Next generation associative memory devices for the FTK tracking processor of the ATLAS experiment

Matteo Beretta

INFN Frascati National Laboratories

TWEPP 2013 23-27 September, Perugia

Matteo Beretta

INFN , Frascati National Laboratories

1 ATLAS FTK: architecture and working principle

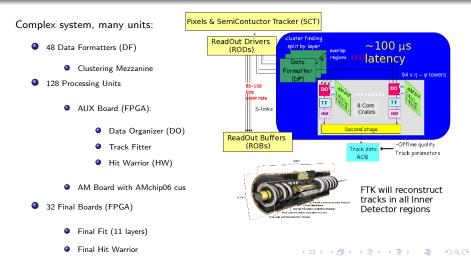
2 AMchip history

3 Evolution from AMchip04 towards AMchip05

4 Future plans

5 Conclusions

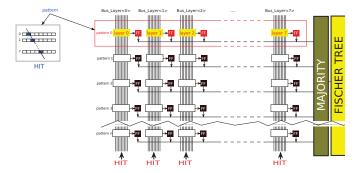
Matteo Beretta


TWEPP 2013 23-27 September, Perugia

2 / 22

ATLAS FTK architecture^a

^aDesign of a Hardware Track Finder (Fast Tracker) for the ATLAS Trigger


To be presented by Guido VOLPI on 25 Sep 2013 from 15:15 to 15:40

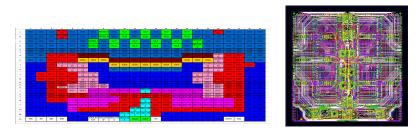
Matteo Beretta

INFN, Frascati National Laboratories

AMchip for the ATLAS FTK: working principle

- I Flip-flop (FF) for each layer stores layer matches
- All patterns are compared in parallel with incoming data (HIT)
- Fast pattern matching and flexible input
- The AM readout is based on a modifed Fischer Tree¹

¹ P. Fischer, NIM A 461 (2001) 499-504


AMchip evolution

- 90's Full custom VLSI chip 0.7μm (INFN-Pisa) 128 patterns, 6x12bit words each (F. Morsani et al., The AMchip: a Full-custom MOS VLSI Associative memory for Pattern Recognition, IEEE Trans. on Nucl. Sci., vol. 39, pp. 795-797, (1992).)
- 1998 FPGA for the same AMchip (P. Giannetti et al. A Programmable Associative Memory for Track Finding, Nucl. Intsr. and Meth., vol. A413/2-3, pp.367-373, (1998)).
- 1999 G. Magazzù, first standard cell project presented at LHCC
- 2006 Standard Cell UMC 0.18 μm 5000 pattern/AMchip for CDF SVT upgrade total: 6M patterns (L. Sartori, A. Annovi et al., A VLSI Processor for Fast Track Finding Based on Content Addressable Memories, IEEE TNS, Vol 53, Issue 4, Part 2, Aug. 2006)
- 2012 AMchip04 8k patterns in 14mm², TSMC 65nm LP technology Power/pattern/MHz 40 times less. Pattern density x12. First variable resolution implementation. (F. Alberti et al 2013 JINST 8 C01040, doi:10.1088/1748-0221/8/01/C01040)
- 2013 AMchip MiniAsic and AMchip05 a further step towards final AMchip version. Serialized input and output buses at 2 Gbs, further power reduction approach. BGA 23 × 23 package.
- 2014 AMchip06: final version of the AMchip for the ATLAS experiment.

New Amchip Package

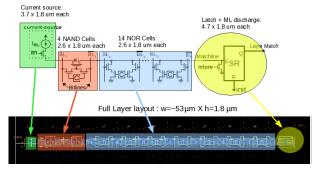
- Up to now everything was done using PQ208 package in which fits the 14mm² AMchip04. Only few pins are dedicated to VDD and GND.
- AMchip06 will be larger than 180mm², and needs larger package: bga 23 × 23 pins. Lots of pins for the different VDD domains and ground. Few pins remain for signals, so instead of parallel buses we have to use serialized input and output.

