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We extend the maximal-unitarity formalism at two loops to double-box integrals with four massive
external legs. These are relevant for higher-point processes, as well as for heavy vector rescattering,
VV → VV. In this formalism, the two-loop amplitude is expanded over a basis of integrals. We obtain
formulas for the coefficients of the double-box integrals, expressing them as products of tree-level
amplitudes integrated over specific complex multidimensional contours. The contours are subject to the
consistency condition that integrals over them annihilate any integrand whose integral over real Minkowski
space vanishes. These include integrals over parity-odd integrands and total derivatives arising from
integration-by-parts (IBP) identities. We find that, unlike the zero- through three-mass cases, the IBP
identities impose no constraints on the contours in the four-mass case. We also discuss the algebraic
varieties connected with various double-box integrals and show how discrete symmetries of these varieties
largely determine the constraints.
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I. INTRODUCTION

Last year’s discovery [1,2] by the ATLAS and CMS
Collaborations of a Higgs-like boson completes the particle
content of the StandardModel. Coupled with the absence to
date of direct signals of physics beyond the Standard
Model, the discovery points towards an important role
for precision measurements in determining the scale of new
physics beyond the Standard Model.
Theoretical calculations at the LHC, whether for signals

or backgrounds, begin with the tree-level amplitudes
required for leading-order (LO) calculations in perturbative
quantum chromodynamics (QCD). Because the strong
coupling αs is relatively large and runs quickly, LO
predictions suffer from strong dependence on the unphys-
ical renormalization and factorization scales and are thus
not quantitatively reliable. Next-to-leading order (NLO) is
the lowest order in perturbation theory which offers
quantitatively reliable predictions. These calculations
require one-loop amplitudes in addition to tree-level
amplitudes with higher multiplicity. Recent years have
seen major advances in NLO calculations, especially for
processes with several jets in the final state [3–9]. While the
uncertainty left by scale variation cannot be quantified in
the same fashion as statistical uncertainties, experience
shows that it is of Oð10%–15%Þ.
As combined experimental uncertainties in future

measurements push below this level, a comparison with
theoretical calculations will require pushing on to

next-to-next-to-leading-order (NNLO) accuracy. Such
studies will require computation of two-loop amplitudes.
These computations form the next frontier of precision
QCD calculations. The only existing fully exclusive NNLO
jet calculations to date are for three-jet production in
electron-positron annihilation [10]. These calculations have
been used to determine αs to 1% accuracy from jet data at
LEP [11]. This extraction is competitive with other deter-
minations. Beyond their use in seeking deviations in
precision experimental data from Standard-Model predic-
tions, NNLO calculations will also be useful at the LHC for
improving our understanding of scale stability in multiscale
processes such as W þmultijet production, as well as for
providing honest theoretical uncertainty estimates for NLO
calculations.
The unitarity method [12–29] has made many previously

inaccessible one-loop calculations feasible. Of particular
note are processes with many partons in the final state. The
most recent development, applying generalized unitarity,
allows the method to be applied either analytically or purely
numerically [30–40]. The numerical formalisms underlie
recent software libraries and programs that have been
applied to LHC phenomenology. In this approach, the
one-loop amplitude in QCD is written as a sum over a set of
basis integrals, with coefficients that are rational in external
spinors:

Amplitude ¼
X

j∈Basis
coefficientj × Integralj þ Rational:

(1.1)

The integral basis for amplitudes with massless internal
lines contains box, triangle, and bubble integrals in addition
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to purely rational terms [dropping all terms of OðϵÞ in the
dimensional regulator]. The coefficients are calculated
from products of tree amplitudes, typically by performing
contour integrals via discrete Fourier projection. In the
Ossola-Papadopoulos-Pittau (OPP) approach [21], this
decomposition is carried out at the integrand level rather
than at the level of integrated expressions.
Higher-loop amplitudes can also be written in the form

given in Eq. (1.1). As at one loop, one can carry out such a
decomposition at the level of the integrand. This generali-
zation of the OPP approach has been pursued by Mastrolia
and Ossola [41] and collaborators, and also by Badger,
Frellesvig, and Zhang [42]. The reader should consult
Refs. [43–49] for further developments within this
approach. Arkani-Hamed and collaborators have developed
an integrand-level approach [50–55] specialized to planar
contributions to the N ¼ 4 supersymmetric theory, but to
all loop orders.
Within the unitarity method applied at the level of

integrated expressions, one can distinguish two basic
approaches. In a “minimal” application of generalized
unitarity, used in a number of prior applications and
currently pursued by Feng and Huang [56], one cuts just
enough propagators to break apart a higher-loop amplitude
into a product of disconnected tree amplitudes. Each cut is
then a product of tree amplitudes, but because not all
possible propagators are cut, each generalized cut will
correspond to several integrals, and algebra will be required
to isolate specific integrals and their coefficients. This
approach does not require a predetermined general basis of
integrals; it can be determined in the course of a specific
calculation. A number of calculations have been done this
way, primarily in the N ¼ 4 supersymmetric gauge theory
[57–64], but including several four-point calculations in
QCD and supersymmetric theories with less-than-maximal
supersymmetry [65–71]. Furthermore, a number of recent
multiloop calculations in maximally supersymmetric gauge
and gravity theories have used maximal cuts [72–78],
without complete localization of integrands.
We will use a more intensive form or “maximal” form of

generalized unitarity. In this approach, one cuts as many
propagators as possible and further seeks to fully localize
integrands onto global poles to the extent possible. In
principle, this allows one to isolate individual integrals on
the right-hand side of the higher-loop analog of Eq. (1.1). In
previous papers [79,80], we showed how to extract the
coefficients of double-box master integrals using multidi-
mensional contours around global poles. In this paper, we
recast this operation as applying generalized discontinuity
operators (GDOs). Each GDO corresponds to integrating
the integrand of an amplitude or an integral along a
specified linear combination of multidimensional contours
around global poles. The GDOs generalize the operation of
cutting via the Cutkosky-rule replacement of propagators
by on-shell delta functions.

Some of the contour integrations in a GDO put internal
lines on shell, equivalent to cutting propagators [81]. This
integration will typically yield a Jacobian giving rise to
poles in the remaining degrees of freedom. In the case of
the double box, the Jacobian allows one to fully localize the
remaining degrees of freedom through additional multidi-
mensional contour integrals. The integrand is then fully
localized at one of a set of global poles. We call these
additional degrees of freedom “localization variables.” We
include these additional dimensions of contours in the
definition of the GDO. This maximal-unitarity approach
may be viewed as a generalization to two loops of the work
of Britto, Cachazo, and Feng [16] and of Forde [23].
The GDOs are constructed so that each one selects a

specific master integral:

GenDisciðIntegraljÞ ¼ δij: (1.2)

Applying it to Eq. (1.1) then gives us an expression for the
corresponding coefficient:

coefficientj ¼ GenDiscjðAmplitudeÞ: (1.3)

The right-hand side will have the form of explicit contour
integrals over localization variables of a product of tree
amplitudes; schematically,

coefficientj ¼
I
Γj

dzi
Y

AtreeðziÞ: (1.4)

The weights with which the contours Γj surround the
different global poles are determined by a set of consistency
equations. These equations require that integrals vanishing
over the Minkowski slice of complexified loop-momentum
space are also annihilated by the GDOs, vanishing on
the particular combinations of contours in each and
every GDO.
In this paper, we continue the maximal-unitarity

approach of Refs. [79,80], relying on the global-pole
analysis [82] of Caron-Huot and one of the present authors.
At higher loops, the coefficients of the basis integrals are
no longer rational functions of the external spinors alone
but will in general depend explicitly on the dimensional
regulator ϵ. We consider GDOs operating only on the four-
dimensional components of the loop momenta and accord-
ingly extract only the leading terms, ϵ-independent terms.
GDOs operating on the full D-dimensional loop momenta
would be required to extract the remaining terms and
could presumably be used to obtain the rational terms in
Eq. (1.1) as well.
At two loops and beyond, the number of master integrals

for a given topology will depend on the number and
arrangement of external masses [83]. (See also recent
work on a different organization of higher-loop integrals
[84–86].) In previous papers, we have considered double
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boxes with no external masses [79] or with one, two, or
three external masses [80]. In this article, we extend the
GDO construction to planar double boxes with four
external masses. We consider both the general case with
unequal masses and one special case with pairs of equal
masses. In the general case, there are four master integrals;
in the special case with an extra reflection symmetry, three.
Søgaard [87] has constructed GDOs for the nonplanar
massless double box.
As in previous work, we ensure the consistency of the

GDOs by requiring that they yield a vanishing result when
applied to vanishing integrals. For the four-mass double
box, it turns out that nontrivial constraints arise only from
parity-odd integrands; integration-by-parts (IBP) identities
[88–95] give no additional constraints. The symmetry
requirement for the special equal-mass case must also be
imposed explicitly and, unlike fewer-mass cases, does not
emerge automatically from IBP equations. We consider
only two-loop master integrals with massless internal lines.
We will not consider the generalization to massive internal
lines; but so long as there are sufficient massless internal
lines to have at least one chiral vertex, the integrand should
still have global poles, and we should expect the approach
described here to generalize smoothly.
This paper is organized as follows. In Sec. II, we present

the parametrization of loop momenta we use for deriva-
tions. In Sec. III, we discuss the maximal-cut equations for
the four-mass double box along with the global poles and
derive the GDOs for the four master integrals. In Sec. IV,
we discuss constraint equations and their symmetries for all
double boxes from an algebraic-geometry point of view.
We make some concluding remarks in Sec. V.

