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ON THE UNIQUE NUMERICAL SOLUTION OF 
MAXWELLIAN EIGENVALUE PROBLEMS IN 

THREE DIMENSIONS 

T. WEILAND 

Deutsches Elektronen-Synchrotron DESY, Hamburg 

The numerical computation of eigensolutions of Maxwell's equations in some volume of space does 
not necessarily yield unique solutions, especially when applied to three-dimensional problems. Thus an 
accurate calculation can become extremely difficult and the results uncertain. 

This problem can be overcome by using a special finite-difference method that solves all the four 
Maxwell equations in a consistent way, so that the properties of the differential equations and their 
solutions are still exhibited in the grid space for the corresponding matrix equations and their discrete 
solutions. By utilizing a simple combination of Maxwell's equations in the grid space, we find a matrix 
representation with non-vanishing eigenvalues and thus unique solutions. This matrix equation 
corresponds to the wave equation in free space. 

Numerical examples prove the stability and simplicity of the algorithm as well as the accuracy in 
comparison with measurements. 

LIST OF SYMBOLS 

free space impedance, admittance 
z,Y,= I, z0= J G o  
permeability, permittivity of vacuum 
relative permeability, permittivity 
permeability, permittivity, F = p , ~ , ,  E = E,EO 

circular frequency 
speed of light in vacuum 
vector of electriclrnagnetic field 
vector of electriclmagnetic flux density 
normalized vectors, e.g. E = EG sin wt, H = HG cos w t  

vector holding all electriclrnagnetic field components in the grid 
vector holding all electriclmagnetic flux densities 
grid, dual grid 
index increments for linear numbering 
orthogonal coordinates 
diagonal matrix holding cell areas in G ,  G 
diagonal matrix holding step sizes in G ,  G 
diagonal matrix with volume of grid cells 
diagonal matrix with permittivities/permeabilities 
basic discretization matrix, N x N 
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C discrete curl operator in grid space G 
C* transpose of C = discrete curl operator in dual grid G 
S discrete div operator in grid space G 
Da Kronecker diagonal matrix with 1 on free space grid nodes, else 0 
s penalty parameter 

INTRODUCTION 

We consider solutions of Maxwell's equations with harmonic time dependence. 
Thus we may write Maxwell's equations for loss-free materials without any 
further restriction as 

W 
curl H = - E,E, 

C 
(1) 

W 
curl E = - p,H, 

C 
(2) 

div E,E = 0, (3) 

div prH = 0. (4) 

For given geometry, distribution of E, and p,, and boundary conditions, we are 
interested in eigensolutions of the above system for the lowest few eigenvalues. 
Practical examples for this problem can be found wherever rf resonators are used 
that do not have higher symmetries. In this paper we focus on fully three- 
dimensional problems - the two- and quasi two-dimensional cases can be consi- 
dered to be solved.' 

Various numerical methods have been proposed in the last decade for discretiz- 
ing the problem.24 However, none of the algorithms has been free of severe 
numerical problems caused by a mixing of eigensolutions with irrotational solu- 
tions. This was especially true when three-dimensional problems were attacked 
and the appearance of "ghost modes" left the judgement of whether a solution 
was correct or not to the user. This in fact is an unsatisfactory procedure. 

The appearance of non-unique solutions is basically due to the fact that solving 
Maxwell's curl equations (1) and (2) combined as 

yields two distinct groups of solutions: 
a) w = 0, curl E = 0, static fields 
b) of  0, resonant solutions. 

The fact that there exist trivial (w = 0) solutions of Eq. (5) implies that the 
discretized equation will have a matrix with vanishing eigenvalues. Thus dis- 
cretized solutions for w f 0 are not unique and are in general a mixture with all 
possible static fields. In addition, any numerical treatment of Eq. (5) is rather 
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difficult. When the metallic boundaries are simply connected, such irrotational 
fields can be caused only by real electric charges on non-conducting surfaces. 

Analytically, the problem may be solved by imposing an additional constraint 
on the fields 

div E,E = 0. (6) 

This condition excludes all irrotational solutions, in particular those with static 
content -for simply connected regions. The way of combining Eqs. (6) and (5) is 
somewhat arbitrary. Using the "penalty parameter" s one can write4 

1 
curl - curl E - s grad div E,E = 

Fr 

By solving the above equations for various numerical values of s, one finds 
solutions that do not depend on s and thus can be considered "good solutions". 
Since one has to undertake many computations and each one is extremely 
time-consuming, the situation remains unsatisfactory. 

