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The CP-violating charge asymmetry in B± → φK ± decays is measured in a sample of pp collisions at
7 TeV centre-of-mass energy, corresponding to an integrated luminosity of 1.0 fb−1 collected by the
LHCb experiment. The result is ACP(B± → φK ±) = 0.022 ± 0.021 ± 0.009, where the first uncertainty is
statistical and the second systematic. In addition, a search for the B± → φπ± decay mode is performed,
using the B± → φK ± decay rate for normalization. An upper limit on the branching fraction B(B± →
φπ±) < 1.5 × 10−7 is set at 90% confidence level.
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1. Introduction

The weak-interaction B± → φK ± decay is governed by the
b → sss transition. In the Standard Model (SM), it can only occur
through loop diagrams (see Fig. 1), leading to a branching fraction
of order 10−5 [1]. Because the dominant amplitudes have similar
weak phases, the CP-violating charge asymmetry, defined as

ACP
(

B± → φK ±) ≡ B(B− → φK −) − B(B+ → φK +)

B(B− → φK −) + B(B+ → φK +)
, (1)

is predicted to be small in the SM, typically 1–2% with uncer-
tainties of a few percent [2,3]. A significantly larger value would
signal interference with an amplitude not described in the SM. The
current experimental world average is ACP(B± → φK ±) = 0.10 ±
0.04 [1], dominated by a recent measurement from the BaBar Col-
laboration [4]. Large CP violation effects have been seen in some
regions of the B± → K +K −K ± phase space, but not around the φ

resonance [5].
The B± → φπ± decay is another flavour-changing neutral cur-

rent process, driven by the b → dss quark-level transition (see
Fig. 1). The high suppression, due to the tiny product of the
Cabibbo–Kobayashi–Maskawa matrix elements [6,7] and to the
Okubo–Zweig–Iizuka (OZI) rule [8–10] associated with the creation
of the colourless ss pair forming the φ meson, makes this rare loop
decay a sensitive probe of the SM. Indeed, even a small non-SM
amplitude, e.g. from R-parity violating supersymmetry [11], may
dominate over the SM contribution.

The current SM prediction for the B± → φπ± branching frac-
tion suffers from uncertainties originating from the naïve factor-
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Fig. 1. Lowest-order Feynman diagrams of the Standard Model for the decays
B+ → φK + (top) and B+ → φπ+ (bottom). The diagrams with an external φ me-
son are OZI suppressed.

ization approach, radiative corrections, calculation of the long-
distance contribution (e.g. B → K K ∗ rescattering), and ω–φ mix-
ing [12]. The latter is the main source of uncertainty. The physi-
cal ω and φ meson states do not coincide exactly with the ideal
(|uu〉 + |dd〉)/√2 and |ss〉 states, respectively. They appear to be
mixtures of these two states characterized by a small mixing an-
gle δV [13,14], which depends on the magnitude of SU(3) symme-
try breaking and can be determined in the framework of chiral per-
turbation theory. However, more sophisticated treatments based on
the full ρ0–ω–φ mixing scheme suggest that δV is mass depen-
dent, i.e. takes different values at the ω and φ masses [15,16]. In
the QCD factorization approach, the B± → φπ± branching fraction
is predicted to be in the range (5−10)×10−9 [3] if ω–φ mixing is
neglected, but can be enhanced up to 0.6 × 10−7 [12,17] depend-
ing on the value of δV . However, the effect of ω–φ mixing has not
been observed in a recent search for B0 → J/ψφ [18]. Values of
the B± → φπ± branching fraction in excess of 10−7 would be in-
dicative of non-SM physics.
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The B± → φπ± decay mode has not been observed yet. Cur-
rently, the most stringent experimental limit is B(B± → φπ±) <

2.4×10−7 at 90% confidence level (CL), obtained by the BaBar Col-
laboration [19].