II. LOOP-MOMENTUM PARAMETRIZATION

We take over the same loop-momentum parametrization
used in Ref. [80]. This parametrization makes use of
spinors defined for massive external legs. Such spinors
correspond to massless four-dimensional momenta, which
we obtain using “mutually projected” kinematics. This
construction was previously used in the work of OPP [21]
and Forde [23] to extract triangle and bubble coefficients at
one loop.
For a given pair of external four-momenta ðki; kjÞ, we

require the mutually projected momenta to satisfy

k♭;μi ¼ kμi −
k2i

2ki · k♭j
k♭;μj ; k♭;μj ¼ kμj −

k2j
2kj · k♭i

k♭;μi :

(2.1)

By construction, k♭i and k♭j are massless momenta. Next,
define

ρij ≡ k2i
2ki · k♭j

: (2.2)

We note that

ki · k♭j ¼ k♭i · kj ¼ k♭i · k
♭
j (2.3)

and define

γij ≡ 2k♭i · k
♭
j; (2.4)

so that ρij ¼ k2i =γij. After using Eq. (2.1), we obtain a
quadratic equation for γij; its two solutions are

γ�ij ¼ ki · kj � ½ðki · kjÞ2 − k2i k
2
j �1=2: (2.5)

If either momentum in the pair ðki; kjÞ is massless, only
one solution survives. Equation (2.3) then gives us
γij ¼ 2ki · kj. Inverting Eq. (2.1), we obtain the massless
momenta

k♭;μi ¼ ð1 − ρijρjiÞ−1ðkμi − ρijk
μ
j Þ; (2.6)

swap i ↔ j to obtain k♭;μj . In this paper we work with two
mutually projected pairs: ðk1; k2Þ and ðk3; k4Þ. This choice
defines a set of “projected” massless momenta k♭;μi ,
i ¼ 1;…; 4, in terms of the external momenta, ki, and
the sign choices in γ�12 and γ�34.
With the projected momenta, we adopt the following

parametrization for the double-box loop momenta as
depicted in Fig. 1:

lμ
1 ¼

1

2
hλ1jγμj~λ01� þ ζ1η

μ
1; lμ

2 ¼
1

2
hλ2jγμj~λ02� þ ζ2η

μ
2;

(2.7)

where ζi are complex numbers, and the ηi are null vectors
satisfying η1jλ1i ≠ 0 ≠ η1j~λ01� and η2jλ2i ≠ 0 ≠ η2j~λ02�. We
introduce the ζi in order to compute Jacobian factors arising
from the change of variables in the double-box integral. To
obtain on-shell momenta, we subsequently set ζi ¼ 0.

FIG. 1. The double-box integral.
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We write the various loop spinors in Eq. (2.7) in terms of
the spinors corresponding to ðk♭1; k♭2Þ for l1 and the spinors
corresponding to ðk♭3; k♭4Þ for l2:

jλ1i ¼ ξ1j1♭iþ ξ2
h4♭1♭i
h4♭2♭i j2

♭i; j~λ01� ¼ ξ01j1♭�þ ξ02
½4♭1♭�
½4♭2♭� j2

♭�;

jλ2i ¼ ξ3
h1♭4♭i
h1♭3♭i j3

♭iþ ξ4j4♭i; j~λ02� ¼ ξ03
½1♭4♭�
½1♭3♭� j3

♭�þ ξ04j4♭�;
(2.8)

where the external spinors are defined via k♭;μi ¼
hi♭jγμji♭�=2. Without loss of generality, we can set two
of the complex parameters to unity, ξ1 ¼ ξ4 ¼ 1, as we will
do throughout the paper.
Moreover, similarly to Ref. [80], we define the following

quantities:

ξ̄01 ≡ γ12s12 − ðγ12 þm2
2Þm2

1

γ212 −m2
1m

2
2

;

ξ̄02 ≡ −
m2

1ðs12 − γ12 −m2
1Þk♭2 · k♭4

ðγ212 −m2
1m

2
2Þk♭1 · k♭4

;

ξ̄03 ≡ −
m2

4ðs34 − γ34 −m2
4Þk♭1 · k♭3

ðγ234 −m2
3m

2
4Þk♭1 · k♭4

;

ξ̄04 ≡ γ34s34 − ðγ34 þm2
3Þm2

4

γ234 −m2
3m

2
4

; (2.9)

τ≡ h1♭4♭ih2♭3♭i
h2♭4♭ih1♭3♭i ¼

½1♭4♭�½2♭3♭�
½2♭4♭�½1♭3♭� ; (2.10)

wheremi are the masses of the external momenta,m2
i ¼ k2i .

In addition, we will make use of the following quantities
not needed in Ref. [80]:

Δ≡ ððξ̄01 þ ξ̄02Þξ̄04 − ðξ̄01 þ τ2ξ̄02Þξ̄03Þ2 − 4ξ̄01ξ̄
0
2ðτξ̄03 − ξ̄04Þ2;

(2.11)

z� ≡ 1

2ξ̄01ðτξ̄03 − ξ̄04Þ
ððξ̄01 þ ξ̄02Þξ̄04 − ðξ̄01 þ τ2ξ̄02Þξ̄03 �

ffiffiffiffi
Δ

p
ÞÞ;

(2.12)

γ� ≡ γ12γ34
32k♭1 · k

♭
4ðγ212 −m2

1m
2
2Þðγ234 −m2

3m
2
4Þ
: (2.13)

III. MAXIMAL CUTS OF DOUBLE-BOX
INTEGRALS

Our aim is to determine the coefficients of the double-
box master integrals that appear in the basis expansion (1.1)
of a two-loop quantity that may either be an amplitude,
form factor, or correlator. Without loss of generality,
we refer to the two-loop quantity as an amplitude. The

double-box integral topology is illustrated in Fig. 1 and
defines the internal momenta pj. The integral is defined in
dimensional regularization with D ¼ 4 − 2ϵ as

P��
2;2½Φ�≡

Z
RD×RD

dDl1

ð2πÞD
dDl2

ð2πÞD
Φðk1; k2; k3;l1;l2ÞQ

7
j¼1 p

2
j

;

(3.1)

where Φ denotes an arbitrary polynomial in the external
and internal momenta. We refer to it as a numerator
insertion. At one loop, all numerator insertions can be
expressed as linear combinations of propagator denomi-
nators, external invariants, and parity-odd functions which
vanish upon integration; but this is no longer true at two
loops and beyond. At higher loops, some polynomials Φ
are irreducible. Integrals with certain irreducible-numerator
insertions can be related to others using IBP identities, but
in general several will remain as master integrals.
We seek formulas for the double-box coefficients to

leading order in the dimensional regulator ϵ in terms of
purely tree-level input. We begin by cutting all double-box
propagators on both sides of Eq. (1.1). This immediately
eliminates all integrals with fewer than seven propagators,
or with a different topology, as cutting an absent propagator
yields zero.
Heuristically, we may imagine using the Cutkosky rules

and simply replacing the cut propagators by on-shell delta
functions. On the left-hand side of the equation, we would
then obtain

Að2Þjcut ¼ ð2πiÞ7
Z

d4l1

ð2πÞ4
d4l2

ð2πÞ4
Y7
j¼1

δðp2
jÞ
Y6
v¼1

Atree
ðvÞ ; (3.2)

where Atree
ðvÞ denote the tree processes at each of the six

vertices of the diagram in Fig. 1 and pj denote the momenta
flowing through each of the propagators. The cuts have also
eliminated any potential infrared divergences, so we can
take the four-dimensional limit for the integrand. On the
right-hand side of Eq. (1.1), we would obtain a sum over
expressions of the form

coefficient × P��
2;2½Φ�jcut

¼ coefficient × ð2πiÞ7
Z

d4l1

ð2πÞ4
d4l2

ð2πÞ4
Y7
j¼1

δðp2
jÞΦ: (3.3)

