see that, just like the Higgs bosons themselves, the particles coupled to it are produced with very

low momentum, i.e. nonrelativistically.

Based on these results, the energy and number densities for bosons and fermions coupled to the

Higgs boson after tachyonic preheating have been estimated as [52]7

ρB/ρ0 ' 2× 10−3 gσ λ f(x1, 1.3) , nB(x1) ' 1× 10−3 gσm
3
S f(x1, 1.3)/x1 ,

ρF /ρ0 ' 1.5× 10−3 gσ λ f(x1, 0.8) , nF (x1) ' 3.6× 10−4 gσm
3
S f(x1, 0.8)/x1 ,

(16)

with f(x1, x2) = (x2
1 + x2

2)1/2 − x2 and x1 = mi/mS , where mi denotes the mass of the respective

particle in the true vacuum and gσ counts its spin and internal degrees of freedom.

6The effect of the inflaton dynamics on this nonperturbative particle production requires further investigation.
7These estimates can be significantly enhanced by quantum effects [54], which also require further investigation.
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3.2 Cosmic strings

Due to the non-trivial topology of its vacuum manifold, the Abelian Higgs model underlying the

B−L phase transition gives rise to solitonic field configurations, so-called cosmic strings; for reviews,

cf. e.g. Refs. [55–57]. These cosmic strings are formed during the process of tachyonic preheating

and are topologically stable. The evolution of the resulting network is governed by the intersection

of the infinite strings, which leads to the formation of closed loops separated from the infinite

string, as well as by the energy loss due to the emission of GWs, Higgs and gauge particles. After

a relaxation time, the network reaches the scaling regime, i.e. the typical length scale of the cosmic

string network remains constant relative to the size of the horizon. This implies that a constant

fraction of the total energy density is stored in cosmic strings throughout the further evolution of

the universe and that there are O(1) cosmic strings per Hubble volume.

In the scaling regime, the cosmic string network is characterized by the energy per unit length µ.

In the Abelian Higgs model, which is based on a field theory featuring a spontaneously broken local

U(1) symmetry, µ is given by [58]

µ = 2πB(β)v2
B−L , (17)

where β = (mS/mG)2 = λ/(8g2) is the ratio of the masses of the symmetry-breaking Higgs boson

and the gauge boson in the true vacuum, and B(β) is a slowly varying function parameterizing the

deviation from the Bogomol’nyi bound,

B(β) '

{
1.04β0.195 , if 10−2 < β � 1

2.4/ ln (2/β) , if β < 10−2
. (18)

For the special case of β = 1 the Bogomol’nyi bound is saturated and B(1) = 1 [59].

Further important quantities describing the string network are the cosmic string width, given

by m−1
G in the Abelian Higgs model, and the length scale ξ separating two strings. From Sec. 3.1,

we know that the characteristic length separating two strings at the time of their formation is

ξ ' k−1
∗ = (

√
2λvB−L|φ̇c|)−1/3 . (19)

This also determines the relaxation time of the cosmic string network, τstring ∼ ξ [50,60]. Note that

in the Nambu-Goto model, an alternative to the Abelian Higgs cosmic string model which assumes

infinitely thin cosmic strings, the energy scale µ is an input parameter.

Observational prospects

So far, no experimental evidence for the existence of cosmic strings has been found. However, current

and upcoming experiments are starting to seriously probe the cosmologically interesting regions of

the parameter space. First, cosmic strings give rise to anisotropies in the CMB temperature map.

They distort the surface of last scattering of the CMB photons, leaving an imprint on the spectrum

observable today. Since the CMB photons observable today stem from roughly 105 Hubble patches
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during recombination, these observations are mainly sensitive to the effect of long (Hubble-sized)

strings at recombination and not to small cosmic string loops. In contrast to the perturbations due

to inflation, these anisotropies are not phase-correlated across distant Hubble patches and hence

the resulting multipole spectrum of the two-point correlation function is suppressed at large scales.

Moreover, whereas the primordial power spectrum due to inflation is (nearly) scale-invariant, the

anisotropies on the last scattering surface due to cosmic strings are governed by a characteristic

scale. The resulting spectrum thus features a single broad peak associated with this scale. Due

to the re-scattering of a fraction of the CMB photons at reionisation, the CMB spectrum is, to

a lesser extent, also sensitive to the long cosmic strings present at reionisation. This leads to a

second, smaller peak in the spectrum, in particular visible in the power spectrum of the B-mode

polarization, cf. e.g. Ref. [61] for a recent analysis. The fraction of the amplitude of the scalar

power spectrum due to a possible cosmic string contribution to the CMB temperature anisotropies

is conventionally measured at the ` = 10 multipole and is referred to as f10. The PLANCK data

implies that f10 can at most be a few percent, f10 < 2.8% [38].

Second, the gravitational field of cosmic strings gives rise to weak and strong lensing effects of

(CMB) photons on their way from the surface of last scattering or from an astrophysical source to

us. The non-observation of such effects puts a bound on the string tension µ. Again, this effect is

mainly sensitive to long (Hubble-sized) strings. Third, the energy emitted by cosmic strings in the

scaling regime is at least partly emitted in form of GWs. Due to their extremely weak coupling,

these can then propagate freely through the universe and are therefore, in principle, detectable

today. We will come back to the resulting GW background and the discovery potential of current

and upcoming GW experiments in detail in Sec. 5. Finally, the Abelian Higgs cosmic string model

entails the emission of massive radiation from cosmic strings, i.e. the emission of the Higgs and

gauge particles whose field configurations form the string. If this mechanism is still active at late

times, it could yield ultra-high-energetic cosmic rays and GeV-scale γ-rays, which have not been

observed. This, too, can be translated into a (model-dependent) bound on µ [62–66]. Currently

the most stringent and model-independent bound on the cosmic string tension comes from CMB

observations, Gµ < 3.2× 10−7 [38], and we shall mainly employ this bound in the following.

Numerical simulations and theoretical uncertainties

A quantitative understanding of the formation of cosmic strings, the dynamics of the cosmic string

network and the energy loss mechanism during the scaling regime requires lattice simulations. Per-

forming these is extremely challenging due to the huge range of scales involved in the problem [56]:

the width of the string remains constant while the scales of the network are blown up as the universe

expands. Or, in comoving coordinates, the comoving width of the string shrinks, until it becomes

comparable with the lattice spacing and the simulation loses its validity. There have been different

approaches to tackle this problem. Simulations based on solving the field equations for the Abelian

Higgs (AH) model set the comoving width to a finite constant before it comes too close to the lattice

spacing [60,67,68]. Simulations based on the Nambu-Goto (NG) string model assume cosmic strings
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to be infinitely thin, i.e. strictly one-dimensional objects, throughout the simulation [69–72]. The

outcome of simulations based on these two models is dramatically different. The AH simulations

show the formation of large, Hubble-sized structures which lose their energy predominantly by emit-

ting massive radiation, i.e. particles of the Higgs and gauge fields forming the string configuration.