AMchip04 prototype characterzation

The power consumption for the AMchip04 with 8K pattern is:

	Measured @ 100MHz	extrapolated to 128K
Baseline, leakage (mA)	7	112
clock distribution (mA)	30	480
std, not bitline propagation (mA)	6	96
bitline propagation (mA)	82	1312
AM cells (mA)	70	1120
Total Core (mA)	195	3120
Voltage (V)	1.2	1.2
Total Core (W)	0.234	3.744

Meets original goal of 4W/128k patterns.


Including power consumption from many FPGAs expect > 5kW/crate \Rightarrow additional AMchip RD to reduce total power consumption.

INFN , Frascati National Laboratories

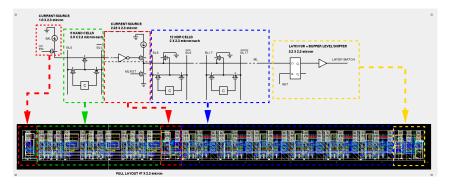
AMchip04 CAM layer architecture

Each AMchip04 CAM layer is composed of 4 NAND type cells (9 transistors each) and 14 NOR type cells (10 transistors each) To save power we have combined two different match line driving schemes²:

- Current race scheme
- Selective precharge scheme

Each layer stores a word: 12 bits + 3 ternary values (0, 1, X)

²K. Pagiamtzis and A. Sheikholeslami, IEEE JSSC 41 (2006) 712-727 < </p>


- Reduce full custom core power supply voltage from 1.2V to 0.8V
- Reduce CAM layer matchline capacity
- Reduce bitline capacity (length)
- Reduce bitline swing voltage from 1.2V to 0.8V
- Try to reduce the std. logic supply voltage from 1.2V to 1.0V.

What we would like to avoid is reducing the clock frequency which must be 100MHz.

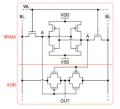
AMchip05 CAM layer architecture

Each AMchip05 CAM layer is composed of 6 NAND type cells (9 transistors each) and 12 NOR type cells (9 transistors each) This layer is supplyed at 0.8V. To maintain speed at 100MHz we have introduced a second current generator.

- Current race scheme
- Selective precharge scheme

With respect to the previous version there is an increase of about 12% in the area.

Matteo Beretta


XOR+RAM

XOR+RAM is an alternative to the AMchip04 cells. More

digital approach: XOR + RAM Features:

- Concatenation of adjacent layers for 4 bus / 32 bit mode
- All bits are configurable as ternary logic
- 2% area reduction
- Simplified logic interface (timing)

This architecture is actually implemented in a miniasic that is under test.

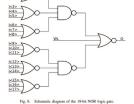


Fig. 7. Layout of the XOR-based CAM cell in 65 nm CMOS technology

TWEPP 2013 23-27 September, Perugia

Image: A math a math

Matteo Beretta

XOR+RAM and LV AMcell power consumption

Power consumption at 0.8V.

	extrapolated to 128K
Baseline, leakage (mA)	112
clock distribution (mA)	720
std, not bitline propagation (mA)	144
bitline propagation (mA)	1278
AM cells (mA)	377
Total Core (mA)	2631
Voltage (V)	0.8
Total Core (W)	2.1

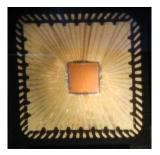
LV AM cell

to 128K
112
720
144
1022
524
2523
0.8
2.02

The values reported in the tables are extrapolated from simulations. This architecture seems to be very promising and is currently under test in a miniasic.

From 60% to 70% power saving with respect AMchip04.

More conservative power consumption at 1.0V is 2.8W (-25% w.r.t. AMchip04 extrapolation)


SERDES IO requirements

To simplify the board routing we have substituted the parallel input and output databus with a high speed serializer and deserializer.

The main features required for the SERDES are:

- data rate at least 2Gbps
- separate serializer and deserializer macro
- 32bit input/output bus
- driver and receiver circuits compatible with LVDS standard
- 8b/10b encode/decode capabilities
- comma detection and word alignment
- BIST capabilities for fast debugging
- Low power

We have bought SERDES core by Silicon Creations. To test this core we have designed a miniasic with 5 DES, 1 SER, their control logic and our AM memory core with only few banks. This chip is currently under test.

