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Abstract:

In the event of beam loss at the LHC, ATLAS Inner Detector components nearest the beamline may be subjected to unusually large
amounts of radiation. Understanding their behavior in such an event is important in determining whether they would still function

properly. We built a SPICE model of the silicon strip module electrical system to determine the behavior of its elements during a T 510 N\ | 20
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ATLAS Inner Detector, which tracks charged particles resulting from
proton-proton collisions at the LHC. The SCT contains both barrel |2| and
endcap regions, with 2112 modules comprising the barrel region. There are
four silicon strip sensors per double-sided barrel module, each containing
768 individual strips. The strips on each side of a given module are daisy-

crossing over a time span of 10 ms (starting at 5 ms in this simulation). Left: a rapid drop in bias voltage (light blue) occurs as the bias
filter capacitors are drained of their charge. This drop in bias voltage leads to a smaller depletion depth in the sensor. Consequently, the
amount of charge collected per strip (orange) reaches a maximum rate of 273 HA before eventually falling back to 3.5 pA. Center: the
ABCD current per channel (light blue) follows the time derivative of the coupling capacitor voltage (dark blue). The average coupling
capacitor voltage reaches a maximum of 25 V, which is well below the 100 V specification. Right: breakdown of the ABCD front-end can

chained together on the readout electronics to make an effective be observed in the dark blue trace. This plot also shows that the ABCD current per channel (light blue) is less than the current collected
combination of 1536 12-cm strips per module. Previous simulations have per strip (orange). This excess current escapes to ground through the PTP structures. The maximum ABCD current per channel of 244 nA
MR shown that during the most likely beam loss scenarios, the SCT barrel corresponds to 6.1 pC of charge in 25 ns, which is well below the 5 nC in 25 ns specification. We do not expect to see damage to the SCT
. : modules may experience a large particle flux of up to 5.4 x 10° MIPs per barrel modules for this beam loss scenario.
BIOCk Dlagram strip per bunch crossing [3]. All components inside the detector volume Full simulation results:
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AT 100m Cable limit. Here, we simulate the response of the ATLAS barrel modules to the The change in behavior seen at the 15 ms mark in these plots corresponds to the point in the simulation where the beam is dumped, after
“v ‘}IHIE most likely beam loss scenarios to determine which further tests, if any, need which the strips no longer collect charge. At this time, the bias voltage (left, light blue) and coupling capacitor voltage (center, dark blue)
) - Bias Supply to be performed, and we determine what conditions are necessary to exceed begin returning to their pre-beam loss values. The ABCD voltage (right, dark blue) experiences a second breakdown due to the abrupt
Bias Filter on Module the safe operating conditions. drop in the coupling capacitor voltage. At 25 ms, 20 ms after the onset of beam loss, the module returns to its initial state.
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/I s . Charge Injection Scheme We performed a series of beam loss simulations in which the particle flux per strip per bunch crossing increased linearly from 0 to 5.4 x 10
Bias Filter 100rm Cables Power SUPP V.Wlt Punch-Through Protection . Resistance (leakage current) MIPs over various time intervals ranging from 100 ms to 10 ns. The rise in particle flux then continued linearly during a 90 ps beam dump.
Current Limiter and Bias Resistor - Backplane to Implant Capacitance These simulations were performed for both irradiated sensors and non-irradiated sensors. In each case, the shapes of the voltage and current

traces were qualitatively similar to those from the 10 ms scenario. From these simulations, we extracted the two primary values of interest:
the maximum coupling capacitor voltage on the node furthest from the PTP and the maximum current per channel into the ABCD front-
end. These are shown in the two summary plots above. Left: the maximum implant voltage reaches a plateau, which varies with the
operational bias voltage, due to the finite amount of charge stored on the bias filter capacitors. Right: the maximum current per ABCD
channel rises with increasing rates of beam loss. The observed relationship is given by, I «\/rate .