The NG simulations on the other hand display the formation of small loops, which lose their energy

into GWs. The size of these loops is thought to be controlled by gravitational backreaction, but is

as yet undetermined [56]. Concerning the network of long strings, both simulations, however, yield

a similar result [56]. Which of these two simulations methods is closer to reality is currently an

open question.

In the following, we will adopt the following hypothesis: For early times, while the comoving

cosmic string width is large compared to the lattice spacing, the AH simulation describes the U(1)

phase transition very well. We will thus use the results from these simulations when discussing

the formation and early evolution of cosmic strings. For late times, the AH simulations become

questionable and the NG approximations of infinitely thin strings appears reasonable. Hence, for

late times, in particular when discussing possible GW signatures from cosmic strings, cf. Sec. 5, we

shall discuss both the AH as well as the NG results.

4 Reheating

Tachyonic preheating nonperturbatively generates a large abundance of nonrelativistic B−L Higgs

bosons as well as, to a much lesser extent, nonrelativistic abundances of the particles coupled to

the Higgs boson, cf. Sec. 3.1. Among these are the particles of the B−L gauge supermultiplet,

which decay quickly due to their comparatively strong gauge interactions. This sets the initial

conditions for the following slow, perturbative reheating process, depicted by the solid arrows in

the left panel of Fig. 5: The particles from the symmetry-breaking sector decay into particles of the

N1 supermultiplet. These (s)neutrinos, just as the (s)neutrinos produced through gauge particle

decays and tachyonic preheating as well as thermally produced (s)neutrinos, decay into MSSM

particles, thereby generating the entropy of the thermal bath as well as a lepton asymmetry [73].

Finally, the thermal bath produces a thermal abundance of gravitinos, which will turn out to be in

the right ball-park to account for the observed relic density of dark matter.

The main tool to obtain a time-resolved description of this reheating process are Boltzmann

equations, which describe the evolution of the phase space densities of the various particles species

due to decay and scattering processes in an expanding universe. After briefly introducing the

formalism of Boltzmann equations in Sec. 4.1, we will turn to the implications for leptogenesis

and dark matter production in Sec. 4.2. The results presented here are based on the analyses of

Refs. [10–12].
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Figure 5: Evolution of the comoving number densities during the reheating process. Left panel: schematic overview,

distinguishing production via tachyonic preheating, fast decay processes of the B−L gauge sector and slow processes

described by Boltzmann equations. Right panel: Comoving number densities of the particles of the B−L Higgs sector

(S), the thermal and nonthermal (s)neutrinos (N th
1 , Nnt

1 ), the MSSM radiation (R), the gravitinos (G̃) and the B−L
asymmetry (B−L). Obtained by solving the Boltzmann equations for vB−L = 5× 1015 GeV, M1 = 5.4× 1010 GeV,

m̃1 = 4.0× 10−2 eV, mG̃ = 100 GeV and mg̃ = 1 TeV. From Ref. [10].

4.1 Boltzmann equations

The evolution of the phase space density fX(t, p) of a particle species X is determined by a coupled

set of Boltzmann equations,

E

(
∂

∂t
−Hp ∂

∂p

)
fX(t, p) =

∑
i′j′..

∑
ij..

CX(Xi′j′..↔ ij..) , (20)

augmented by the Friedmann equation, which governs the evolution of the scale factor. The left-

hand side of Eq. (20) describes the evolution of the phase space density in an expanding Friedman-

Robertson-Walker (FRW) universe, whereas the collision operators CX on the right-hand side ac-

count for all relevant scattering, decay and inverse decay processes that the particle X is involved

in. The set of Boltzmann equations we have to solve here is determined by the allowed interactions

of the underlying particle physics model, cf. the solid arrows in the left panel of Fig. 5.

From the phase space density fX(t, p) one directly obtains the comoving number density NX(t),

i.e. the number of X particles in a volume (a/GeV)3, and the energy density ρX(t) by integrating

over momentum space,

NX(t) =

(
a(t)

GeV

)3

nX =

(
a(t)

GeV

)3

gX

∫
d3p

(2π)3
fX(t, p) ,

ρX(t) = gX

∫
d3p

(2π)3
EX(p) fX(t, p) ,

(21)

with a denoting the scale factor. A rescaling of a leaves the physical number density nX invariant.

For convenience, we will thus set aPH ≡ 1 at the end of preheating. In the following, decay rates Γ,
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comoving number densities N and energy densities ρ will sometimes appear with upper and lower

indices. In this case, the lower index refers to the particle species under consideration, while the

upper index refers to its origin, e.g. its parent particle or ‘PH’ for preheating.

4.2 Outcome of the reheating process

Solving the Boltzmann equations with the initial conditions given by tachyonic preheating and

the successive decay of the B−L gauge fields yields a time-resolved picture of the evolution of all

particle species. In the right panel of Fig. 5, we show an overview of the resulting comoving number

densities for a representative parameter point.

A two-stage reheating process

After the end of preheating, the lion’s share of the energy is stored in nonrelativistic B−L Higgs

bosons. Assuming a hierarchical spectrum of heavy Majorana neutrinos, these decay exclusively

into heavy, typically relativistic (s)neutrinos of the first generation, thereby forming the main part of

the right-handed (s)neutrino population. The decay of these (s)neutrinos then generates a thermal

bath of MSSM particles. The process of reheating is hence governed by the interplay of two time

scales, the vacuum decay rate of the nonrelativistic Higgs bosons Γ0
S and the effective decay rate of

the neutrinos produced in the Higgs boson decays ΓSN1
. The latter differs from the zero-temperature

decay rate Γ0
N1

due to the time dilatation of the relativistic neutrinos,

Γ0
S =

1

32π

(
M1

vB−L

)2

mS

(
1− 4

M2
1

m2
S

)1/2

,

ΓSN1
:= ΓSN1

(aRH) = γ−1(aRH) Γ0
N1

with γ−1(a) =

〈
M1

EN1

〉(S)

a

, Γ0
N1

=
1

4π

m̃1M
2
1

v2
EW

.

(22)

In most of the viable parameter space, we find Γ0
S < ΓSN1

. In this case, Γ0
S determines the overall

time scale of the reheating process. On the contrary, aRH, defined by H(aRH) = ΓSN1
(aRH), marks

a characteristic point in the middle of the reheating process, which will be particularly relevant

for determining the reheating temperature. Once the Higgs bosons decay into neutrinos, these

decay nearly instantaneously into MSSM particles, so that the era of Higgs domination is directly

followed by the radiation dominated epoch. On the other hand, if Γ0
S > ΓSN1

, the effective neutrino

decay rate governs the time scale of reheating. The energy density is then successively dominated

by nonrelativistic Higgs bosons, relativistic nonthermal neutrinos and finally relativistic MSSM

particles in thermal equilibrium.