For s = 1, F, = 1 and pr = 1, we obtain the wave equation 

with div E,E = 0 on the boundary. This equation offers a simple way of avoiding 
irrotational solutions. Though restricted to the case of the vacuum with metallic 
boundaries but without material insertions, this way promises unique numerical 
solutions for many realistic problems. 

However, it has been found that the discretization of the wave equation can still 
yield "unphysical" solutions or "ghost  mode^".^ The reason for this is that not 
every numerical discretization method is consistent with Maxwell's equations in 
the sense that the analytical properties are transferred to the grid solutions. Thus, 
severe difficulties arise when standard discretization methods are applied to 
Maxwell's vector-field problems, especially when complicated boundary condi- 
tions are present. 

In this paper, we describe a consistent algorithm (FIT-method526) that has been 
applied previously to many field problems. This algorithm produces a matrix 
equation for each of the four Maxwell's equations. The combination of the matrix 
equations yields a symmetric operator having unique solutions in the grid space. 

The key point of the method is that all four Maxwell's equations are discretized 
in a consistent way, i.e., time-harmonic fields that are source-free in the real space 
also are source-free in the grid space. Thus it is easy to eliminate all irrotational 
field contents that cause non-unique solutions in other algorithms. 

It is shown (Appendix A) that every grid solution of Eq. (5) is source-free in the 
grid space. The transformation of Eq. ( 5 )  to Eq. (7) is done in the grid space 
except at the boundary. Thus, we have div E,E= 0 at the boundary and find a 
complete base without irrotational modes. The method works in any orthonormal 
coordinate system and includes arbitrary distributions of permittive and perme- 
able material in the region of solution. 
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THE METHOD 

We use a topologically regular grid G in an orthonormal coordinate system 
(u, v, w )  defined as 

We use a linear numbering system for the grid nodes 

with n = 1 ,  . . . ,  N; N = I . J . K  and 

or any permutation of the latter three assignments. Figure 1 shows a sketch of 
such a topological grid. 

We then have to allocate components of the unknown fields or vector potentials 
to the grid and we use the FIT algorithm5x6 that allocates different components of 
the electric field to different locations in G as shown in Figure 2. This method also 
uses a dual grid G in which the components of the magnetic field are assigned in 
the same way as the electric field is in G (for more details see Refs. 5 and 6). 

An approximate solution of Maxwell's equation may be obtained by evaluating 
the integrals along the circumference of each grid cell surface in first order 

, . 
UI U Z  U i U I 

FIGURE 1 Topologically regular grid in three dimensions. 
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FIGURE 2 The allocation of unknown field components in the grid. 

approximation. Solving Eq. (2)  in integral form, 

over the cell surface perpendicular to the w-axis shown in Fig. 2 yields 

( ~ i + l -  ~ i )  . (Eu,n-Eu,n+K) + (vi+l-  vj) . (Ev,n+M,-Eu,n) 

In order to get more insight into the algebraic structure of this algorithm, we must 
introduce a few definitions. 

Putting all unknown components of the fields into column vectors yields 

The mesh step sizes occurring in Eq. (13) are put into a 3N X 3N diagonal matrix 

each element of which contains the step-size value for the electric-field compo- 
nent along that grid element. 
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Similarly we can define a diagonal matrix DA containing all the cell surface 
areas that belong to the components of the magnetic field (see Fig. 1). Finally, we 
define the band matrix (of dimensions N x N)  

which enables us to write the matrix equation representing Eq. (13) at all grid 
nodes in a simple algebraic matrix occurring in Eq. (18). The matrix A, has only 
two bands at a distance Mu given by the definition of the linear numbering 
system, Eqs. (10) and (11). 

We now can write down the analogue of Maxwell's Eq. (2) in the grid space as 

In order to introduce the distribution of material in the grid space, we define 
diagonal matrices correlating the field strengths and the flux densities in the grid 
space 

b=D,h-B=lL-H (19) 

Performing the same procedure for the first Maxwell equation and replacing the 
grid quantities in G by those in the dual grid G (see for more details Refs. 5 and 
6), we obtain 

0 -Aw A, 
A,,, 0 , )  . D;Dl1b = (21) 

-Av A, 0 

These equations also contain the rows and columns that belong to already known 
components e.g. those vanishing due to boundary conditions. This is done in order 
to maintain the simple algebraic structure of the matrices. However, in a compu- 
ter code, one can always compress the equations in such a way that they only have 
real unknowns to work on. 