This Letter presents a measurement of the B± → φK ± charge
asymmetry and a search for the B± → φπ± decay mode with the
LHCb detector. The results are based on a data sample collected
during the 2011 pp run of the Large Hadron Collider at a centre-
of-mass energy of 7 TeV, corresponding to an integrated luminosity
of 1.0 fb−1. The φ meson is reconstructed in the K +K − final state.
We define the φ signal as any peaking component in the K +K −
mass spectrum consistent with the known parameters of the φ

resonance, without attempting a full amplitude analysis of the
three-body K +K −K ± and K +K −π± final states. In order to sup-
press several systematic effects, the primary observables measured
in this analysis are the difference of CP-violating charge asymme-
tries

�ACP ≡ ACP
(

B± → φK ±) −ACP
(

B± → J/ψ K ±)
, (2)

and the branching fraction ratio B(B± → φπ±)/B(B± → φK ±),
which are then converted to results on ACP(B± → φK ±) and
B(B± → φπ±) using the best known values of ACP(B± → J/ψ K ±)

[1,20] and B(B± → φK ±) [1]. The choice of B± → J/ψ K ± as
reference channel and other features of the analysis follow the
approach adopted in inclusive studies of B± → K +K −K ± decays
with the same data set [5].

The two measurements are performed in a common analy-
sis, i.e. they are based on identical event selections and data de-
scriptions whenever possible. The observables are obtained from
two-dimensional maximum likelihood fits to the unbinned B± and
φ mass distributions of the reconstructed candidates, using para-
metric shapes with minimal dependence on simulation. The results
of these fits were not examined until the entire analysis procedure
was finalized.

2. Detector and data set

The LHCb detector [21] is a single-arm forward spectrometer
covering the pseudorapidity range 2 < η < 5, designed for the
study of particles containing b or c quarks. The detector includes
a high-precision tracking system consisting of a silicon-strip ver-
tex detector surrounding the pp interaction region, a large-area
silicon-strip detector located upstream of a dipole magnet with
a bending power of about 4 Tm, and three stations of silicon-
strip detectors and straw drift tubes placed downstream. The com-
bined tracking system provides a momentum measurement with
a relative uncertainty that varies from 0.4% at 5 GeV/c to 0.6% at
100 GeV/c, and an impact parameter (IP) resolution of 20 μm for
tracks with high transverse momentum (pT). Charged hadrons are
identified using two ring-imaging Cherenkov detectors [22]. Pho-
ton, electron and hadron candidates are identified by a calorimeter
system consisting of scintillating-pad and preshower detectors, an
electromagnetic calorimeter and a hadronic calorimeter. Muons are
identified by a system composed of alternating layers of iron and
multiwire proportional chambers. The direction of the magnetic
field of the spectrometer dipole magnet is reversed regularly.

The trigger [23] consists of a hardware stage, based on infor-
mation from the calorimeter and muon systems, followed by a
software stage, which applies a full event reconstruction. The B±
candidate decays considered in this analysis must belong to one of
two exclusive categories of events, called TOS (triggered on signal)
or TIS (triggered independently of signal). A TOS event is triggered
at the hardware stage by one of the candidate’s final-state par-
ticles being compatible with a transverse energy deposit greater

than 3.5 GeV in the hadron calorimeter. A TIS event does not sat-
isfy the TOS definition and is triggered at the hardware stage by
activity in the rest of the event. All candidates must pass a soft-
ware trigger requiring a two-, three- or four-track secondary vertex
with a large scalar sum of the transverse momentum of the tracks
and a significant displacement from the primary pp interaction
vertices (PVs). At least one track should have pT > 1.7 GeV/c and
χ2

IP with respect to any PV greater than 16, where χ2
IP is defined

as the difference in χ2 of a given PV reconstructed with and with-
out the considered track. A multivariate algorithm [24] is used for
the identification of secondary vertices consistent with the decay
of a b hadron.

In the simulation, pp collisions are generated using Pythia 6.4
[25] with a specific LHCb configuration [26]. Decays of hadronic
particles are described by EvtGen [27], in which final state radia-
tion is generated using Photos [28]. The interaction of the gener-
ated particles with the detector and its response are implemented
using the Geant4 toolkit [29] as described in Ref. [30].