Solving the Boltzmann equations allows us to determine the temperature of the thermal bath

throughout the reheating process. As a consequence, the ‘reheating temperature’ is no longer

a cosmological input parameter, but is rather determined by the parameters of the B−L Higgs

and neutrino sector. In Fig. 6, we show the resulting evolution of the temperature as a function

of the scale factor. A remarkable feature is the epoch of nearly constant temperature during

the main part of the reheating process, which arises because the entropy production in neutrino
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Figure 6: Temperature of the thermal bath for the same parameter values as in Fig. 5. From Ref. [10].

decays just compensates the expansion of the universe. A typical value for this plateau is given

by TNRH ≡ T (aRH), with aRH as defined above. The dashed vertical lines labeled aiRH and afRH in

Figs. 5 and 6 mark the beginning and the end of the reheating process, defined as the period when

the effective production rate of MSSM particles exceeds the Hubble rate.

Thermal and nonthermal leptogenesis

The decays of the thermally and nonthermally produced neutrinos give rise to a thermal and a

nonthermal B−L asymmetry, as depicted in Fig. 7.

The nonthermal lepton asymmetry receives a first contribution from the decay of the heavy

(s)neutrinos of the second and third generation. To clearly distinguish this contribution from the

main contribution arising due to the decay of the first-generation (s)neutrinos, we have assigned

opposite signs to the parameters ε2,3 and ε1 quantifying the CP asymmetry in decays of the re-

spective neutrino generations. This entails the change of sign visible at a ' 4.6 × 103 in Fig. 7,

when the decay of NS
1 neutrinos becomes efficient and the main part of the nonthermal asymme-

try is produced. washout effects are negligibly small throughout this process and hence, once the

production of the nonthermal asymmetry becomes inefficient, the asymmetry freezes out.

The production of the thermal asymmetry is driven by the deviation of the thermal (s)neutrino

abundance from the equilibrium value. This leads to an initially negative asymmetry with a rapidly

increasing absolute value. This increase slows down as the thermal (s)neutrino abundance ap-

proaches the equilibrium value. At around a ' 6.3 × 104, washout processes start to play a role,

leading to a decrease of the asymmetry. The situation rapidly changes when the thermal (s)neutrino

abundance overshoots the equilibrium abundance towards the end of the reheating process. This
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From Ref. [10].

generates an asymmetry with an opposite sign, which overcompensates the asymmetry generated so

far. Shortly after, both the washout rate and production rate drop significantly below the Hubble

rate and the asymmetry freezes out.

The final values of thermal and nonthermal asymmetry as depicted in Fig. 7 allow us to infer

the present baryon asymmetry ηB as well as its composition in terms of a nonthermal (ηnt
B ) and a

thermal (ηth
B ) contribution,

ηB =
n0
B

n0
γ

= ηnt
B + ηth

B , ηnt,th
B = Csph

g0
∗,s
gRH
∗,s

Nnt,th
L

Nγ

∣∣∣∣∣
af

. (23)

Here, Csph = 8/23 is the sphaleron conversion factor, gRH
∗,s = 915/4 and g0

∗,s = 43/11 are the

effective numbers of relativistic degrees of freedom in the MSSM that enter the entropy density s in

the high- and low-temperature regime, respectively, Nnt,th
L refers to the comoving number densities

of the nonthermal and thermal contributions to the lepton asymmetry, and Nγ = gγ/g∗,nNr is the

comoving number density of photons. For our parameter example we find

ηB ' 3.7× 10−9 , ηnt
B ' 3.7× 10−9 , ηth

B ' 1.9× 10−14 . (24)

Note that, to obtain these values, we have set the CP violation parameter in the first generation

neutrino decays ε1 to the maximally allowed value, cf. Ref. [10]. Hence ηB in Eq. (24) yields an

upper bound on the baryon asymmetry produced in this setup and is thus perfectly compatible with

the observed value, ηobs
B ' 6.2× 10−10 [74]. In fact, the Froggatt-Nielsen flavor model employed in
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our numerical analysis typically predicts a value for ε1 that is smaller than the maximally possible

value by roughly a factor of O(10), cf. Ref. [75], implying excellent agreement between prediction

and observation for this parameter example, ηB ' ηobs
B .

Gravitino or neutralino dark matter

The thermal bath produced in the decays of the heavy neutrinos gives rise to a thermal gravitino

abundance, which can, depending on the underlying low-energy sparticle spectrum, be linked (either

directly or via its decay products) to today’s dark matter abundance. In the former case, we assume

the gravitino to be the lightest supersymmetric particle (LSP), as is, for instance, the case in gauge

or gaugino mediated scenarios of supersymmetry breaking. We can then deduce today’s gravitino

dark matter abundance, Ω
G̃
h2, from the final value of the comoving gravitino abundance N

G̃
,

Ω
G̃
h2 =

ρ0
G̃

ρc/h2
=
m
G̃
n0
γ

ρc/h2

g0
∗,s
gRH
∗,s

N
G̃

Nγ

∣∣∣∣
af

, (25)

where ρc = 3H2/(8πG) = 1.05 × 10−5 h2 GeV cm−3 denotes the critical energy density of the

universe, h the Hubble rate in the units H = h× 100 km s−1 Mpc−1 and n0
γ = 410 cm−3 the present

number density of the CMB photons. Due to the high temperatures reached in our scenario, we

do not expect a significant contribution from nonthermal gravitino production. For the parameter

example shown in Fig. 5, we find Ω
G̃
h2 ' 0.11 , matching the observed amount of dark matter

Ωobs
DMh

2 ' 0.11 [74]8. Note that, in the choice of this parameter example, M1 = 5.4× 1011 GeV was

adjusted to obtain this result. Performing a parameter scan over m̃1 and m
G̃

, while always adjusting

M1 so as to achieve the correct gravitino dark matter abundance, yields the viable parameter

space of our model as depicted in Fig. 8. The red shaded region is excluded due to an insufficient

production of baryon asymmetry, whereas in the green shaded region we produce a sufficient amount

of baryon asymmetry (mainly nonthermally) as well as the correct dark matter abundance. In this

region, the reheating temperature ranges from O
(
108
)

to O
(
1010

)
GeV.

As can be seen from Fig. 8, requiring successful leptogenesis as well as the correct dark matter

abundance thus yields a lower bound on the gravitino mass m
G̃

in terms of the effective neutrino

mass parameter m̃1,

m
G̃
≥ 16 GeV

( mg̃

1 TeV

)2
(

m̃1

10−3 eV

)0.25−c
, c =

−0.01 for m̃1 . 10−3 eV

0.21 for m̃1 & 10−3 eV
. (26)

with the value of the exponent c determined by numerically solving the Boltzmann equations.

Eq. (26) links a parameter of the neutrino mass sector related to B−L breaking to a parameter

involved in low-energy supersymmetry breaking. Physically, this bound can be understood as fol-

lows. For gravitino masses below O (10) GeV, a reheating temperature TNRH . O
(
108 · · · 109

)
GeV

is required to avoid overproduction of gravitinos. According to our reheating mechanism, such

8The recently published PLANCK data yields a slightly larger value, Ωobs
DMh

2 = 0.12 [76]. The effect of this change

on the work presented here is marginal, and in the following we will stay with the value quoted above.
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low reheating temperatures are associated with relatively small values of the neutrino mass, M1 .