If we interpret the expressions in Eqs. (3.2) and (3.3)
literally, however, we face a problem. The integrations in
these equations receive contributions only from regions of
integration space where the loop momenta solve the joint
on-shell constraints

p2
j ¼ 0; j ¼ 1;…; 7: (3.4)
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For generic external momenta, the solutions to these
equations are complex. So long as the integrations are
over real momenta (R4 ×R4), we simply get zero.
Equating the two expressions will yield 0 ¼ 0, which is
true but useless for extracting the coefficient in Eq. (3.3).
Instead of thinking of the loop integrals as integrals over

real momenta, we can choose to think of them as integrals
in complex momenta, li ∈ C4, taken along contours
comprising the real slice, Im lμ

i ¼ 0. Changing the contour
then gives us an alternative way of imposing a delta-
function constraint, one that is valid for complex as well as
for real solutions.
The utility of reinterpreting delta functions as contour

integrals was previously observed in the context of twistor-
string amplitudes [96,97] and is also standard in more
formal twistor-space expressions [98]. In one dimension,
we seek to localize an integral,

Z
dqδðq − q0ÞhðqÞ ¼ hðq0Þ; (3.5)

even if q0 becomes complex. Cauchy’s residue theorem
gives us precisely such a localization if we replace
δðq − q0Þ by 1

2πi
1

q−q0
and take the integral to be a contour

integral along a small circle centered at q0 in the complex q
plane. Analogously, a product of delta functions can be
defined as a multidimensional contour integral,

ð2πiÞn
Z

dq1…dqnhðqiÞ
Yn
j¼1

δðqj − q0jÞ

¼def
Z
Tεðq0Þ

dq1…dqn
hðqiÞQ

n
j¼1ðqj − q0jÞ

; (3.6)

where the contour Tεðq0Þ is now a torus encircling the
simultaneous solution of denominator equations. For the
simple form of the denominator here, the contour will
be a product of n small circles (ε ≪ 1), Tεðq0Þ ¼
Cεðq01Þ × � � � × Cεðq0nÞ, each centered at q0j. The simul-
taneous solution of the denominator equations is called a
global pole. The question of what it means for a torus to
encircle a global pole is much more subtle in higher
dimensions than for a contour to encircle a point in one
complex dimension; but the subtleties will play no role in
the present article.
There is one important respect in which the multidi-

mensional contour integrals behave differently from inte-
grals over delta functions, namely the transformation
formula for changing variables. Given a holomorphic
function f ¼ ðf1;…; fnÞ∶Cn → Cn with an isolated zero1

at a ∈ Cn, the residue at a is computed by performing the
integral over a toroidal contour, whose general definition is
TεðaÞ ¼ fz ∈ Cn∶jfiðzÞj ¼ εi; i ¼ 1;…; ng. This contour
integral satisfies the transformation formula

1

ð2πiÞn
Z
TεðaÞ

hðzÞdz1∧ � � �∧dzn
f1ðzÞ � � � fnðzÞ

¼ hðaÞ
deti;j

∂fi∂zj
: (3.7)

Unlike the conventional formula for a multidimensional
real integral over delta functions, it does not involve taking
the absolute value of the inverse Jacobian. This ensures
that this factor is analytic in any remaining variables on
which it depends, so that further contour integrations can be
carried out.
We use multidimensional contour integrals to define

generalized discontinuity operators. The GDOs for the
double box will be eightfold integrals taken over contours
that are linear combinations of basis contours. Each basis
contour encircles a single global pole, and we will refer to
global poles and their encircling contours interchangeably.
Applying a GDO means changing the contour of the
integration from one over the real slice of C4 × C4 to
one over the GDO’s associated contour. We want seven of
the eight contour integrations to correspond to the seven
on-shell constraints p2

j ¼ 0; to do so, the contours must
ultimately encircle solutions to these constraints. The
integrands in Eqs. (3.2) and (3.3) are left unchanged.
Imposing the seven constraints leaves one complex degree
of freedom. The heptacut constraints thus define a Riemann
surface in C4 × C4. As we will see below, this Riemann
surface contains a number of poles. Their presence will
allow us to freeze the remaining degree of freedom, by
choosing an appropriate contour of integration for the
corresponding localization variable. Before discussing
the poles, however, we first review the structure of the
Riemann surface.

A. Kinematical solutions, Jacobians and global poles

As discussed in Ref. [82], the maximal-cut Riemann
surface for the double-box integral is a pinched torus, with
the number of pinches equal to twice the number of vertical
double-box rungs that attach to an on-shell massless three-
point vertex. An on-shell massless three-point vertex is
either chiral or antichiral, enforcing a twofold branching
of the kinematical parametrization and implying a pinching
of the parameter space. A more careful analysis of the
kinematical solutions shows that chiral vertices are (anti)
correlated across the vertical rungs of the double-box
integral. Hence, we classify the different types of pinches
by their effect on the vertical rungs.
In previous work [80], we assigned double boxes to one

of three classes (a), (b), or (c), according to whether an on-
shell massless three-point vertex is connected to (a) the
middle rung, (b) the middle rung and one outer rung, or (c)

1A function f ¼ ðf1;…; fnÞ∶Cn → Cn is said to have an
isolated zero at a ∈ Cn iff by choosing a small enough neighbor-
hood U of a one can ensure that it has only a single zero in the
neighborhood, so that f−1ð0Þ ∩ U ¼ fag.
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all three vertical rungs.2 We treated the two latter classes in
Ref. [80]. Here, we consider class (a), corresponding to the
four-mass double box, illustrated in Fig. 1. In this class, the
solutions to the heptacut equations (3.4) form a doubly
pinched torus, shown in Fig. 2.
Each lobe of the doubly pinched torus corresponds to one

of two kinematical solutions S1 and S2. In terms of the
loop-momentum parametrization of Eq. (2.7), both solu-
tions have ξ01 ¼ ξ̄01, ξ

0
4 ¼ ξ̄04, ξ1 ¼ ξ4 ¼ 1, and the remaining

four variables ðξ2; ξ02; ξ3; ξ03Þ take on the following values:

S1∶
�
ξ̄02
z
; z;−

ðzþ ξ̄01=τÞτξ̄03
ðzþ ξ̄01Þξ̄04

;−
ðzþ ξ̄01Þξ̄04
ðzþ ξ̄01=τÞτ

�
;

S2∶
�
z;
ξ̄02
z
;−

zþ 1

τzþ 1
;−

ðτzþ 1Þξ̄03
zþ 1

�
; (3.8)

where the ξ̄0i are defined in Eq. (2.9). The Jacobian that arises
from changing the integration variables of Eq. (3.1) to the
ξi; ξ0i; ζi in Eqs. (2.7) and (2.8) and subsequently performing
seven contour integrals,

R
d4l1d4l2

Q
7
j¼11=p

2
j ⟶

R
dzJH ,

takes the generic form

JH ðzÞjSi
≡

�
detμ;i

∂lμ
1

∂v1;i
��

detν;j
∂lν

2

∂v2;j
��

deti;j
∂p2

i

∂wj

�−1

¼ Ci

ðz − zi;1Þðz − zi;2Þ
; (3.9)

where in the first equality vj;1 ¼ ζj, v1;2 ¼ ξ01, v2;2 ¼ ξ04,
v1;3 ¼ ξ2, v2;3 ¼ ξ3, v1;4 ¼ ξ02, and v2;4 ¼ ξ03, and wj are
the seven variables frozen by the contour integrations. In the
second equality, ðzi;1; zi;2Þ are the local coordinates of the
intersection with the neighboring solution(s)

Sijz¼zi;1 ∈ Si−1 ∩ Si; Sijz¼zi;2 ∈ Si ∩ Siþ1: (3.10)

More generally, the Jacobian evaluated on a Riemann sphere
will always be a product of simple-pole factors associated
with the pinching points (also known as nodal points) on the
sphere.
As mentioned above, the heptacut of the double-box

integral arises from performing seven of the eight contour
integrals and yields a Riemann surface given by the
solution to the joint on-shell constraints (3.4). We are left
with a single complex degree of freedom (or localization
variable) z and the freedom to choose a contour for its
integration. In order to localize the integrand completely,
we should have this last contour encircle a pole in z. As in
classes (b) and (c) treated in Ref. [80], such poles can arise
from two sources: the Jacobian factor (3.9) or from the

numerator insertions Φ in Eq. (3.1), which introduce an
additional dependence on z.
The Jacobian poles are the pinching points G9;10 in

Fig. 2. Because these points are shared between different
on-shell solutions, one must decide on a convention for
the sphere on which the corresponding residue is to be
evaluated. We adopt the convention of computing the
residue on the sphere located on the anticlockwise side
of the Riemann surface. In Fig. 2, for example, the residue
at G9 should be evaluated on S1; and the residue at
G10 on S2. Furthermore, we choose the orientations on
each Riemann sphere such that for any global pole
Gk ∈ Si ∩ Sj, the residues evaluated on spheres Si and
Sj are equal in magnitude but opposite in sign. That is, for
an arbitrary function f of the loop momenta one has