3. Event selection and efficiency

The selections of B± → φK ± and B± → φπ± candidates are
identical, except for the particle identification (PID) requirement
on the charged hadron combined with the φ candidate, which is
referred to as the bachelor hadron h± (h± = K ± or π±). The other
requirements are chosen to minimize the relative statistical uncer-
tainty on the B± → φK ± signal yield.

Only good quality tracks with χ2
IP > 25 and pT > 0.25 GeV/c

are used in the reconstruction. The φ meson candidates are re-
constructed from two oppositely-charged tracks identified as kaons
with the PID requirement DLLKπ > 2, where DLLKπ is the dif-
ference in log-likelihood between the kaon and pion hypotheses,
as determined with the ring-imaging Cherenkov detectors in con-
trol samples of known particle composition [22]. The φ candi-
dates are required to have pT > 2 GeV/c, a total momentum, p,
larger than 10 GeV/c and an invariant mass, mK K , in the range
1.00–1.05 GeV/c2. Bachelor hadrons, reconstructed either as pi-
ons if DLLKπ < −1 or kaons otherwise, are required to have
p > 10 GeV/c and pT > 2.5 GeV/c, and are combined with φ can-
didates to form B± → φh± candidates. These B± candidates are
required to have pT > 2 GeV/c, a three-track vertex χ2 per degree
of freedom less than 9, and an invariant mass mK Kh in the range
5.0–5.5 GeV/c2. Furthermore cos θp is required to be greater than
0.9999, where θp is the angle between the B± momentum vector
and the vector joining the B± production vertex to the B± decay
vertex. The production vertex is chosen as the PV for which the
B± has the smallest χ2

IP.
Multiple candidates, occurring in 0.2% of the events, are re-

moved by keeping the candidate with the smallest B± vertex χ2.
The final data sample consists of 6251 B± → φK ± candidates and
2169 B± → φπ± candidates.

The PID performance is determined from a large and high-
purity sample of pions from prompt D∗+ → D0(K −π+)π+ and
D∗− → D0(K +π−)π− decays, as a function of p and η. Af-
ter reweighting this calibration sample to the same momen-
tum and pseudorapidity distributions as for the bachelor pion
in simulated B± → φπ± decays, the efficiency of the PID re-
quirement DLLKπ < −1 for the bachelor pion is measured to be
0.846 ± 0.011(stat) ± 0.020(syst), with a 5% kaon misidentification
probability. All other efficiencies, which are slightly different for
B± → φπ± and B± → φK ± decays due to their kinematic proper-
ties, are determined from simulation. The efficiency ratio

ε(B± → φπ±)

ε(B± → φK ±)
= 0.762 ± 0.031(stat) ± 0.036(syst) (3)
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is obtained, where the numerator is the total efficiency for a
B± → φπ± decay to be selected as a B± → φπ± candidate and
the denominator is the total efficiency for a B± → φK ± decay to
be selected either as a B± → φK ± candidate or as a B± → φπ±
candidate. The statistical uncertainty arises from the size of the
calibration and simulation samples, while the systematic uncer-
tainty is the quadratic sum of contributions from the PID (±0.018),
the trigger (±0.008), and other offline kinematic selection require-
ments (±0.030).

4. Fit description

The observables of interest, namely the asymmetry between
the B− → φK − and B+ → φK + yields and the ratio between
the B± → φπ± and B± → φK ± yields, are each determined from
a two-dimensional unbinned extended maximum likelihood fit
based on probability density functions (PDFs) of the mK Kh and
mK K masses. In each case, independent subsamples of events, each
with either B± → φK ± candidates or B± → φπ± candidates, are
fitted simultaneously. For each subsample, the likelihood is writ-
ten as

L = exp

(
−

∑
j

N j

) N∏
i

(∑
j

N j P i
j

)
, (4)

where N j is the yield of fit component j, P i
j is the probability of

event i for component j, and the index i runs over the N events in
the subsample. Except for the misidentified components described
further below, the probabilities P i

j are given by the product of

PDFs for the two K +K −h± and K +K − invariant masses, evaluated
at the values mi

K Kh and mi
K K of event i:

P i
j = P K Kh

j

(
mi

K Kh

)
P K K

j

(
mi

K K

)
. (5)

This assumes that the two mass variables are independent, as sup-
ported by data and simulation studies. The correlation between
mK Kh and mK K is found to be less than 4%.

