Higgs prospects at HL-LHC

Nikos Konstantinidis

On behalf of the ATLAS and CMS Collaborations

EPS HEP Conference, Stockholm, 20/07/2013

Outline

• HL-LHC: timelines, targets and assumptions

• Higgs properties

- Rare Higgs processes
- Couplings to fermions and bosons
- Self-couplings
- Vector boson scattering
- Conclusions

The HL-LHC programme

Start at 2024 after a ~2-year shutdown (LS3)
– LHC: new IR magnets, crab cavities, ...

LHC peak luminosity: ~5e34
~140 pp collisions per bunch crossing

 Collect ~250-300fb⁻¹/year for a total of ~3000fb⁻¹ per experiment by the early 2030s

- An ambitious programme of detector upgrades proposed by ATLAS and CMS to maintain/improve current performance
 - In trigger, offline reconstruction, identification of physics objects
 - Also to address key experimental systematics that would limit in particular the Higgs studies Higgs prospects at HL-LHC

and in several parallel sessions

Assumptions and projections

- Projections use realistic/conservative assumptions about detector performance at HL-LHC and the evolution of systematic uncertainties
 - Impressive progress in minimizing the impact of pile-up during 2012
 - In 2012, $<\mu>$ up to ~35 ; extrapolation to $<\mu>\sim140$ not huge
- ATLAS performed generator-level studies, applying resolution and efficiency parameterisation functions for the HL-LHC conditions
 - With realistic/conservative assumptions for the effects of pile-up
 - E.g. full sim. studies of b-tagging with tracker upgrade now show better performance
- CMS extrapolate current results with different assumptions
 (1) Pessimistic: experimental and theory systematics as of today
 - (2) Optimistic: experimental systematics scale as $1/\sqrt{L}$, theory systematics halved
- Past experience: projections almost invariably proved conservative!

Nikos Konstantinidis

Rare Higgs processes

• H→µµ

- ATLAS finds $\sim 2\sigma$ with 300fb⁻¹ and $\sim 6\sigma$ with 3000fb⁻¹
- CMS should achieve similar (or better) sensitivity
- ttH, H \rightarrow µµ (ATLAS)
 - Involves only fermion couplings
 - Only ~30 events in 3000fb-1, but very pure: s/b~1

• ttH, $H \rightarrow \gamma \gamma$ (ATLAS)

- Another rare, but relatively pure process (s/b~20%)
- Important probe of top Yukawa coupling

Nikos Konstantinidis

Higgs prospects at HL-LHC

Higgs couplings at the LHC

- At the LHC, only possible to measure $\sigma_x BR$'s
 - Expressed as ratio to the SM values: $\mu = (\sigma x BR)/(\sigma x BR)_{SM}$
- Ratios of partial widths or couplings can be derived without model assumptions
- Interpretation in terms of couplings is model dependent
 - Expressed in terms of scale factors, κ , wrt SM values: $\Gamma_X / \Gamma_Y = (\kappa_X / \kappa_Y)^2$

Couplings – ATLAS

- Minimal fit: only two coupling scale factors, kF for fermions and kV for vector bosons
 - No BSM contributions in either loops or in the total Higgs width

Sensitivity without (with) theory uncertainties:

ATLAS	300 fb ⁻¹	3000 fb ⁻¹	
K _V	3.0 % (5.6 %)	1.9 % (4.5 %)	
K _F	8.9 % (10 %)	3.6 % (5.9 %)	

A factor 2.5 improvement on κ_F , with 3000fb⁻¹ provided the theory uncertainties are halved!

Ultimately, combined ATLAS+CMS precision down to a few %.

Nikos Konstantinidis

Higgs self-coupling

- Arguably, the most challenging measurement at the LHC!
 - Look for Higgs-pair production; destructive interference with diagrams not containing the self-coupling vertex λ_{hhh}
 - For $\lambda_{HHH}/\lambda_{HHH}^{SM} = 0/1/2$, the cross section is 71/34/16fb
- Preliminary ATLAS studies indicate that $hh \rightarrow bb\gamma\gamma$ is promising
 - $\sigma x BR \sim 0.1 \text{ fb}$, backgrounds are largely Xh(h $\rightarrow \gamma \gamma$) and continuum bby γ
 - Additional signal channels under study, e.g. $bb\tau\tau$
- A measurement by ATLAS+CMS with 3000fb⁻¹ may be possible

Nikos Konstantinidis

Vector Boson Scattering

- Crucial test of EWSB dynamics and the nature of the Higgs
- Model involving new, TeV-scale resonances with role in unitarising the longitudinal VBS amplitude
- Big gains in sensitivity with 3000fb⁻¹

Nikos K

- ZZ \rightarrow 4leptons: low backgrounds, clear peak in m_{4l}, high sensitivity
- Factor \sim 3 improvement in SM σ_x BR

model	$300{\rm fb}^{-1}$	$3000{\rm fb}^{-1}$
$m_{\text{resonance}} = 500 \text{ GeV}, g = 1.0$	2.4σ	7.5σ
$m_{\text{resonance}} = 1 \text{ TeV}, g = 1.75$	1.7σ	5.5σ
$m_{\text{resonance}} = 1 \text{ TeV}, g = 2.5$	3.0σ	9.4σ
ntinidis Higgs prospects at F	IL-LHC	

ATL-PHYS-PUB-2012-005

m₄I [TeV]

Conclusions

- Great prospects for pinning down the properties of the 125GeV Higgs boson at the HL-LHC with 3000fb⁻¹ per experiment
 - Studies and projections indicate ~few % precision in all fermion and vector boson couplings
 - Based on past experience, projections are always conservative!
- Input from the theory community vital
 - Theory uncertainties will quickly become an important limiting factor
- Vector Boson Scattering, direct searches for BSM partners of the Higgs and BSM interpretation of results also very crucial for elucidating the path beyond the Standard Model

Channel	Uncertainty on mu value with 300 fb ⁻¹ [%]					
	Experimental only		Experimental + theory			
	ATLAS	CMS	ATLAS	CMS		
ΥY	8	5	15	15		
ZZ	9	8	16	11		
WW (1)	26	9	29	14		
ττ (2)	11	9	15	11		
ττ	19	9	23	11		

(1) ATLAS uncertainty based on old result(2) ATLAS uncertainty extrapolated with CMS approach

Nikos Konstantinidis

CP violation in Higgs sector (ATLAS)

$A(X \rightarrow VV) \sim \left(a_1 M_X^2 g_{\mu\nu} + a_2 (q_1 + q_2)_\mu (q_1 + q_2)_\nu + a_3 \varepsilon_{\mu\nu\alpha\beta} q_1^\alpha q_2^\beta\right) \varepsilon_1^{*\mu} \varepsilon_2^{*\nu}$

• HZZ amplitude can have CP-even & CP-odd terms: CP violation

Significance for various a₃

Integrated	Signal (S) and	6 + 6 <i>i</i>	6 <i>i</i>	4 + 4 <i>i</i>
Luminosity	Background (B)			
100 fb^{-1}	S = 158; B = 110	3.0	2.4	2.2
200 fb^{-1}	S = 316; B = 220	4.2	3.3	3.1
300 fb^{-1}	S = 474; B = 330	5.2	4.1	3.8

3000fb⁻¹ would give sensitivity to much smaller levels of CP violation.

Nikos Konstantinidis