O
(
1010

)
GeV. The low temperature and low mass then entail a small abundance of (s)neutrinos

at the time the asymmetry is generated and a small CP parameter ε1. Both effects combine and

result in an insufficient lepton asymmetry, rendering dark matter made of gravitinos with a mass

below O (10) GeV inconsistent with leptogenesis.

Alternatively, as discussed in Ref. [32], we can assume a hierarchical supersymmetric mass

spectrum with the gravitino as the heaviest particle and a neutralino with mass mχ as the LSP,

mχ � msquark, slepton � m
G̃
, (27)

as is found, for instance, in Refs. [77–79]. Due to this hierarchy, the LSP is typically a ‘pure’ gaugino

or higgsino [80]. Generically, the thermal abundance of a bino LSP is too large. We therefore focus

on the possibility of a wino or higgsino LSP9. There are then two relevant production channels

for neutralino dark matter: thermal production, accompanied by the standard thermal freeze-out

mechanism for weakly interacting massive particles (WIMPs), and nonthermal production, as a

decay product of the gravitinos produced during the reheating process. In the parameter regime

of interest, the resulting thermal and nonthermal abundances can be estimated as Ωth
χ [83–85] and

9Recently, it has been shown that wino DM is strongly constrained by indirect searches using the H.E.S.S. and

Fermi gamma-ray telescopes [81,82].
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absolute lower bound on the gravitino mass according to BBN as functions of the effective neutrino mass m̃1. Wino

masses larger than 2.8 TeV and higgsino masses larger than 1.0 TeV result in thermal overproduction of DM. From

Ref. [32].

ΩG̃
χ , respectively:

Ωth
χ h

2 = cχ

( mχ

1 TeV

)2
, cw̃ = 0.014 , c

h̃
= 0.10

ΩG̃
χh

2 =

(
mχ

m
G̃

)
Ω
G̃
h2 ' 2.7× 10−2

( mχ

100 GeV

)(TNRH(M1, m̃1)

1010 GeV

)
.

(28)

Here, cw̃ and ch̃ apply to the wino and higgsino case, respectively, and Ω
G̃

refers to the ‘would-be’

gravitino abundance today if the gravitinos were stable.

Requiring the total neutralino LSP abundance to match the observed dark matter abundance

constrains the reheating temperature, depending on the value of the neutralino LSP mass mχ. Ad-

ditionally taking into account the bounds from successful leptogenesis and big bang nucleosynthesis

(BBN) on the reheating temperature, we find upper bounds on the neutralino LSP mass and an

absolute lower bound on the gravitino mass (for all neutralino LSP masses) depending on the value

of m̃1, as depicted in Fig. 9. As in the gravitino LSP case, we thus find relations between the

neutrino and superparticle mass spectrum, induced by the key role of the reheating temperature in

the efficiency of both leptogenesis and thermal gravitino production.

5 Gravitational Waves

So far, we have discussed the birth of the hot early universe in the MSM as well as indirect probes

of this mechanism in terms of the resulting neutrino and dark matter properties. We now turn to

the possibility of directly probing such early universe physics by measuring the gravitational wave
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(GW) background [86]. GWs are generated by nonspherical, inhomogeneous strong gravitational

field dynamics, decouple immediately from their source and, to very good approximation, propagate

freely ever after. Hence, GWs act as messengers carrying information on the early universe to us.

5.1 Cosmic gravitational wave background

Gravitational waves are tensor perturbations of the homogeneous background metric. In a flat

FRW background, these perturbations can be parametrized as [87]

ds2 = a2(τ) (ηµν + hµν)dxµdxν . (29)

Here, ηµν = diag(−1, 1, 1, 1) accounts for the flat background and hµν denotes the tensor perturba-

tion around this background. xµ are conformal coordinates with xi, i = 1..3, denoting the comoving

spatial coordinates and τ = x0 the conformal time. These are related to the physical coordinates

and the cosmic time as xphys = a(τ)x and dt = a(τ) dτ , respectively.

The dynamical evolution of the tensor perturbation is described by the Einstein equation. In the

vacuum, hµν contains two physical degrees of freedom. A convenient gauge choice is the transverse

traceless (TT) gauge, i.e. h0µ = 0, hii = 0 and ∂jhij = 0. In the weak field approximation, the

linearized Einstein equation in momentum space yields the following mode equation for the tensor

perturbation around the FRW background in the TT gauge,

h̃
′′
ij(k, τ) +

(
k2 − a

′′

a

)
h̃ij(k, τ) = 16πGaΠij(k, τ) , (30)

describing the generation and propagation of GWs. Here h̃ij = ahij , Πij denotes the Fourier

transform of the TT part of the anisotropic stress-energy tensor Tµν of the source, k = |k|, k is the

comoving wave number, related to the physical wave number through kphys = k/a, and the prime

denotes the derivative with respect to conformal time.

A useful plane wave expansion for freely propagating GWs is given by

hij (x, τ) =
∑

P=+,×

∫ +∞

−∞

dk

2π

∫
d2k̂ hP (k) Tk(τ) ePij

(
k̂
)
e−ik(τ−k̂x) , (31)

where k̂ = k/k, P = +,× labels the two possible polarization states of a GW in the TT gauge

and e+,×
ij are the two corresponding polarization tensors satisfying the normalization condition

ePije
ij Q = 2δPQ. hP (k) denote the coefficients of the expansion after factorizing out the redshift

due to the expansion, with the latter captured in the so-called transfer function Tk(τ).

An analytical expression for Tk can be obtained by studying the source-free version of Eq. (30).

The resulting mode equation can be easily solved, revealing that the amplitude hij(k) of a given

mode remains constant in the super-horizon regime, k � aH, while it decreases as 1/a inside the

horizon, i.e. for k � aH. Identifying the transfer function Tk as Tk(τ∗, τ) = hEij(k, τ)/hEij(k, τ∗),

with hEij(k, τ) denoting the envelope of the oscillating function hij(k, τ), we can employ the approx-
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imation,10 cf. e.g. Ref. [88],

Tk(τ∗, τ0) ≈ a(τ∗)

a(τ0)
with τ∗ =

τi for sub-horizon sources

τk for super-horizon sources
. (32)

Here, τi marks the time when the GW was generated and τk denotes the time when a given mode

with wave number k entered the horizon, k = a(τk)H(τk) . In Eq. (32), we assume for super-horizon

sources that the amplitude is constant until τ = τk and then drops as 1/a immediately afterwards.

The actual solution to the mode equation yields corrections to both of these assumptions. However,

as a numerical check reveals, these two effects roughly compensate each other, so that Eq. (32)

reproduces the full result very well. For super-horizon sources, we will use the more compact

notation Tk(τ) = Tk(τk, τ) in the following.

The GW background is a superposition of GWs propagating with all frequencies in all directions.