Res
Si∩Siþ1

JH ðzÞfðl1ðzÞ;l2ðzÞÞjSi

¼ − Res
Si∩Siþ1

JH ðzÞfðl1ðzÞ;l2ðzÞÞjSiþ1
; (3.11)

in agreement with the conventions of Refs. [80,82].
Other choices of conventions are possible, but all will
lead to the same final expressions for the two-loop integral
coefficients.
The class (a) Jacobian, as defined in Eq. (3.9), takes the

form

JH ¼

8>><
>>:

Jða;1ÞH ≡ ξ̄01
ðz − ξ̄01zþÞðz − ξ̄01z−Þ

; for solution S1;

Jða;2ÞH ≡ 1
ðz − zþÞðz − z−Þ ; for solution S2;

(3.12)

FIG. 2. A representation of the pinched torus solution space for
the class (a) heptacut kinematics, showing the two independent
solutions Si, and the locations of the eight global poles Gi. The
small white, black and gray blobs indicate the pattern of chiral,
antichiral and nonchiral kinematics, respectively, at the vertices of
a double-box integral. Complex-conjugate pairs of poles are
identified by reflection through the center of the torus.

2P2;2 or “flying-squirrel” integrals (in the notation of Ref. [83]),
with external legs attached to the middle vertices of the double
box, would yield novel classes [82] and are not treated here.
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after the convenient rescaling JH →
ξ̄0
1
ðξ̄0

4
−τξ̄0

3
Þ

γ�
JH , in analogy

with Eqs. (4.7) and (4.8) of Ref. [80]. (The rescaling of
course leaves the final formulas for integral coefficients
unchanged.) Note that zþz− ¼ ξ̄02=ξ̄

0
1.

In addition to the Jacobian poles, we may choose the
contour for the remaining degree of freedom (after perform-
ing the heptacut) to encircle any of the points on the
Riemann surface where a loop momentum becomes infin-
ite. At such points, numerator insertions ΦðpiÞ have a pole
in z. We will refer to these points, shown as punctures on
the spheres in Fig. 2, as insertion poles. There are eight
such poles, so that altogether we have ten global poles
which the z contour integral may encircle, located at the
following values of ðξ2; ξ̄02; ξ3; ξ̄03Þ:

G1∶
�
−
ξ̄02
ξ̄01

;−ξ̄01;∞; 0

�
; G2∶ð−1;−ξ̄02; 0;∞Þ;

G3∶
�
0;∞;−

τξ̄03
ξ̄04

;−
ξ̄04
τ

�
; G4∶

�
∞; 0;−

1

τ
;−τξ̄03

�
;

G5∶
�
−
τξ̄02
ξ̄01

;−
ξ̄01
τ
; 0;∞

�
; G6∶

�
−
1

τ
;−τξ̄02;∞; 0

�
;

G7∶
�
∞; 0;−

ξ̄03
ξ̄04

;−ξ̄04

�
; G8∶ð0;∞;−1;−ξ̄03Þ;

G9∶
�
zþ;

ξ̄02
zþ

;−
ðzþξ̄01 þ τξ̄02Þξ̄03
ðzþξ̄01 þ ξ̄02Þξ̄04

;−
ðzþξ̄01 þ ξ̄02Þξ̄04
zþξ̄01 þ τξ̄02

�
;

G10∶
�
z−;

ξ̄02
z−

;−
1þ z−
1þ τz−

;−
ð1þ τz−Þξ̄03

1þ z−

�
: (3.13)

In the above labeling, the poles ðG2j−1;G2jÞ; j ¼ 1;…; 7
form parity-conjugate pairs. Because parity amounts to
swapping chiralities •⟷ ○, thereby rotating Fig. 2 by

an angle π, parity-conjugate pairs always appear antipo-
dally in the figure. We note that at the pinching points G9;10,
the loop momentum flowing through the middle rung of the
double box becomes soft, p4 → 0. At the remaining global
poles, either the left or right loop momentum goes to
infinity in a particular direction. (See Appendix A for a
more detailed discussion.)
Let us denote a contour consisting of a small circle

around Gj by Cj. The set of circles around all of the ten
poles in Fig. 2 forms an overcomplete basis of contours for
GDOs and equivalently an overcomplete basis for homol-
ogy. On each sphere we can use the fact that all residues
sum to zero to eliminate any one contour Cj in favor of the
remaining ones. This is not sufficient, as we must impose
additional consistency constraints on the linear combina-
tion of contours by which every GDO acts. We discuss
these below. Retaining all contours instead of choosing a
linearly independent subset does have the advantage of
making manifest certain discrete symmetries, clarifying the

structure of the additional consistency constraints. We
examine this issue in more detail in Sec. IV.
The truncation to a linearly independent homology basis

can be achieved simply by setting the coefficients of certain
contours to zero in every GDO. Not all truncations will lead
to a valid basis, however; a basis must necessarily contain a
contour encircling at least one of the pinching points G9;10.
To understand why, consider the sum of all residues on S1

plus the sum of all residues on S2. Both sums are zero by
Cauchy’s theorem, and this sum is therefore zero. On the
other hand, the sum equals that over the insertion poles
alone,

P
8
i¼1 ResGi

, because the contributions from the
pinching points cancel owing to Eq. (3.11). We thus
conclude that the residues at the insertion poles always
sum to zero, and the set of contours encircling insertion
poles alone does not constitute a complete homology basis
on S1 ∪ S2.

B. Master contours—General four-mass kinematics

Generalized discontinuity operators for the planar double
box are given as eightfold contour integrals, which factor
into a sevenfold contour integral localizing the integrand
onto the heptacut solution surface—the joint solution of the
on-shell equations for all seven propagator momenta. The
last contour integral is now a contour integral on that
Riemann surface. The contour cannot be chosen arbitrarily,
however. It is subject to the consistency requirement that it
yield a vanishing integration for any function that integrates
to zero on the original contour of integration for the
Feynman integral, RD ×RD. This ensures that two inte-
grals which are equal, for example by virtue of nontrivial
integral relations, have the same generalized cut:

Int1 ¼ Int2 ⇒ GenDiscðInt1Þ ¼ GenDiscðInt2Þ: (3.14)

Examples of terms which integrate to zero on RD ×RD

include parity-odd terms and total derivatives used in the
integration-by-parts identities to reexpress a large set of
formally irreducible integrals in terms of linearly indepen-
dent master integrals.
We may write a general contour for a GDO as follows:

X
i

ωiCi; (3.15)

where the ωi are complex coefficients, and where the sum
is taken over a linearly independent homology basis (or
over an overcomplete one). For double-box integrals
belonging to class (a), it turns out that consistency with
IBP relations imposes no constraints on the contour and
hence no constraints on the ωi. On the other hand, the
vanishing integration of (parity-odd) Levi-Civita numer-
ator insertions—such as εðl1; k1; k2; k4Þ—results in the
following constraints on the coefficients ωi:
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2ω1 − 2ω2 − ω9 þ ω10 ¼ 0; 2ω3 − 2ω4 − ω9 þ ω10 ¼ 0;

2ω5 − 2ω6 − ω9 þ ω10 ¼ 0; 2ω7 − 2ω8 − ω9 þ ω10 ¼ 0: (3.16)

In class (a), there are four linearly independent double-box integrals which we may choose to be

ðI1; I2; I3; I4Þ ¼ ðP��
2;2½1�; P��

2;2½l1 · k4�; P��
2;2½l2 · k1�; P��

2;2½ðl1 · k4Þðl2 · k1Þ�Þ: (3.17)

The residues at the global poles ðG1;…;G10Þ of these integrals are as follows:

ResGi
P��
2;2½1� ¼

ξ̄01ðξ̄04 − τξ̄03Þffiffiffiffi
Δ

p ð0; 0; 0; 0; 0; 0; 0; 0; 1; 1Þ;

ResGi
P��
2;2½l1 · k4� ¼

ξ̄01ðξ̄04 − τξ̄03Þffiffiffiffi
Δ

p ð0; 0; r4; r4; 0; 0;−r4;−r4; r2; r2Þ;

ResGi
P��
2;2½l2 · k1� ¼

ξ̄01ðξ̄04 − τξ̄03Þffiffiffiffi
Δ

p ðr3; r3; 0; 0;−r3;−r3; 0; 0; r1; r1Þ;