Matteo Beretta

INFN, Frascati National Laboratories

Miniasic tests first results

Test performed up to now:

- JTAG chip programming: OK
- SERDES initialization and PLL locking: OK
- JTAG writing pattern : OK
- pattern matching test: OK
- SERDES BIST: OK
- DES 8b/10b decode, comma detection and word alignment: OK
- SER data encode and transmission: OK
- BERT: In progress
- Full serial link characterization: to be done
- Power consumption measurement: to be done

The miniasic with serdes work fine.

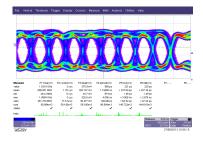
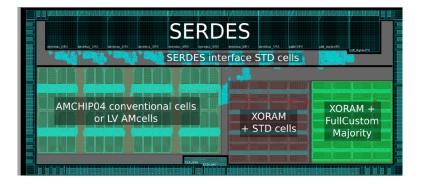


Figure: Miniasic TX Eye diagram at 2Gbps

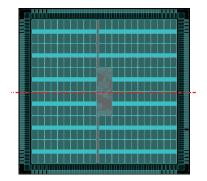

TWEPP 2013 23-27 September, Perugia

AMCHIP 05 logic and simulation

- AMchip05 MPW VHDL is a bigger version of the MiniASIC (submitted in March) plus few improvements and fixes
- New features with respect to AMchip04:
 - SERDES I/O @ 16 bits (2 DC) (AMchip04 was 15 bits 3 DC. Internally it's always 18 bits with configurable DC)
 - Two pattern inputs one pattern output (merge of pattern streams)
 - 1-layer match threshold (other thresholds: never, 8, 7, 6, always)
 - double width mode (4 bus 32 bit)
 - optional continuous readout mode (AMchip04 was event based only)
- VHDL is in very good shape (last fixes)
 - Partially rewritten to be very modular: AMchip06 will be straightforward.
- Simulation code rewritten in SystemC

(a)

Modular FloorPlan AMCHIP 05 MPW


- LVDS @ 2GHz: 11 SERDES (2 pattern in, 1 pattern out, 8 hit buses)
- LVDS @ 100 MHz: CLK
- single-ended control signals: JTAG Init, Dtest, Holds

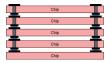

INFN , Frascati National Laboratories

Image: A math a math

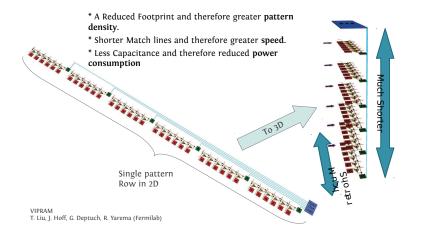
- Finishing the AMchip Miniasic characterization
- Finalize the AMchip05 floorplan and layout
- LV CAM cell characterization
- XOR+RAM characterization
- Begin AMchip06 floorplan

Future evolutions in 2.5D

AMchip04 has been designed to be horizontally symmetric.

- In/out buses for pattern output pipeline can change direction
- Buses are swapped internally to maintain consistency

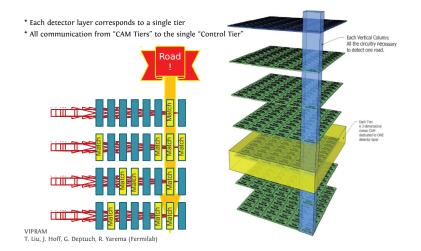
Symmetry helps in designing and routing mezzanines for 2D chips, but also enables vertical stacking:


2.5D

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

TWEPP 2013 23-27 September, Perugia

Matteo Beretta


Future evolutions in 3D

TWEPP 2013 23-27 September, Perugia

Matteo Beretta

Future evolutions in 3D

TWEPP 2013 23-27 September, Perugia

Matteo Beretta

INFN , Frascati National Laboratories

21 / 22

Conclusions

AMchip04 and AMchip05 represent a major improvement in the AMchip family

- Mixed full-custom / standard cell design
 - CAM blocks as full-custom hard blocks, optimized for low power consumption and area efficiency
 - Control logic in standard cells (easy to develop and debug)
- Introduction of SERDES in AMchip 05 instead of parallel buses
- Power consumption reduction using Low Voltage memory core
- Designed with future evolution in mind (vertical stacking, full 3D design,)
- First prototype AMchip06 will be available early 2014
- Design and production of final version Amchip06 in 2014