An important observable characterizing the GW background is the ensemble average of the energy

density [87], which is expected to be isotropic,

ρGW(τ) =
1

32πG

〈
ḣij (x, τ) ḣij (x, τ)

〉
=

∫ ∞
−∞

d ln k
∂ρGW(k, τ)

∂ ln k
, (33)

with the angular brackets denoting the ensemble average and the dot referring to the derivative

with respect to cosmic time. Alternatively, one uses the ratio of the differential energy density to

the critical density,

ΩGW(k, τ) =
1

ρc

∂ρGW(k, τ)

∂ ln k
. (34)

In the model considered in this paper, the energy density has partly a quantum origin and partly

a classical origin, ρGW(τ) = ρqu
GW(τ) + ρcl

GW(τ). The former part is due to inflation and is therefore

stochastic, whereas the latter part is determined by the contributions to the stress energy tensor

from cosmic strings and from tachyonic preheating, ρcl
GW(τ) = ρCS

GW + ρPH
GW(τ).

For a stochastic GW background, the Fourier modes hA (k) are random variables and their

ensemble average of their two-point function is determined by a time-independent spectral density

Sh(k) [87], 〈
hP (k)h∗Q

(
k′
)〉

= 2π δ
(
k − k′

) 1

4π
δ(2)
(
k̂ − k̂

′)
δPQ

1

2
Sh(k) . (35)

This relation reflects the fact that different modes are uncorrelated and that the background is

isotropic. Exploiting Eqs. (31) through (35), we can express the differential energy density due to

a stochastic source in terms of the spectral density as

∂ρGW (k, τ)

∂ ln k
=

a2(τ∗)

16π2Ga4(τ)
k3 Sh(k) . (36)

10In Sec. 4, we set aPH = 1. Another convention used frequently is a0 = 1, with a0 referring to the value of the

scale factor today. In this section, we explicitly keep a0 without specifying a convention. In the end, the dependence

on a0 must drop out of our expression for any observable, irrespectively of the adopted convention.
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The classical contribution to the GW energy density is obtained by integrating Eq. (30) from

the initial time τi of GW production until today,

hij(k, τ) = 16πG
1

a(τ)

∫ τ

τi

dτ ′ a(τ ′)G(k, τ, τ ′) Πij(k, τ
′) , (37)

where G(k, τ, τ ′) is the retarded Green’s function of the differential operator on the left-hand side of

Eq. (30). For sub-horizon modes, i.e. kτ � 1, one has G(k, τ, τ ′) = sin(k(τ − τ ′))/k. With this, one

can evaluate the ensemble average 〈ḣ2〉 in terms of 〈Π2〉 by calculating the derivative of Eq. (37)

on sub-horizon scales. Assuming translation invariance and isotropy of the source,〈
Πij(k, τ)Πij(k′, τ ′)

〉
= (2π)3 Π2(k, τ, τ ′) δ(k + k′) , (38)

the resulting differential energy density simplifies to

∂ρGW (k, τ)

∂ ln k
=

2G

π

k3

a4(τ)

∫ τ

τi

dτ1

∫ τ

τi

dτ2 a(τ1) a(τ2) cos(k(τ1 − τ2)) Π2(k, τ1, τ2) , (39)

Here, in order to perform the ensemble average, we have also averaged the integrand over a period

∆τ = 2π/k, assuming ergodicity.

5.2 Gravitational waves from a B−L phase transition

We will now discuss in turn the resulting GW background from inflation, tachyonic preheating and

cosmic strings in the scaling regime, based on the analysis of Ref. [34]. An overview of the resulting

contributions is depicted in Fig. 10.

Gravitational waves from inflation

During inflation, quantum fluctuations of the metric are generated and stretched to ever larger

physical scales so that they eventually cross the Hubble horizon and become classical. Outside

the horizon, the amplitudes of these metric perturbations remain preserved and they only begin to

evolve again once they re-enter the Hubble horizon after the end of inflation. Inflation hence gives

rise to a stochastic background of gravitational waves [88–90] with a spectrum which is determined

by the properties of the primordial quantum metric fluctuations as well as by the expansion history

of the universe, which governs the redshift of the GWs since horizon re-entry,

ΩGW(k, τ) =
At
12

k2

a2
0H

2
0

T 2
k (τ) . (40)

Here, At, controlled by the Hubble parameter during inflation, denotes the amplitude of the pri-

mordial tensor perturbations. Evaluating the evolution of the scale factor throughout the cosmic

history, i.e. through the epochs of reheating, radiation, matter and vacuum domination, yields the

transfer function Tk and thus

ΩGW(k) =
A2
t

12
Ωr

gk∗
g0
∗

(
g0
∗,s
gk∗,s

)4/3

×


1
2 (keq/k)2 , k0 � k � keq

1 , keq � k � kRH

2RC6
RH (kRH/k)2 , kRH � k � kPH

, (41)
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Figure 10: Predicted GW spectrum due to inflation (gray), preheating (red) and Abelian Higgs cosmic strings (black)

for M1 = 5.4 × 1010 GeV, vB−L = 5 × 1015 GeV and mS = 3 × 1013 GeV, as in Fig. 5. f0, feq, fRH and fPH

denote the frequencies associated with a horizon-sized wave today, at matter-radiation equality, at reheating and

at preheating, respectively. f
(s)
PH and f

(v)
PH denote the positions of the peaks in the GW spectrum associated with

the scalar and the vector boson present at preheating. The dashed segments indicate the uncertainties due to the

breakdown of the analytical approximations. From Ref. [34].

with Ωr denoting the fraction of energy stored in radiation today. The parameters CRH and R

account for the deviation from pure matter domination during reheating and the production of

relativistic degrees of freedom after aRH, respectively, and are numerically found to be typically

O(1).11 As long as a mode with wave number k re-enters the Hubble horizon during radiation

domination, gk∗ and gk∗,s denote the usual values of the effective number of degrees of freedom g∗(τ)

and g∗,s(τ) at time τk. On the other hand, during reheating and matter domination gk∗ and gk∗,s

correspond to gRH
∗ and gRH

∗,s as well as to geq
∗ and geq

∗,s, respectively. The wave numbers keq, kRH

and kPH refer to the modes which crossed the horizon at matter-radiation equality, the end of

reheating and at preheating, respectively. k0 is correspondingly given by the size of the Hubble

horizon today. Translated into frequencies f = k/(2πa0) at which GW experiments could observe

11For a more detailed discussion of the numerical results, including the precise shape of the ‘kinks’ in the inflationary

GW spectrum, cf. Ref. [34].
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the corresponding modes, they are given by

f0 = 3.58× 10−19 Hz

(
h

0.70

)
, (42)

feq = 1.57× 10−17 Hz

(
Ωmh

2

0.14

)
, (43)

fRH = 4.25× 10−1 Hz

(
T∗

107 GeV

)
, (44)

fPH = 1.93× 104 Hz

(
λ

10−4

)1/6(10−15 vB−L
5 GeV

)2/3(
T∗

107 GeV

)1/3

, (45)

with Ωm denoting the present value of the fraction of energy stored in matter and T∗ closely related

to the reheating temperature, cf. footnote 12. Evidently, the energy spectrum ΩGW decreases like

k−2 at its edges and features a plateau in its center, cf. gray curve in Fig. 10. In the context

of cosmological B−L breaking, the height of the plateau is controlled by the coupling λ, which

determines the self-interaction of the B−L breaking Higgs field, as well as by the B−L scale vB−L,