ResGi
P��
2;2½ðl1 · k4Þðl2 · k1Þ� ¼

ξ̄01ðξ̄04 − τξ̄03Þffiffiffiffi
Δ

p ðr6; r6; r7; r7; r8; r8; r5; r5; r1r2; r1r2Þ; (3.18)

where the ri are given by3

r1¼−
1

2

�
2ξ̄02k

♭
1 ·k

♭
2

k♭1 ·k
♭
4

k♭2 ·k
♭
4

þ ξ̄01m
2
1

�
; r2¼−

1

2

�
2ξ̄03k

♭
3 ·k

♭
4

k♭1 ·k
♭
4

k♭1 ·k
♭
3

þ ξ̄04m
2
4

�
; r3¼

1

2

½1♭4♭�
½1♭3♭�

ffiffiffiffi
Δ

p

τξ̄02− ξ̄01
h4♭jk1j3♭�;

r4¼
1

2

½1♭4♭�
½2♭4♭�

ffiffiffiffi
Δ

p

τξ̄03− ξ̄04
h1♭jk4j2♭�; r5¼

1

4
m2

1

ffiffiffiffi
Δ

p h3♭4♭i½1♭4♭�
h1♭3♭i½1♭2♭�h1

♭jk4j2♭�; r6¼
1

4
m2

4

ffiffiffiffi
Δ

p h1♭2♭i½1♭4♭�
h4♭2♭i½3♭4♭�h4

♭jk1j3♭�;

r7¼
1

2
k♭1 ·k

♭
4

ffiffiffiffi
Δ

p ½3♭4♭�½1♭2♭�
½2♭3♭�½2♭4♭�h1

♭jk4j2♭�; r8¼
1

2
k♭1 ·k

♭
4

ffiffiffiffi
Δ

p ½1♭2♭�½3♭4♭�
½3♭2♭�½1♭3♭�h4

♭jk1j3♭�: (3.20)

At this point, let us choose a linearly independent homology basis for S1 ∪ S2 consisting of the small circles C3;…;10
encircling the global poles ðGiÞi¼3;…;10. This leaves us with eight coefficients, one for each Cj, subject to the four
constraints in Eq. (3.16). Overall, we are left with four independent coefficients, the same as the number of class (a)
double-box master integrals, as given in Eq. (3.17).
We can solve for these independent coefficients, finding a unique solution which yields one when applied to one of

the master integrals and zero to the others. There are four such solutions, one for each master integral. We refer to the
contours as projectors or master contours and to the operations of replacing the original integration contour by one of these
contours and performing the contour integrals as the GDO. Each GDO uniquely extracts the coefficient of one of the master
integrals in the basis decomposition (1.1) of the two-loop amplitude. Using the homology basis specified above, the master
contours

Γj ¼ Ωj · C ¼
X10
i¼3

ωj;iCi (3.21)

associated with the master integrals Ij in Eq. (3.17) are given by the following coefficients:

3Note that as expected
P

8
i¼1 ResGi

Ij ¼ 0 for all four master integrals as

r5 þ r6 þ r7 þ r8 ¼ 0; (3.19)

consistent with the discussion below Eq. (3.13).
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I1∶ Ω1 ¼
ffiffiffiffi
Δ

p

ξ̄01ðξ̄04 − τξ̄03Þ
�
−
r2r3r5 þ r1r4ðr2r3 þ r8Þ

2r3r4ðr5 þ r7Þ
;−

r2r3r5 þ r1r4ðr2r3 þ r8Þ
2r3r4ðr5 þ r7Þ

;
r1
2r3

;
r1
2r3

;
r2r3r7 − r1r4ðr2r3 þ r8Þ

2r3r4ðr5 þ r7Þ
;

r2r3r7 − r1r4ðr2r3 þ r8Þ
2r3r4ðr5 þ r7Þ

;
1

2
;
1

2

�
;

I2∶ Ω2 ¼
ffiffiffiffi
Δ

p

ξ̄01ðξ̄04 − τξ̄03Þ
1

2r4ðr5 þ r7Þ
ðr5; r5; 0; 0;−r7;−r7; 0; 0Þ;

I3∶ Ω3 ¼
ffiffiffiffi
Δ

p

ξ̄01ðξ̄04 − τξ̄03Þ
1

2r3ðr5 þ r7Þ
ðr8; r8;−r5 − r7;−r5 − r7; r8; r8; 0; 0Þ;

I4∶ Ω4 ¼
ffiffiffiffi
Δ

p

ξ̄01ðξ̄04 − τξ̄03Þ
1

2ðr5 þ r7Þ
ð1; 1; 0; 0; 1; 1; 0; 0Þ: (3.22)

(In Refs. [79,80], these coefficients were labeled Pj.) In
terms of these contours, the double-box coefficients in the
basis expansion (1.1) are given by the following formula:

coefficientj ¼
I
Γj

dzJða;iÞH Y6
v¼1

Atree
ðvÞ ðzÞ; (3.23)

where the Jacobian of Eq. (3.12), Jða;iÞH , is evaluated on

solution S1 or S2, according to the location of the poles
encircled by Γj.

C. Master contours—Equal-mass case

In the special-kinematics situation where k21 ¼ k24 ¼ m2
1

and k22 ¼ k23 ¼ m2
2, all Lorentz scalars are invariant under

ðk1; k2Þ ↔ ðk4; k3Þ, and one additional integral identity
arises:

P��
2;2½l1 · k4� ¼ P��

2;2½l2 · k1�: (3.24)

We note that this identity does not arise as an IBP relation.
This identity may be used to eliminate one of the integrals
in Eq. (3.17), leaving us with three independent master
integrals whose associated master contours we provide
below. (Other special cases, such as k21 ¼ k23 ¼ m2

1 and
k22 ¼ k24 ¼ m2

2, can be treated similarly.)
With equal-mass kinematics, all ten global poles in

Eq. (3.13) remain distinct. In terms of the quantities

ρ1¼−
m2

1

2
; ρ2¼−

ðγ12þm2
2Þ

s12

k♭1 ·k
♭
4

ffiffiffiffi
Δ

p

ξ̄1
0 ;

ρ3¼
m2

1

2

ðm2
2þγ12Þ

ðm2
1þγ12Þ

k♭1 ·k
♭
4

ffiffiffiffi
Δ

p

ξ̄01
; ρ4¼

γ12
2

k♭1 ·k
♭
4

ffiffiffiffi
Δ

p

ξ̄01
;

(3.25)

the residues at the global poles ðG1;…;G10Þ of the four
integrals in Eq. (3.17) take the form

ResGi
P��
2;2½1� ¼

ξ̄01ffiffiffiffi
Δ

p s12
ðγ12 þm2

1Þ
ð0; 0; 0; 0; 0; 0; 0; 0; 1; 1Þ;

ResGi
P��
2;2½l1 · k4� ¼

ξ̄01ffiffiffiffi
Δ

p s12
ðγ12 þm2

1Þ
ð0; 0; ρ2; ρ2; 0; 0;−ρ2;−ρ2; ρ1; ρ1Þ;

ResGi
P��
2;2½l2 · k1� ¼

ξ̄01ffiffiffiffi
Δ

p s12
ðγ12 þm2

1Þ
ðρ2; ρ2; 0; 0;−ρ2;−ρ2; 0; 0; ρ1; ρ1Þ;

ResGi
P��
2;2½ðl1 · k4Þðl2 · k1Þ� ¼

ξ̄01ffiffiffiffi
Δ

p s12
ðγ12 þm2

1Þ
ðρ3; ρ3; ρ4; ρ4;−ρ4;−ρ4;−ρ3;−ρ3; ρ21; ρ21Þ: (3.26)

We may use the identity (3.24) to eliminate one of the integrals in Eq. (3.17), leaving us with the master integrals

ðI1; I2; I3Þ ¼ ðP��
2;2½1�; P��

2;2½l1 · k4�; P��
2;2½ðl1 · k4Þðl2 · k1Þ�Þ: (3.27)

The requirement that the heptacut contour respect the identity (3.24) yields the contour constraint

ω1 þ ω2 − ω3 − ω4 − ω5 − ω6 þ ω7 þ ω8 ¼ 0: (3.28)

In terms of the basis of homology specified in Sec. III B, the master contours Γj associated with the master integrals in
Eq. (3.27) take the form

MAXIMAL UNITARITY FOR THE FOUR-MASS DOUBLE BOX PHYSICAL REVIEW D 89, 125010 (2014)

125010-9



I1∶ Ω1 ¼
ffiffiffiffi
Δ

p

2ξ̄01

ðγ12 þm2
1Þ

s12

ρ1
ρ2

�
ρ1ρ2 − ρ3 − ρ4

ρ3 − ρ4
;
ρ1ρ2 − ρ3 − ρ4

ρ3 − ρ4
; 1; 1;