The description of the mK Kh distributions involves a com-
bination of three contributions: a signal peaking at the B±
mass, a broad low-mass background with an end-point near
5150 MeV/c2 due to partially-reconstructed b-hadron decays such
as B0 → φK ∗0, and a linear background from random combina-
tions. The peaking signal is modelled with a Crystal Ball func-
tion [31] modified such that both the upper and lower tails are
power laws. The mean and the width σB of the Crystal Ball
function are free in the fit, while the tail parameters are deter-
mined from simulation. The partially-reconstructed background is
described with an ARGUS function [32] convoluted with a Gaus-
sian resolution function of the same σB as the B± signal. The
mK K distribution is described with two contributions: a peak-
ing term centred on the φ mass, described with a relativistic
Breit–Wigner function convoluted with a Gaussian resolution func-
tion of free width, and a linear term originating from nonreso-
nant, S-wave, or random combinations of two kaons. The above
three mK Kh contributions and two mK K contributions lead to six
components for each subsample: the B± → φh± signal, the non-
resonant B± → K +K −h± background, the partially-reconstructed
b-hadron backgrounds with or without a true φ meson (for ex-
ample B → φh±π or B → K +K −h±π ), and the combinatorial
backgrounds with or without a true φ meson. The nonresonant
B± → K +K −h± components include b → c decays, which are
found to be negligible from simulation studies.

In addition, we consider components for the misidentified
B± → φK ± and B± → K +K −K ± decays in the B± → φπ± sam-
ple, while misidentified B± → φπ± and B± → K +K −π± decays

in the B± → φK ± sample are negligible, and therefore ignored. For
these two additional components, the mK Kπ PDF is conditional to
the observable δm = mK K K − mK Kπ , which is the mass difference
under the two bachelor hadron mass hypotheses. The probabilities
are written as

P i
j = P K Kπ

misID

(
mi

K Kπ |δmi)P K K
j

(
mi

K K

)
, (6)

where P K K
j is the mK K PDF described above (representing either

φ signal or background) and

P K Kπ
misID

(
mi

K Kπ |δmi) = P K K K
φK

(
mi

K Kπ + δmi)∣∣
σB→ρσB

. (7)

Here P K K K
φK is the mK K K PDF of the B± → φK ± signal, but with

an increased B± mass resolution to account for the effects of the
typically higher momentum of misidentified bachelor kaons. The
parameter σB is multiplied here by the central value of a factor
ρ = 1.26±0.10, determined from data as the ratio of the measured
mK K K resolutions of the B± → φK ± signal in the regions −7 <

DLLKπ < −1 and DLLKπ > −1. The expression in Eq. (7) is equiv-
alent to P K K K

φK (mi
K K K )|σB →ρσB , which means that the B± → φK ±

misidentified component in the B± → φπ± sample would have a
B± → φK ± signal distribution if the correct mass was assigned
to the bachelor kaon. The advantage of introducing the δm ob-
servable is to connect the B± → φK ± shapes in the B± → φπ±
and B± → φK ± samples, thereby constraining the misidentified
B± → φK ± component in the B± → φπ± sample using the large
signal in the B± → φK ± sample. This procedure allows to describe
the misidentified component with the same parametric shape as
the B± → φπ± signal, and reduces the statistical uncertainty on
the B± → φπ± yield by a factor of two. However, this introduces
a bias because the δm distribution, which is not accounted for in
the likelihood, is not the same for all components [33]. To reduce
this bias, the B± → φπ± sample is divided into four bins of δm,
each with its own eight components. This procedure reduces the
bias on the B± → φπ± signal yield to a negligible level.