Ωpl
GWh

2 = 3.28× 10−22

(
λ

10−4

)(
vB−L

5× 1015 GeV

)4( Ωr

8.5× 10−5

)
ḡk , (46)

where ḡk = (4gk∗/427)(427/(4gk∗,s))
4/3 is a ratio of energy and entropy degrees of freedom. The

small steps visible in the plateau of the gray curve in Fig. 10 represent the change of the number

of relativistic degrees of freedom due to the QCD phase transition and the crossing of a typical

mass-scale for supersymmetric particles. A remarkable feature of the GW spectrum from inflation

is that the position of the kink, which separates the plateau arising for modes which entered

during radiation domination and the k−2 behaviour from the reheating regime, is directly related

to the reheating temperature, providing a possibility to probe this otherwise experimentally hardly

accessible quantity.12

Gravitational waves from preheating

The process of tachyonic preheating acts as a classical, sub-horizon source for GWs, which is active

only for a short time. The resulting GW spectrum can be obtained by calculating the solution

to the mode equation, Eq. (37), and inserting it into Eq. (33). The anisotropic stress tensor

Πij entering Eq. (37) is determined by the dynamics of preheating and vanishes after the end of

preheating, allowing the GWs to propagate freely for τ � τPH. The remaining challenge is thus

to calculate Πij during preheating. This task can be performed numerically, cf. e.g. Ref. [91] for a

detailed description of the method and an application to preheating after chaotic inflation as well

as Ref. [92] for an application to tachyonic preheating after hybrid inflation. Based on analytical

12To be more precise, the quantity which is probed is the temperature T̂RH when the energy stored in relativistic

degrees of freedom (MSSM particles and nonthermal (s)neutrinos) overcomes the energy stored in the nonrelativistic

B−L Higgs bosons. The quantity T∗ appearing in Eq. (44) is related to T̂RH via two correction factors D and R,

T∗ = R1/2D1/3T̂RH. Here D accounts for the entropy production after a = aRH and, just as R, it is typically found

to be O(1) by numerically solving the Boltzmann equations.
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estimates supported by the results of these simulations [53, 91–94], one finds two high-frequency

peaks in the resulting GW spectrum, related to the mass of the B−L vector (v) and scalar Higgs

(s) bosons at preheating. The corresponding positions and amplitudes of the peaks in the GW

spectrum are given by

f
(s)
PH ' 6.3× 106 Hz

(
M1

1011 GeV

)1/3(5× 1015 GeV

vB−L

)2(
mS

3× 1013 GeV

)7/6

,

Ω
(s,max)
GW h2 ' 3.6× 10−16 cPH

0.05

(
M1

1011 GeV

)4/3(5× 1015 GeV

vB−L

)−2(
mS

3× 1013 GeV

)−4/3

,

f
(v)
PH ' 7.5× 1010 Hz g

(
M1

1011 GeV

)1/3( mS

3× 1013 GeV

)−1/2

,

Ω
(v,max)
GW h2 ' 2.6× 10−24 1

g2

cPH

0.05

(
M1

1011 GeV

)4/3(5× 1015 GeV

vB−L

)2(
mS

3× 1013 GeV

)2

,

(47)

and are depicted by the red curves in Fig. 10. Here g is the B−L gauge coupling and cPH is a

model-dependent numerical factor, found to be cPH = 0.05 in Ref. [53].

Gravitational waves from cosmic strings

We now turn to the third source of GWs related to the B−L phase transition: cosmic strings in the

scaling regime, cf. Sec. 3.2. We here review the calculation of the resulting GW background in the

Abelian Higgs (AH) model following Ref. [95]. In Ref. [34], we additionally discuss an alternative

approach based on the Nambu-Goto model of cosmic strings. Here, we will merely give the final

result of the latter calculation in order to quantify the theoretical uncertainties involved.

The GW background generated by an AH string network can be estimated analytically starting

from Eq. (39). Exploiting general properties of the unequal time correlator of a scaling, sub-horizon

source as discussed in Ref. [96] and introducing the dimensionless variable x = kτ , we can evaluate

the unequal time correlator of the AH string network, Π2(k, τ, τ ′), as

Π2(k, τ, τ ′) =
4v4
B−L√
ττ ′

CT (x, x′) . (48)

Here, CT (x, x′) is essentially local in time [96], CT (x, x′) ∼ δ(x − x′) C̃(x), with C̃ some function

which rapidly falls off for x� 1, i.e. for modes well inside the horizon. Inserting this into Eq. (39)

yields

ΩGW(k) =
k2

3π2H2
0a

2
0

(
vB−L
MPl

)4 ∫ x0

xi

dx
a2(x/k)

a2
0 x

C̃(x) . (49)

As a result of the rapid decrease of C̃(x) for x� 1, this integral is dominated by its lower boundary.

For scales which entered the Hubble horizon after the B−L phase transition, xi = k τk is an

O(1) constant. Hence, the k-dependence of Eq. (49) can be traced back to a(x/k). For radiation

domination, we have a(τ) '
√

ΩrH0τa
2
0, where we have neglected the change in the effective number

of degrees of freedom. This yields∫ x0

xi

dx
a2(x/k)

a2
0 x

C̃(x) ' ΩrH
2
0 a

2
0

2 k2
F r , (50)
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where F r is a constant, and therefore a flat spectrum, ΩGW ∝ k0. For matter domination, one has

a(x/k) ∝ k−2, which yields ΩGW ∝ k−2. In summary, we can express today’s spectrum of GWs

from a scaling network of AH cosmic strings as13

ΩGW(k) ' Ωpl
GW ×


(keq/k)2, k0 � k � keq

1, keq � k � kRH

(kRH/k)2, kRH � k � kPH

. (51)

Here, keq, kRH and kPH are determined by Eqs. (43), and (44), and the height of the plateau Ωpl
GW

can be estimated using the result of the numerical simulations in Ref. [95],

Ωpl
GWh

2 = 4.0× 10−14 F r

F rFHU

(
vB−L

5× 1015GeV

)4( Ωrh
2

4.2× 10−5

)
, (52)

where F rFHU = 4.0× 103 is the numerical constant determined in Ref. [95] for global cosmic strings.

The corresponding constant for local strings is expected to have the same order of magnitude [97].

Eq. (51) strikingly resembles the result found for the stochastic GW background from inflation,

cf. Eq. (41), up to an overall normalization factor, cf. Fig. 10. Note, however, that the origin is

quite different. On the one hand, in the case of inflation, the GWs can be traced back to vacuum

fluctuations of the metric, which remain ‘frozen’ outside the horizon. After horizon re-entry, they

propagate according to the source-free wave equation in FRW space. The amplitude of the resulting

stochastic GW background today is determined by the redshift of these modes after entering the

horizon. On the other hand, the GWs from cosmic strings stem from a classical source, which

is active until today. Only the nature of the unequal time correlator, with its rapid decrease for

x � 1, effectively removes the impact of the source when the corresponding mode is well within

the horizon. In more physical terms, this implies that the dominant source for GWs from cosmic

strings are Hubble-sized structures of the cosmic string network. This explains why the wave

numbers associated with the horizon at aRH and aeq play crucial roles in the GW spectrum from

AH cosmic strings, although the GW modes associated with cosmic strings never actually ‘cross’

the horizon. For cosmic strings, the height of the plateau is enhanced by a very large numerical

factor F r. On the contrary, GWs from inflation are suppressed by the small Yukawa coupling λ.