ρ1ρ2 − 2ρ4
ρ3 − ρ4

;
ρ1ρ2 − 2ρ4
ρ3 − ρ4

;
ρ2
ρ1

;
ρ2
ρ1

�
;

I2∶ Ω2 ¼
ffiffiffiffi
Δ

p

2ξ̄01

ðγ12 þm2
1Þ

s12

1

ρ2

�
ρ3 þ ρ4
ρ3 − ρ4

;
ρ3 þ ρ4
ρ3 − ρ4

;−1;−1;
2ρ4

ρ3 − ρ4
;

2ρ4
ρ3 − ρ4

; 0; 0

�
;

I3∶ Ω3 ¼ −
ffiffiffiffi
Δ

p

2ξ̄01

ðγ12 þm2
1Þ

s12

1

ðρ3 − ρ4Þ
ð1; 1; 0; 0; 1; 1; 0; 0Þ: (3.29)

One is not obliged to make use of the integral identity (3.24) and enforce the ensuing contour constraint (3.28); one could
equally well expand the equal-mass amplitude in terms of the slightly overcomplete basis in Eq. (3.17), with the associated
master contours given in Eq. (3.22). Indeed, since the energies of heavy particles follow a Breit-Wigner distribution, an
amplitude involving four massive vector bosons (e.g.,WZ → WZ) will typically be required only for unequal masses; only
when taking the on-shell approximation would the equal-mass case arise.

IV. ALGEBRAIC VARIETIES ARISING FROM FEYNMAN GRAPHS

In this section we discuss the heptacut of the planar double-box integral, putting some of the observations in Sec. III into
the broader context of algebraic geometry.
On-shell constraints are polynomial equations. Accordingly, their simultaneous solution defines an algebraic variety.

Reference [82] observed that the variety corresponding to setting all seven propagator momenta of the planar double box on
shell is a pinched torus, with the number of pinches equal to twice the number of double-box rungs that end on at least one
three-point vertex. As mentioned in the previous section and in Ref. [80], we denote integrals having one, two, or three such
rungs as forming classes (a), (b), and (c). The respective pinched tori—nodal elliptic curves, in the language of
mathematicians—are illustrated in Figs. 3(a), 3(b), and 3(c).
The components of the pinched tori are Riemann spheres. These spheres are associated with distinct solutions to the joint

on-shell constraints (3.4) and are characterized by the distribution of chiralities (• or ○) at the vertices of the double-box
graph. The fact that the number of pinches is always even is a reflection of the fact that the on-shell solutions always come in
parity-conjugate pairs. At a pinching point, there is exactly one double-box rung whose momentum becomes collinear with
the massless external momenta connected to the rung. For the original uncut double-box integral, such regions of the loop-
momentum integration typically produce infrared divergences, and the pinches can therefore roughly be thought of as
remnants of the original IR divergences. In addition, the pinched tori contain a number of insertion points [for example, in
Fig. 3(a), the points G1;…;G8] where one of the loop momenta becomes infinite. Because the order of the pole is related to
the ultraviolet power counting of underlying integrals in the theory (taking into account fermion-boson cancellations), these
insertion points can be associated, roughly speaking, with UV divergences.
The pattern of global poles in classes (a)–(c) can be understood as follows. Starting from Fig. 3(a), we can imagine taking

massless limits of external momenta, at each step having exactly one additional double-box rung end on a three-point
vertex. Geometrically, each step adds a pair of pinches (nodal points)—the first step producing Fig. 3(b), and the second
producing Fig. 3(c). Each pinch preserves the global poles already present and adds a global pole at the location of the
pinching point. Nonetheless, pinching leaves the number of independent global poles constant: while it creates a new global
pole, it also creates a new Riemann sphere and hence adds a global residue constraint which allows one global pole to be
eliminated. There are eight independent global poles in class (a), and the number remains eight in classes (b) and (c).
To be more specific, class (b) contains 12 global poles, as illustrated in Fig. 3(b). The poles G1;…;G10 are obtained by

taking the limit ξ̄03 → 0 (corresponding to either m3 → 0 or m4 → 0) of the class (a) poles in Eq. (3.13).4

4For convenience, we note that the labeling of global poles here is related to that of Ref. [80] as follows:

ðGðbÞ
1 ;GðbÞ

2 ;GðbÞ
3 ;GðbÞ

4 ;GðbÞ
5 ;GðbÞ

6 ;GðbÞ
7 ;GðbÞ

8 Þ½80� ¼ ðGðbÞ
9 ;GðbÞ

10 ;G
ðbÞ
11 ;G

ðbÞ
12 ;G

ðbÞ
3 ;GðbÞ

4 ;GðbÞ
5 ;GðbÞ

6 Þ;
ðGðcÞ

1 ;GðcÞ
2 ;GðcÞ

3 ;GðcÞ
4 ;GðcÞ

5 ;GðcÞ
6 ;GðcÞ

7 ;GðcÞ
8 Þ½80� ¼ ðGðcÞ

9 ;GðcÞ
10 ;G

ðcÞ
11 ;G

ðcÞ
12 ;G

ðcÞ
14 ;G

ðcÞ
13 ;G

ðcÞ
5 ;GðcÞ

6 Þ;
where the labeling on the left-hand sides corresponds to that of Eqs. (4.16) and (4.27) of Ref. [80]. The labeling on the right-hand sides is
that of the present paper, with the superscript (b) denoting that one should take the ξ̄03 → 0 limit of the poles listed in Eq. (3.13) to obtain
the class (b) poles, and the superscript (c) indicating that one should further take the limit ξ̄02 → 0 to find the class (c) poles.
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As evaluating the limit of G9 and G10 is slightly subtle, we quote the result here:

G9∶ lim
ξ̄0
3
→0

�
zþ;

ξ̄02
zþ

;−
ðzþξ̄01 þ τξ̄02Þξ̄03
ðzþξ̄01 þ ξ̄02Þξ̄04

;−
ðzþξ̄01 þ ξ̄02Þξ̄04
zþξ̄01 þ τξ̄02

�
¼

�
−
ξ̄02
ξ̄01

;−ξ̄01;
ξ̄02 − ξ̄01
ξ̄01 − τξ̄02

; 0

�
;

G10∶ lim
ξ̄0
3
→0

�
z−;

ξ̄02
z−

;−
1þ z−
1þ τz−

;−
ð1þ τz−Þξ̄03

1þ z−

�
¼

�
−1;−ξ̄02; 0;−

ðξ̄01 − ξ̄02Þξ̄04
ξ̄01 − τξ̄02

�
: (4.1)

In addition, class (b) contains the following two global poles:

G11∶
�
−
ξ̄02
ξ̄01

;−ξ̄01; 0; 0
�
; G12∶ ð−1;−ξ̄02; 0; 0Þ; (4.2)

which are exactly the two nodal points created during the
pinches S1 → S1 ∪ S4 and S2 → S2 ∪ S3 [compare
Figs. 3(a) and 3(b)]. Similarly, class (c) contains 14 global
poles, as illustrated in Fig. 3(c). The poles G1;…;G12 are

obtained by taking the limit ξ̄02 → 0 (corresponding to
either m1 → 0 or m2 → 0) of the class (b) global poles.
In addition, class (c) contains the following two global
poles:

FIG. 3. Representations of the solution space for the class (a), (b), and (c) heptacut equations, showing the independent solutions Si,
and the locations of the global poles Gj.
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G13∶ ð0; 0; 0;−ξ̄04Þ; G14∶ ð0; 0;−1; 0Þ; (4.3)

which are precisely the two nodal points created during
the pinches S4 → S4 ∪ S6 and S2 → S2 ∪ S5 [compare
Figs. 3(b) and 3(c)].
As explained in Sec. III, contours for GDOs must

annihilate any function that integrates to zero on
RD ×RD. In terms of the coefficients ωi of the basis
contours Cj, this requirement yields the following con-
straints from numerator insertions of Levi-Civita tensors
(which are parity odd):

2ω1 − 2ω2 − ω9 þ ω10 þ ω11 − ω12 þ ω13 − ω14 ¼ 0;

2ω3 − 2ω4 − ω9 þ ω10 − ω11 þ ω12 þ ω13 − ω14 ¼ 0;

2ω5 − 2ω6 − ω9 þ ω10 − ω11 þ ω12 þ ω13 − ω14 ¼ 0;

2ω7 − 2ω8 − ω9 þ ω10 − ω11 þ ω12 − ω13 þ ω14 ¼ 0;

(4.4)

where ω11;12;13;14 → 0 in class (a) and ω13;14 → 0 in class
(b). If we choose a homology basis consisting of parity-
conjugate pairs of poles, these constraints are expressed
by the simple geometric statement that a valid contour
must be invariant under a rotation through π radians of
Figs. 3(a), 3(b), and 3(c), respectively.
Consistency with IBP identities imposes less transparent

constraints on maximal-cut contours. In class (b), there is a
single IBP constraint which takes the form