Other fit parameters that are common to the different sub-
samples are the mK Kh end-point of the partially-reconstructed
backgrounds, the peaking mK K PDF parameters for all compo-
nents containing a φ meson, and the mK K slope of the nonreso-
nant B± → K +K −h± components. Finally, the ratio of the yield of
the misidentified nonresonant B± → K +K −K ± background to the
yield of misidentified B± → φK ± background in the B± → φπ±
sample is constrained to the yield ratio of the corresponding
correctly-identified components in the B± → φK ± sample.

The fit procedure is validated on simulated data containing the
expected proportion of signal and background events.

These studies, which take into account the different δm distri-
butions and the possible correlation between the fit observables,
demonstrate the stability of the fit and show that the fit results
are unbiased.

5. Measurement of the B± → φK ± charge asymmetry

The charge asymmetry of the B± → φK ± signal is determined
from a fit to the B− → φK − and B+ → φK + candidates in the
DLLKπ > −1 region. These two samples are each divided into two
subsamples according to whether the events were TOS or TIS at
the hardware trigger stage. In the fit, each of the six compo-
nents has therefore four yields. For the signal component, they
are expressed as N±

TOS = NTOS(1 ∓Araw,TOS)/2 and N±
TIS = NTIS(1 ∓

Araw,TIS)/2, where Nk is the total yield and Araw,k is the raw yield
asymmetry in subsample k (k = TOS,TIS). The fit has a total of 34
free parameters: 10 mass shape parameters, 12 yields and 12 raw
asymmetries.
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Fig. 2. Distributions of the (a) K + K − K − and (b) K + K − masses of the selected B− → φK − candidates, as well as of the (c) K + K − K + and (d) K + K − masses of the selected
B+ → φK + candidates. The solid blue curves represent the result of the simultaneous fit described in the text, with the following components: B± → φK ± signal (dotted
red), nonresonant B± → K + K − K ± background (dashed red), partially-reconstructed b-hadron background with (dotted blue) or without (dashed blue) a true φ meson, and
combinatorial background with (dotted green) or without (dashed green) a true φ meson. Some of the components are barely visible because the corresponding yields are
small. Normalized residuals are displayed below each histogram. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this Letter.)

Table 1
Raw charge asymmetries for the B± → φK ± and B± → J/ψ K ± decays, their differ-
ence �ACP , and the fraction of B± → φK ± signal events in each trigger subsample
for k = TOS,TIS. All uncertainties are statistical only.

TOS subsample TIS subsample

Araw,k(B± → φK ±) +0.027 ± 0.026 −0.053 ± 0.035
Araw,k(B± → J/ψ K ±) −0.024 ± 0.008 −0.008 ± 0.005
�ACP +0.052 ± 0.027 −0.045 ± 0.035
Nk/(NTOS + NTIS) 66% 34%

Weighted �ACP average +0.019 ± 0.021

Fig. 2 shows the projections of the fitting function superim-
posed on the mK K K and mK K distributions, shown separately
for B− and B+ candidates, but where TOS and TIS events are
summed. The mK K K resolution measured from the fit is σB =
20.4 ± 0.3 MeV/c2. The fitted raw asymmetries for the signal are
shown in the first line of Table 1. They are statistically uncorre-
lated.