Each strip was modeled as a distributed circuit. We simulated 1536 individual strips, plus the power supply, cables, and bias filter.
Component values are based on measurements of four production SCT sensors at our SCIPP sensor lab.

A Detailed Look at Components of Our Model:
ABCD Readout IC: Simulation of Laser Pulse Studies:
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the large resistor models the slow breakdown Voltage response of the ABCD front-end to the "long" zapper pulse. Breakdown of the The two plots above are from a series of laser pulse simulations using an intensity of 2 x 10© MIPs. The simulation was run four times,
recovery from -2 V to 0 V. The actual path of the transistor base-emitter junction occurs on the trailing edge of the input voltage pulse. twice with charge injected at the center of the implant strip and twice with charge injected directly at the PTP strucutre. At this intensity,
breakdown current in t}}e rea% ABCD is not well Left: recovery from breakdown occurs in two stages: an inital quick return to -2 V is the coupling capacitor reaches the 100 V breakdown specification, so two of the simulations were run with an additional breakdown
}mderstood. Olur modgl 15 H}llOtweO.ll bgl tge fact that  pserved, followed by a slower return to 0 V. Right: a second higher resolution data set mechanism that shorts the implant node to the readout strip though a 1 kQ resistor when the coupling capacitor voltage surpasses 100 V.
1t can accurately reproduce the avallable data. and simulation zooms in on the inital response. Left: without the breakdown mechanism, the coupling capacitor voltage reaches 200 V when charge is injected at the center of an implant
. strip (dark blue), and it reaches 137 V when charge is injected directly at the PTP structure (red). Right: when the coupling capacitor
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_ O‘ Conclusions and Future Work:
N I, For (Vy — Vimp) < Va * Our simulations show that during the most likely beam loss scenarios, namely, when the particle flux across an ATLAS SCT barrel
] I, o _ J(V Vo)V module is rather uniform, there exist inherent self-protection features in the barrel module electrical system. These self-protection
4 @— coltect = 702 7b Timp 7 THd features are the finite amount of charge stored on the bias filter capacitors and the power supply current limit. Because of these
z.'ghawl;}""" < Tl >lg =lo ~ leottece features, the bias filter is unable to maintain a sufficient bias voltage during these beam loss scenarios, and the amount of charge
A san fom he Universty of Syensy smmlketed, e mest ey beem Vv, collect collected by the implant strips is limited due to a reduced depletion depth in the sensors. We found that during these beam loss
loss scenario [3]. The left plot shows a fairly uniform distribution of Our charge collection mechanism consists of three current scenarios, the coupling capacitor voltage never approaches itslgreakdown specification, and the current per ABCD channel only
charge across the innermost SCT barrel layer. The right plot shows the sources. Component 1 models the timing structure of the beam, reaches its specified limit for beam loss rates in excess of 5.4 x 10*° MIPs/bunch/second. In cases where only a fraction of the strips on
distribution of maximum charge collected per strip per bunch crossing. and its current is calculated outside of SPICE. Components 2 a given SCT module are suscepted to a large particle flux, for example when a single strip is zapped by a laser, these self-protection
Assumptions -> :au':"::‘ec::‘s"s i':;':::;i;:‘;:;'x‘f;:;“u?;:j4"1° MIPs per strip per model the dependence of charge collection on the bias voltage. features are not actuated, and the observed behavior of the module is very different. Therefore, these sorts of studies may not be an
-> Beam loss occurs over various time profiles (100 ms, 10 ms, 1 ms, ...) - S effective way to evaluate potential damage of SCT strips during beam loss. However, since small variations in particle flux across the
i '::::'i‘n::'s"t':‘::?::;";::;‘:?v"s interval, during which the particle flux i /’ - strips in a single SCT module may exist, it would be useful to investigate what effect, if any, these variations have on the observed
-> Bunch spacing is 25 ns Every 25 ns: : V, — Vimp Io behavior of the modules.
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Calculation of the current through source 1. into ground so as to not affect other components in the simulation.
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