2ω1 þ 2ω2 − ω3 − ω4 − ω7 − ω8

− ω9 − ω10 þ ω11 þ ω12 ¼ 0; (4.5)

whereas in class (c) there are two IBP constraints which
take the form

2ω1 þ 2ω2 − ω3 − ω4 − ω7 − ω8

− ω9 − ω10 þ ω11 þ ω12 ¼ 0; (4.6)

ω3 þ ω4 þ 2ω5 þ 2ω6 − 3ω7 − 3ω8 − ω9 − ω10

− ω11 − ω12 þ 2ω13 þ 2ω14 ¼ 0: (4.7)

The first class (c) constraint (4.6) is identical to the class (b)
one in Eq. (4.5). This suggests that these constraints arise
during the pinchings that carry the doubly pinched torus
depicted in Fig. 3(a) into the quadruply pinched torus of
Fig. 3(b) and thence into the sextuply pinched torus of
Fig. 3(c). The transition from Fig. 3(a) into Fig. 3(b)
involves two (parity-conjugate) pinches which one might at
first expect to produce two constraints. However, as a valid
contour must be parity symmetric (4.4), we should really
expect one independent constraint to arise from a double
pinching. This constraint is accompanied by a second
constraint arising from the double pinching that turns
Fig. 3(b) into Fig. 3(c). This pattern offers hope that it
may be possible to derive the IBP constraints (4.5)–(4.7)
directly from the underlying algebraic geometry.

Expressing the IBP constraints in an overcomplete basis
of homology makes it clear that they cannot be determined
from algebraic topology alone. For example, on the sphere
S4 in Fig. 3(b), the poles G3;G5;G7 may be freely relabeled
among each other without changing the topology. In
contrast, Eq. (4.5) does not have this relabeling symmetry.

A. Discrete symmetries of IBP constraints

We observe that the class (b) IBP constraint (4.5) is
symmetric under reflection of Fig. 3(b) in the vertical axis
passing through the poles G1 and G2. More explicitly,
Eq. (4.5) is symmetric under the interchanges5

ω1 ↔ ω1; ω5 ↔ ω6;

ω2 ↔ ω2; ω9 ↔ −ω11;

ω3 ↔ ω8; ω10 ↔ −ω12:

ω4 ↔ ω7; (4.8)

The pattern of relative minuses in Eq. (4.8) owes to the fact
that, in our orientation conventions, the reflection flips the
orientation of the pinching or “IR” cycles but preserves that
of the insertion or “UV” cycles.
Conversely, assuming the symmetry (4.8), onemight ask to

what extent it determines the IBPconstraint. Themost general
IBP constraint invariant under Eq. (4.8) takes the form

a1ω1þa2ω2þa3ðω3þω8Þþa4ðω4þω7Þþa5ðω5þω6Þ
þa6ðω9−ω11Þþa7ðω10−ω12Þ¼0: (4.9)

For convenience, let us now choose a basis of homology, for
example ω1;2;5;6 ¼ 0. In this basis, the IBP constraint (4.9)
takes the form

rðbÞ1 ðω3 þ ω4 þ ω7 þ ω8Þ
þ rðbÞ2 ðω9 þ ω10 − ω11 − ω12Þ ¼ 0; (4.10)

where we furthermore imposed the Levi-Civita constraints
(4.4). Remarkably, the only thing left unexplained by the flip

symmetry (4.8) is the fact that rðbÞ1 ¼ rðbÞ2 ≠ 0.
Out of the two IBP constraints in class (c), we observe

that Eq. (4.6) is inherited directly from Eq. (4.5) whereas
the difference between Eqs. (4.6) and (4.7) is symmetric
under reflection of Fig. 3(c) in a line passing through the
centers of the spheres S5 and S6. More explicitly, the
difference is symmetric under the interchanges

5This symmetry does not have an obvious physical meaning: it
corresponds to flipping the right loop of the double-box graph
through a vertical axis.
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ω1 ↔ ω7; ω9 ↔ −ω10;

ω2 ↔ ω8; ω11 ↔ −ω13;

ω3 ↔ ω5; ω12 ↔ −ω14:

ω4 ↔ ω6; (4.11)

This symmetry will be broken by any choice of homology
basis, highlighting the virtue of expressing the IBP con-
straints (4.6) and (4.7) in an overcomplete basis.
In analogy with the above, we can write down the most

general constraint invariant under Eq. (4.11), choose a basis
of homology such as ω1;2;5;6;7;8 ¼ 0 and impose the Levi-
Civita constraints (4.4). We are then left with the constraint

rðcÞ1 ðω3þω4Þþ rðcÞ2 ðω11þω12−ω13−ω14Þ ¼ 0: (4.12)

Only the requirement that rðcÞ1 ¼ −rðcÞ2 ≠ 0 is left unex-
plained by the flip symmetry (4.11).

V. CONCLUSIONS

In this paper we have extended the maximal-unitarity
formalism at two loops to double-box integrals with four
massive external legs. We have constructed generalized
discontinuity operators which isolate each of the four
master integrals, annihilating all others. Applying one of
these GDOs to the amplitude yields a formula for the
corresponding coefficient in Eq. (1.1), as a contour integral
over products of tree-level amplitudes.
We can choose to think of each GDO as operating in two

steps. In the first step, we perform seven of the eight
contour integrals, thereby putting on shell all internal lines
of the double-box integral. This restricts the integrand to a
Riemann surface, which has the form of a multiply pinched
torus. Each component is a Riemann sphere, with the
number of spheres equal to twice the number of double-box
rungs that end on a three-point vertex. This step is identical
for all four GDOs.
In the second step, we perform the remaining contour

integral over a contour on the Riemann surface. This fully
localizes the integrand onto a combination of global poles.
The integration contours are different for each GDO. They
are subject to consistency constraints. These constraints fall
into two classes for general double-box integrals: (a) parity
symmetry, amounting to invariance of the contours under
rotations through π radians of the pinched tori; and (b)
consistency with IBP relations. Writing out the latter
constraints in an overcomplete basis of homology exposes
additional flip symmetries. These symmetries alone would
allow us to determine the constraints up to a small number
of constants. The IBP relations determine these constants.
For the four-mass double box [class (a)], the underlying

Riemann surface consists of two spheres, and there is no
contour constraint from IBP relations. For the three-mass
and short-side two-mass double boxes [class (b)],

considered previously in Ref. [80], the Riemann surface
consists of four linked spheres. It can be viewed as derived
from the two-sphere Riemann surface via a double pinch-
ing. One IBP constraint arises here. This constraint is
inherited by the last case, a six-sphere surface correspond-
ing to massless, one-mass, diagonal and long-side two-
mass double boxes [class (c)], considered previously in
Refs. [79,80]. The six spheres again can be viewed as
derived from the four-sphere surface via a double pinching,
and an additional IBP constraint emerges as well. Thus, the
IBP contour constraints appear to arise during the chiral
branchings of the on-shell solutions, suggesting a strong
connection to the underlying algebraic geometry.
This sequence of IBP constraints suggests a more natural

choice of master integrals than that of Eq. (3.17). Namely,
one can construct a set of four integrals with the property that
in class (a) all integrals are linearly independent, whereas in
classes (b) and (c), respectively, one and two elements bec-
ome zero (up to terms with vanishing heptacuts), by virtue
of integration-by-parts relations. (We refer toAppendixB for
an explicit construction of such a set of integrals.)
A complete calculation of four-point amplitudes will also

require the OðϵÞ terms in integral coefficients and also
GDOs for integrals with fewer than seven propagators. For
processes with additional external legs, higher-point inte-
grals will be needed as well. The simplest extension would
probably be to “turtle-box” integrals (P�

2;2 in the notation of
Ref. [83]), as their properties are related to those of the
double-box integrals considered here and in Refs. [79,80].
The generalized discontinuity operators whose contours

are given by Eqs. (3.15) and (3.22), along with similar
results from Ref. [80], can be applied directly to compu-
tations of two-loop amplitudes in both numerical and
analytic forms. Their construction also hints at deeper
connections to the algebraic geometry of the corresponding
Feynman integrals.
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APPENDIX A: EXPLICIT LOOP MOMENTA

In this Appendix, we present explicit forms for the
loop momenta in the two solutions S1;2 of the four-mass
planar double-box heptacut equations. Solution S2 is given
explicitly by
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lμ
1 ¼ ξ̄01