Each raw charge asymmetry is related to the CP asymmetry
through

Araw,k
(

B± → φK ±) = ACP
(

B± → φK ±)
+AD,k

(
B± → φK ±) +AP, (8)

where AD,k(B± → φK ±) is the detection charge asymmetry for
the bachelor K ± and AP is the production asymmetry of B±

mesons. Eq. (8) and the corresponding equation for the B± →
J/ψ K ± reference channel hold because all involved asymmetries
are small. Under the assumption that the detection asymmetry is
the same for B± → φK ± and B± → J/ψ K ± , which is correct in
the limit where the bachelor K ± has the same kinematic proper-
ties, the difference in charge asymmetries defined in Eq. (2) can be
written as

�ACP = Araw,k
(

B± → φK ±) −Araw,k
(

B± → J/ψ K ±)
(9)

and should not depend on the trigger category k. The raw charge
asymmetries of B± → J/ψ K ± decays have been measured in a
previous analysis [5]; they are subtracted from the B± → φK ± raw
asymmetries to obtain two independent measurements of �ACP .
Since the two results agree within about two statistical standard
deviations, the results are combined. The final �ACP result is com-
puted as a weighted average, with weights equal to the fractions
Nk/(NTOS + NTIS) of signal events in the two trigger subsamples.
All inputs to the calculation are reported in Table 1. The separa-
tion between TIS and TOS events is needed because the detection
asymmetry AD,k depends on the trigger category k and the frac-
tion of events in the two categories differs between the signal and
reference channels.

Several systematic uncertainties are considered on the weighted
�ACP average, as summarized in Table 2. The contribution due to
the mass shape modelling is obtained by repeating the fit (and the
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Table 2
Systematic uncertainties on the measurement of �ACP .

Source Uncertainty

Mass shape modelling 0.003
Possible S-wave contribution 0.002
Trigger 0.004
Bachelor kaon kinematic properties 0.005
Geometric acceptance 0.002

Quadratic sum 0.007

calculation of Table 1) with the fixed parameter values of the Crys-
tal Ball and ARGUS functions changed within their uncertainties,
as determined from simulation and B± → φK ± data, respectively,
or with an exponential (rather than linear) combinatorial back-
ground model. Possible residual effects from S-wave contributions
not fully accounted for by the linear component are investigated
by comparing the observed angular distribution of the B± → φK ±
signal with the expectation for a peaking structure in the K +K −
mass due to a single P-wave state. Other P-wave components are
neglected. If these S-wave contributions corresponded to an addi-
tional component included in the signal without charge asymme-
try, a bias would appear on �ACP , which is taken as a systematic
uncertainty.

The charge asymmetry in the trigger efficiency for kaons of the
TOS subsample does not completely cancel in �ACP , because of
the different number of kaons in the two decay modes considered.
The difference between the values of Araw,TOS(B± → J/ψ K ±)

computed with and without a charge-dependent correction for the
kaon efficiency determined from calibration data is propagated as
a systematic uncertainty on �ACP . Such an effect is absent for the
TIS subsample. Another small contribution, due to the TOS events
that would still be accepted by the hardware trigger level without
considering the particles from the B+ candidate decay, has been
included in the trigger systematic uncertainty. Due to differences
in the kinematic selections of the B± → φK ± and B± → J/ψ K ±
decay modes, the assumption of Eq. (9) cannot be exact, and
a further systematic uncertainty is assigned. The fit of the raw
charge asymmetries of B± → J/ψ K ± is repeated with the same
kinematic selection on the bachelor kaon as for B± → φK ± , i.e.
p > 10 GeV/c and pT > 2.5 GeV/c, and after reweighting its mo-
mentum distribution to that observed in the B± → φK ± decays.
The resulting effect on �ACP is taken as a systematic uncertainty.
Finally, we repeat the B± → φK ± analysis after requiring the bach-
elor kaon momentum to point in a fiducial solid angle avoiding
detector edge effects, and assign the observed change in �ACP as
a systematic uncertainty due to the geometrical acceptance.

The final measurement is

�ACP = 0.019 ± 0.021(stat) ± 0.007(syst). (10)

A recent update of the B± → J/ψ K ± charge asymmetry mea-
surement by the D0 Collaboration [20] has not been included yet
in the average of the Particle Data Group (PDG) [1]. Replacing
the previous D0 result with the new one yields the world aver-
age ACP(B± → J/ψ K ±) = 0.003 ± 0.006, where the uncertainty is
scaled by a factor 1.8 according to the PDG averaging rules. Using
this average, we obtain

ACP
(

B± → φK ±) = 0.022 ± 0.021(stat) ± 0.009(syst), (11)

where the uncertainty on the B± → J/ψ K ± charge asymmetry is
incorporated in the systematic uncertainty.