This explains the enormous difference in amplitude between GWs from inflation and cosmic strings.

The calculation presented here, resulting in Eq. (51), was based on the Abelian Higgs (AH)

cosmic string model. For comparison, Fig. 11 shows the result obtained in the Nambu-Goto (NG)

model, cf. Ref. [34]. In both approaches the radiation-dominated epoch leads to a plateau for in-

termediate frequencies. Compared to the AH result, the boundaries in the NG case are shifted

to higher frequencies by a factor 1/α, where α denotes the size at which cosmic string loops are

13Note that in Eq. (51), the normalization of the ‘1/k2 flanks’ was obtained by matching to the plateau value for

k = kRH and k = keq, respectively. However, since close to these points the dominant component of the energy

density is not much larger than the other components, a more detailed knowledge of C̃(x) is necessary to evaluate

Eq. (49) at these points.
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Figure 11: Comparison of the GW spectra predicted by AH strings and NG strings for two values of α (which governs

the initial cosmic string loop size in the NG model). The other parameters are chosen as in Fig. 10, which yields a

cosmic string tension of Gµ = 2× 10−7. From Ref. [34].

formed relative to the respective horizon size.14 This shift in frequency is directly related to the

maximal loop size which is determined by αH−1 in the NG case. Furthermore, the frequency de-

pendence for small and large frequencies differs, which is a consequence of the different mechanisms

of gravitational radiation: in the AH model the dominant contribution to the GW background

comes from Hubble-sized structures, in the NG model the dominant contribution is due to ‘cusps’

in small cosmic string loops, which are formed when waves moving in opposite directions on the

loop collide. The striking difference in amplitude by five orders of magnitude between the AH

and NG model is due to the different energy loss mechanisms of the string network in the scaling

regime. While the energy loss of AH strings is mainly due to massive radiation, NG strings deposit

all their energy into GWs. Hence, these two cases provide lower and upper bounds on the GW

background from cosmic strings, and it is conceivable that the true answer corresponds to some

intermediate value. Assuming a transition between the AH model at early times and the NG model

at later times sometime during radiation domination, a notable point is that, due to the shift of

the GW spectrum of NG strings to higher frequencies, the GWs generated at later times in the NG

regime might cover up the GWs generated at earlier times in the AH regime. Properly addressing

this important question of how to correctly describe the evolution of cosmic strings is clearly a

theoretical challenge.

14Note that α cannot take arbitrarily small values. A lower bound is given by the requirement that, in the validity

range of the NG model, the loop size should be larger than the string width obtained in the AH model (controlled

by m−1
S ,m−1

G ) or at the very least larger than M−1
Pl .

29



H7LH8L

H3L

H5L

H6LH1LH2L
H4L

inflation

AH cosmic strings

NG cosmic strings

preheating

10-20 10-15 10-10 10-5 100 105 1010

10-25

10-20

10-15

10-10

10-5

100
10-5 100 105 1010 1015 10 20 10 25

f @HzD

W
G

W
h2

k@Mpc-1D

Figure 12: Predicted GW spectrum and the (expected) sensitivity of current and upcoming experiments. The

GW spectrum due to inflation (gray), preheating (red) as well as AH and NG cosmic strings (black) is shown for

vB−L = 5×1015 GeV, M1 = 1011 GeV, mS = 3×1013 GeV, and α = 10−12. The current bounds on the stochastic GW

spectrum from (1) millisecond pulsar timing (taken from Ref. [88]), with (2) marking the update from EPTA [100] and

(3) LIGO [101] are marked by solid blue lines. The dashed blue lines mark the expected sensitivity of some planned

experiments: (4) SKA [102], (5) ET [103], (6) advanced LIGO [103], (7) eLISA [104], (8) BBO and DECIGO [105].

Note that with a correlation analysis ultimate DECIGO has a sensitivity down to 10−18. From Ref. [34]

6 Observational Prospects and Outlook

In this paper, we have demonstrated that the MSM, a minimal supersymmetric extension of the

Standard Model with right-handed neutrinos and spontaneously broken local B−L symmetry, is

capable of remedying several shortcomings of the Standard Model, while, at the same time, suc-

cessfully accounting for the earliest phases of the cosmological evolution. While the MSM allows

for grand unification and explains the smallness of the observed neutrino masses on the particle

physics side, it accommodates inflation and the generation of entropy, baryon asymmetry and dark

matter during the reheating process on the cosmology side. These successes of the MSM therefore

truly render it a minimal consistent model of particle physics and the early universe.

The MSM gives rise to a rich phenomenology that can be probed in on-going and upcoming

cosmological observations and high energy physics experiments. First of all, future data on the
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temperature anisotropies as well as on the polarization of the CMB radiation will test the dynamics

of the B−L breaking sector of the MSM. Dedicated experiments searching for tensor modes in

the CMB, such as CMBPol [98] or LiteBIRD [99], have, for instance, the potential to rule out

supersymmetric F-term hybrid inflation by measuring a tensor-to-scalar ratio r of O(10−2) or

larger, cf. Eq. (10). Meanwhile, indications in the CMB for the presence of local cosmic strings

could provide evidence in favor of cosmological B−L breaking, cf. Sec. 3.2. For parameter values

compatible with inflation, the AH model of the B−L phase transition typically predicts a cosmic

string tension Gµ only shortly below the current observational bound, Gµ < 3.2× 10−7. From the

perspective of the MSM, it is thus expected that signs of cosmic strings should be seen soon.

Next to the CMB, cosmic strings ought to reveal their existence also in weak and strong lensing

surveys, in the spectrum of ultra-high-energy cosmic rays and GeV-scale γ-rays and finally also

in the spectrum of GWs. In Sec. 5, we discussed this latter characteristic signature of the MSM

in more detail. In doing so, we put particular emphasis on the uncertainties in the theoretical

calculations, which we assessed by calculating the spectrum of GWs either emitted by AH or by

NG cosmic strings. Our result for the GW spectrum related to cosmological B−L breaking is shown

in Fig. 12, which compares the GW signals that are respectively expected to originate from AH

strings, NG strings, inflation, and preheating. In addition to that, Fig. 12 also indicates current

bounds on ΩGWh
2 as well as the expected sensitivity of upcoming GW experiments, cf. Ref. [106]

for a review. The observation of a GW signal coming from cosmic strings in the scaling regime

in the not-too-far future is clearly challenging. Depending on the parameters of the AH model,

the reheating temperature and the cosmic string loop parameter α, future experiments will either

see a flat plateau in the GW spectrum or detect a kink-type feature related to the transition

between two successive stages in the expansion history of the universe. Particularly intriguing in

this context is the possibility to determine the reheating temperature by measuring the position of

the kink in the GW spectrum that is induced by AH strings at frequencies around fRH, cf. Eq. (44)

and footnote 12. Nonetheless, it is important to realize that, at present, our understanding of

the formation, evolution and decay of cosmic strings is still far from complete. For one reason

or another, the GW background due to cosmic strings might be suppressed or even absent, cf.