�
k♭;μ1 þ z

2

h1♭4♭i
h2♭4♭i h2

♭jγμj1♭�
�
þ ξ̄02

k♭1 · k
♭
4

k♭2 · k
♭
4

�
k♭;μ2 þ 1

2z
h2♭4♭i
h1♭4♭i h1

♭jγμj2♭�
�
;

lμ
2 ¼ ξ̄04

�
k♭;μ4 þ w

2

h1♭4♭i
h1♭3♭i h3

♭jγμj4♭�
�
þ ξ̄03

k♭1 · k
♭
4

k♭1 · k
♭
3

�
k♭;μ3 þ 1

2w
h1♭3♭i
h1♭4♭i h4

♭jγμj3♭�
�
; (A1)

where

w ¼ −
zþ 1

zτ þ 1
: (A2)

Solution S2 has poles corresponding to infinite momenta located at z ¼ f0;∞;−1;−1=τg or, alternatively, at
w ¼ f−1;−1=τ; 0;∞g. For the first two lμ

1 is infinite, and lμ
2 takes the finite values

G8∶l
μ
2ðz ¼ 0Þ ¼ ξ̄04

�
k♭;μ4 −

1

2

h1♭4♭i
h1♭3♭i h3

♭jγμj4♭�
�
þ ξ̄03

k♭1 · k
♭
4

k♭1 · k
♭
3

�
k♭;μ3 −

1

2

h1♭3♭i
h1♭4♭i h4

♭jγμj3♭�
�
;

G4∶ lμ
2ðz ¼ ∞Þ ¼ ξ̄04

�
k♭;μ4 −

1

2

h2♭4♭i
h2♭3♭i h3

♭jγμj4♭�
�
þ ξ̄03

k♭1 · k
♭
4

k♭1 · k
♭
3

�
k♭;μ3 −

1

2

h2♭3♭i
h2♭4♭i h4

♭jγμj3♭�
�
: (A3)

These two values are related by a swap of legs 1 ↔ 2. For the latter two poles lμ
2 is infinite, and lμ

1 takes the finite values

G2∶ lμ
1ðz ¼ −1Þ ¼ ξ̄01

�
k♭;μ1 −

1

2

h1♭4♭i
h2♭4♭i h2

♭jγμj1♭�
�
þ ξ̄02

k♭1 · k
♭
4

k♭2 · k
♭
4

�
k♭;μ2 −

1

2

h2♭4♭i
h1♭4♭i h1

♭jγμj2♭�
�
;

G6∶ lμ
1

�
z ¼ −

1

τ

�
¼ ξ̄01

�
k♭;μ1 −

1

2

h1♭3♭i
h2♭3♭i h2

♭jγμj1♭�
�
þ ξ̄02

k♭1 · k
♭
4

k♭2 · k
♭
4

�
k♭;μ2 −

1

2

h2♭3♭i
h1♭3♭i h1

♭jγμj2♭�
�
; (A4)

which are related by the swap of legs 3 ↔ 4. (Moreover, as should be clear from the left-right symmetry of the double box,
there is a map f1; 2;l1; zg ↔ f4; 3;l2; wg that relates the above two pairs of poles.)
Solution S1 can be obtained from S2 by spinor conjugation habi ↔ ½ba�, along with the reparametrization z → z=ξ̄01. The

values of the momenta at poles z ¼ f0;∞;−ξ̄01;−ξ̄01=τg are given by

G7∶ lμ
i;S1

ð0Þ ¼ ðlμ
i;S2

ð0ÞÞ†; G3∶ lμ
i;S1

ð∞Þ ¼ ðlμ
i;S2

ð∞ÞÞ†;
G1∶ lμ

i;S1
ð−ξ̄01Þ ¼ ðlμ

i;S2
ð−1ÞÞ†; G5∶ lμ

i;S1
ð−ξ̄01=τÞ ¼ ðlμ

i;S2
ð−1=τÞÞ†; (A5)

where † denotes spinor conjugation.
At the Jacobian poles z ¼ z� for S2, and z ¼ ξ̄01z� for S1, the momenta are finite and satisfy the relations

lμ
1;S1

ðξ̄01z�Þ ¼ −lμ
2;S1

ðξ̄01z�Þ; lμ
1;S2

ðz�Þ ¼ −lμ
2;S2

ðz�Þ; lμ
i;S1

ðξ̄01z�Þ ¼ lμ
i;S2

ðz∓Þ;
lμ
i;S2

ðzþÞ ¼ ðlμ
i;S2

ðz−ÞÞ†; lμ
i;S1

ðξ̄01zþÞ ¼ ðlμ
i;S1

ðξ̄01z−ÞÞ†: (A6)

The first two relations follow because the Jacobian pole corresponds to the middle rung in the double box becoming soft,
l1 þ l2 ¼ 0. The third relation is a consequence of the fact that the Jacobian pole is located on the intersection of the two
spheres, S1 ∩ S2. The fourth and fifth identities arise because the two Jacobian poles are complex conjugates. Because
l1 þ l2 ¼ 0, the two distinct kinematic solutions are identical to the two quadruple-cut solutions for a one-loop four-mass
box [16].

APPENDIX B: IBP-INSPIRED CHOICE FOR THE INTEGRAL BASIS

The sequence of IBP constraints (4.5)–(4.7) in classes (b) and (c) suggests natural choices of master integrals. We work
out the details of such a basis here. We note that one can construct a set of four integrals with the property that in class (a) all
integrals are linearly independent, whereas in classes (b) and (c), respectively, one and two basis elements drop out, because
they vanish identically or become reducible via IBPs to simpler topologies.
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To construct such a set of integrals, we start from the
observation that in class (b) there is a unique IBP constraint,
corresponding to a unique double-box numerator insertion
which yields zero after integration. In the labeling of Fig. 1,
case (b) corresponds to the vanishing of the product m3m4,
but there is an analogous case (b0) where m1m2 ¼ 0. The
unique residues of the IBP constraints in these two
kinematic cases of the double-box integral are given by

RðbÞ
IBP ¼ ð2; 2;−1;−1; 0; 0;−1;−1;−1;−1Þ when

m3m4 ¼ 0; (B1)

Rðb0Þ
IBP ¼ ð−1;−1; 0; 0;−1;−1; 2; 2; 1; 1Þ when

m1m2 ¼ 0; (B2)

where the residues correspond to the global poles
ðGiÞi¼1;…;10. Here, the list of residues in Eq. (B1) was
read off from the left-hand side of the IBP constraint (4.5).
The class (b0) IBP constraint, for the casem1m2 ¼ 0, can be
obtained from the m3m4 ¼ 0 case by relabeling the global
poles and their residues according to the left-right flip of
Fig. 3(a) through a vertical axis intersecting the poles G9

and G10. (One must take into account the flip in orientation
of the cycles around the nodal points G9;10, which causes
their residues to change sign.) Note that the second
constraint in class (c), Eq. (4.7), precisely corresponds to

the linear combination −RðbÞ
IBP − 2Rðb0Þ

IBP.
We can now construct a pair of new integrals I03 and I04

whose residues are proportional, respectively, to the two
IBP residues (B1) and (B2). The Ansätze for the new
integrals are

I03 ¼
X4
j¼1

ajIj and I04 ¼
X4
j¼1

bjIj; (B3)

with Ij denoting the integrals in Eq. (3.17). We determine
the coefficients aj; bj by requiring that the residues are
proportional:

ResGi
I03 ¼

X4
j¼1

ajResGi
Ij

∝ ð2; 2;−1;−1; 0; 0;−1;−1;−1;−1Þ;

ResGi
I04 ¼

X4
j¼1

bjResGi
Ij

∝ ð−1;−1; 0; 0;−1;−1; 2; 2; 1; 1Þ; (B4)

where the residues ResGi
Ij are given in Eqs. (3.18)

and (3.20).
Solving for aj; bj, one finds the following basis of

integrals with the desired properties:

I01 ¼ I1;

I02 ¼ I2;

I03 ¼
�
r2ðr7 − r5Þ

r4
−
2r1r8
r3

− 2r1r2 þ r5 þ r7

�
I1

þ r5 − r7
r4

I2 þ
2r8
r3

I3 þ 2I4;

I04 ¼
�
r1ðr8 − r6Þ

r3
−
2r2r7
r4

þ 2r1r2 þ r6 þ r8

�
I1

þ 2r7
r4

I2 þ
r6 − r8
r3

I3 − 2I4; (B5)

where the global residues ri are defined in Eq. (3.20). These
integrals are linearly independent in class (a), whereas in
class (b), the heptacut of I03 vanishes form3m4 ¼ 0, and the
heptacut of I04 vanishes for m1m2 ¼ 0. In class (c), both I03
and I04 have vanishing heptacuts because in this class m1m2

and m3m4 vanish simultaneously. This is consistent with
the class (c) IBP constraints in Eqs. (4.6) and (4.7) being
linear combinations of the constraints corresponding to the
residues in Eqs. (B1) and (B2).
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