6. Search for B± → φπ± decays

The search for B± → φπ± decays is performed using a si-
multaneous fit to the B± → φπ± (DLLKπ < −1) and B± → φK ±

(DLLKπ � −1) candidates, dividing the B± → φπ± candidates in
four subsamples according to their δm values, each with its set of
eight yields. The fit has a total of 52 free parameters: 15 mass
shape parameters, 36 yields, and the ratio of the total B± → φπ±
yield to the total B± → φK ± yield.

Fig. 3 shows the projections of the fitted function superimposed
on the observed mass distributions of the B± → φπ± candidates.
The total B± → φπ± signal yield is found to be 19 ± 19, while
the total B± → φK ± yield is (3486 ± 76) + (280 ± 25) summing
the samples of B± → φK ± and B± → φπ± candidates. The fitted
yield ratio is

N(B± → φπ±)

N(B± → φK ±)
= (

5.1+5.3
−5.0(stat) ± 2.1(syst)

) × 10−3, (12)

where the systematic uncertainty is the quadratic sum of contribu-
tions due to the modelling of the mass shapes (±2.1 × 10−3), the
fit procedure (±0.2 × 10−3), and interference effects between the
φ resonance and a K +K − pair in an S-wave state (±0.4 × 10−3).
The first contribution is obtained by repeating the fit with the pa-
rameter values of the Crystal Ball and ARGUS functions changed
within their uncertainties, or with an exponential (rather than lin-
ear) combinatorial background model. The dominant effect is due
to the 8% uncertainty on the ratio ρ of the B± → φK ± mass res-
olutions in the two DLLKπ regions. Simulation studies show that
the fit procedure is unbiased, and the statistical precision of this
check is assigned as a systematic uncertainty.

The measurement of the branching fraction ratio is obtained as
the ratio between Eq. (12) and Eq. (3):

B(B± → φπ±)

B(B± → φK ±)
= (

6.6+6.9
−6.6(stat) ± 2.8(syst)

) × 10−3. (13)

Since the result is not significantly different from zero, we also
quote upper limits from the integral of the likelihood function
of this ratio, considering only the physical (non-negative) re-
gion. Including systematic uncertainties we obtain B(B± → φπ±)/

B(B± → φK ±) < 0.018(0.020) at 90% (95%) CL. Using the current
world average B(B± → φK ±) = (8.8+0.7

−0.6)×10−6 [1], we finally ob-
tain

B
(

B± → φπ±) = (
5.8+6.1

−5.8 ± 2.5
) × 10−8 (14)

< 1.5(1.8) × 10−7 at 90% (95%) CL. (15)

7. Conclusions

The difference in charge asymmetries between the B± → φK ±
and B± → J/ψ K ± decay modes is measured in a sample of pp
collisions at 7 TeV centre-of-mass energy, corresponding to an
integrated luminosity of 1.0 fb−1 collected with the LHCb de-
tector. Using the known value of the B± → J/ψ K ± asymmetry,
the CP-violating charge asymmetry of B± → φK ± decays is deter-
mined to be ACP(B± → φK ±) = 0.022 ± 0.021(stat) ± 0.009(syst).
This result is almost a factor two more precise than the current
world average [1]. It is consistent with both the absence of CP vi-
olation and the Standard Model prediction.

A search for B± → φπ± decays is also performed. No sig-
nificant signal is found. Using the known branching fraction
of the B± → φK ± normalization channel, an upper limit of
B(B± → φπ±) < 1.5(1.8) × 10−7 is set at 90% (95%) confidence
level. This improves on the previous best upper limit [19], while
reaching the upper end of the Standard Model predictions.
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displayed below the histograms. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)
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