Ref. [34] for details, thereby potentially rendering inflation and preheating the dominant sources of

GWs. At least in the case of inflation, the exact shape of the GW spectrum and in particular of

its kinks could then be predicted with a much better precision than as for cosmic strings [34]. As

both the GW signals from inflation as well as from preheating are, however, rather faint, a positive

observation by any of the planned GW experiments seems to be out of reach.

The dynamics of the neutrino sector in the MSM can be tested on the basis of the parameter

relations that we derived in our study of the reheating process, cf. Sec. 4.2. Assuming the gravitino

to be the LSP, the requirement of consistency between leptogenesis and gravitino dark matter

provided us with relations between the neutrino mass parameters m̃1 and M1 on the one hand

and the superparticle masses m
G̃

and mg̃ on the other hand, cf. Fig. 8. In particular, we found a

lower bound on the gravitino mass that scales quadratically with the gluino mass and that at the
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same time slightly varies with m̃1, cf. Eq. (26). As an alternative to gravitino dark matter, we also

considered the possibility of very heavy gravitinos, in the case of which dark matter is accounted for

by partly thermally, partly nonthermally produced winos or higgsinos. In this scenario, requiring

consistency between leptogenesis, WIMP dark matter and primordial nucleosynthesis, we were able

to derive upper bounds on the neutralino mass mLSP as well as absolute lower bounds on the

gravitino mass as functions of m̃1, cf. Fig. 9.

Owing to these relations and bounds, a determination of m̃1, M1, m
G̃

, mg̃ and/or mLSP in

present or upcoming experiments would therefore allow to constrain the parameter space of the

MSM or even to falsify it. The absolute mass scale of the Standard Model neutrinos, which is closely

related to m̃1, is, for instance, probed by low-energy neutrino experiments such as GERDA [107]

and KATRIN [108] that are looking for neutrinoless double-β decay and studying the β-decay of

tritium, respectively. Meanwhile, it is hard to experimentally access the neutrino mass M1 directly;

but fortunately the MSM offers a possibility to determine M1 indirectly. As reheating after inflation

is driven by the decay of heavy (s)neutrinos in the MSM, the plateau temperature TNRH turns out

to be a function of m̃1 and M1, cf. Ref. [10] for details. Once m̃1 is known, there thus exists a

one-to-one relation between values of M1 and TNRH, at least as long as all Yukawa couplings are

kept fixed. As mentioned above, it is conceivable that the reheating temperature could possibly

be determined by means of GW observations. Such an observation would then also allow for a

measurement of M1.

Depending on the scale of soft supersymmetry breaking and the details of the superparticle mass

spectrum, a determination of m
G̃

, mg̃ and mLSP is potentially within the reach of experiments aim-

ing at the direct or indirect detection of dark matter and/or collider searches for supersymmetry.

If dark matter should be composed of gravitino LSPs, direct and indirect detection experiments

would actually be bound to yield null observations. However, if R parity was slightly violated,

gravitino dark matter would be unstable [109, 110], which could lead to observable signals in the

fluxes of gamma rays, charged cosmic rays and cosmic neutrinos [111]. At the same time, the

decays of the next-to-lightest superparticle (NLSP) via its R parity-violating interactions might be

observable in collider experiments in the form of displaced vertices with distinctive decay signa-

tures [112, 113]. A slight violation of R parity is in fact motivated from cosmology—if R parity

was exactly conserved, the late-time decays of the NLSP could spoil the successful predictions of

primordial nucleosynthesis [47, 114]—and hence we are confident that the nature of dark matter is

not doomed to remain obscure, even if it is made out of gravitinos. Finally, dark matter composed

of partly thermally, partly nonthermally produced winos or higgsinos could soon be seen in indirect

detection experiments such as H.E.S.S. and Fermi-LAT, cf. footnote 9. On the other hand, for the

hierarchical superparticle mass spectrum in Eq. (27), the prospects for a direct detection of WIMP

dark matter via its scattering off heavy nuclei do not look particularly promising, cf. Ref. [32]. Also

the discovery of a wino or higgsino LSP at colliders seems to be rather challenging in this scenario.

Given the large masses for the gluinos and squarks, the characteristic missing energy signature of

events with LSPs in the final state may be absent. On the contrary, the wino- or higgsino-like
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chargino, almost mass degenerate with its neutral partner, might leave macroscopic charged tracks

in the detector, which could increase the discovery potential of this dark matter scenario. In addi-

tion to that, monojets caused by the Drell-Yan production of LSP pairs in association with initial

state gluon radiation may also provide a possible discovery channel. We therefore conclude that

the MSM is experimentally accessible not only in cosmological observations, but also in a number

of high energy physics experiments. Upcoming data will thus shed more light on whether or not

the MSM is indeed a good description of particle physics up to the multi-TeV scale as well as of

the earliest phases of our universe.

Before concluding, we would still like to compare the MSM with a closely related model, the

νMSM [115], the non-supersymmetric minimal Standard Model with right-handed neutrinos, which

can also account for inflation, entropy production, baryon asymmetry and dark matter. The νMSM

is a model with minimal particle content as well as minimal symmetry. The local symmetry is that

of the Standard Model and the global B−L symmetry is explicitly broken by Majorana masses of

the right-handed neutrinos. Baryogenesis via leptogenesis and dark matter require these masses

to lie in the keV and GeV range, far below the electroweak scale, which leads to predictions that

are experimentally testable in the near future. The Higgs field of electroweak symmetry breaking

also plays the role of the inflaton, which requires a large non-minimal coupling to gravity, tuned to

account for the observed amplitude of the CMB temperature anisotropies. In the νMSM, there is

no unification of strong and electroweak interactions. Also the MSM has minimal matter content.

However, the symmetry group is enlarged, and in addition to the Standard Model gauge group

it contains local U(1)B−L symmetry and local supersymmetry. Assuming quark and lepton mass

matrices compatible with grand unification, and therefore hierarchical right-handed neutrinos, one

finds that U(1)B−L is broken at the GUT scale. The symmetry breaking sector contains an inflaton

field and the GUT scale automatically yields the right order of magnitude for the amplitude of

CMB temperature anisotropies. The lightest superparticle is the constituent of dark matter, which

can be searched for at the Large Hadron Collider as well as with direct and indirect detection

experiments. Direct evidence for the MSM may eventually be obtained via the spectrum of relic

GWs. In summary, supporting evidence for or falsification of the νMSM or the MSM will decide

whether or not physics beyond the Standard Model is tied to symmetries larger than those already

revealed by the Standard Model.
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