Using the abbreviation C for the algebraic curl operator 
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we can combine Eqs. (18) and (21) to give 

This is an algebraic eigenvalue equation for the unknown electric-field compo- 
nents with an asymmetric matrix. However, we find that the system matrix is 
topologically symmetric. In the case of a uniform medium and a regularly spaced 
grid we find 

D, = D, = DA = D, = D, = D, = unit matrix 

In order to convert the algorithm into a symmetric form in the general case we 
must perform a diagonal transformation, which physically replaces the field 
strength by the local density of the stored energy 

Now, instead of Eq. (3) we obtain 

using the abbreviation 

Equation (26) is finally symmetric and has some remarkable properties: 

- C is a canonical matrix with elements taking only the values +1, -1 or 0. 
-All information about mesh step sizes and material distribution is contained in 

diagonal matrices (D, D). 
-The matrix is symmetric and thus we have only real values for 0'. 

However, as mentioned earlier, the eigenvalue equation not only has o f  0 
solutions, but also describes static solutions with w = 0 (see Appendix A). When 
the metallic boundaries are simply connected, such fields can be caused only by 
real electric charges on non-conducting surfaces. Thus we can avoid these 
solutions by imposing the condition (6) on Eq. (26). To do this, we discretize the 
equation 

div E,E = p, (29) 

Defining q as a vector of dimension N containing the values of the charges on 
each grid node we find that the discretized form of Eq. (29) reads simply 

(A, i A, j A,). D,D,e = q, (30) 

This equation can be easily understood using Fig. 3. In order to construct a 3N by 
3N matrix equation from Eq. (30) and to combine it with Eq. (26), we define 
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FIGURE 3 Six electric field components contributing to the charge q, on node number n. 

another diagonal matrix 

Dv  = Diag{Vl, . . . , VN, V,, . . . , VN, V,, . . . V,) (31) 

that holds all volume elements three times, one for each component. 
The matrix S = (A, j A, j A,) of order N x 3N in Eq. (30) is used to construct 

a symmetric 3N by 3N equation for the transformed field components 

We now define a Kronecker matrix DN with 1 for mesh points that do not lie on a 
metallic boundary and with a zero for all nodes on a metallic boundary and the 
3N x 3 N  matrix Ds = (DN, D ,  D,). Then we can transform Eq. (32) into 

This equation explicitly imposes the condition on the electric field that there are 
no charges in free space and thus excludes irrotational solutions. Note that this 
equation is equivalent to the replacement 

grad div E,E t, D~D-~S*D;~SD-~D~ er (34) 

Finally, we combine the discrete curl-curl operator and the source equation to 
give 

[(DCD) . (DCD)* + (D~~~SD-~D, )"  . (D$/~sD-'D,)]~' = 

The Kronecker matrix guarantees that the equations remain unchanged at the 
boundary. Thus, we implicitly have source-free fields at the boundary (Appendix 
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A). Solutions of Eq. (35) fulfill the condition W'E R, and form a complete basis. 
In fact, it can be shown (Appendix B) that o 2 2 0  and thus that all frequencies o 
are real. 

The discrete operator has the following remarkable properties: 

1. The global structure is given by 

Buu Buv BUW 
B e  = ( )  e B = (8:. B ,  B,.) 

B:, BZW Bww 

2. The matrix is real and symmetric. 
3. The matrix is semi-definite. 

(Though not strictly proven, it is obvious from the above that the matrix is in 
fact positive-definite for simply connected regions.) 

4. The matrix is composed of simple products and sums of canonical operators. 
Mesh step sizes and material properties are kept in separate diagonal 
matrices. 

5. All logical connections are based on one single difference operator matrix 
with two bands: see Eq. (17). 

One other very interesting property of the final matrix is that for the simplified 
cases of free space and homogeneous media, all elements in the coupling matrices 
B,,, Buw and B,, vanish. Thus we have three independent equations that are 
coupled only at the boundary or at any location where the material property 
changes. In the case of free space, the diagonal main matrices B,,, B,, and B,, 
turn into the well-known discrete V2 operator with a 6 on the diagonal and six 
times -1 on side diagonals. 

This way of deriving the final matrix step by step appears to be rather 
complicated. However, a direct discretization for the general case of Eq. (5) seems 
to be much more complicated. The way described here needs only very basic 
operations since the final matrix is composed of a number of rather simple 
matrices. Last but not least, this method guarantees that there exist only physical 
and non-trivial solutions since Eq. (6) is imposed implicitly at the boundary. 

APPLICATION 

A preliminary version of a three-dimensional computer program has been pre- 
pared. The code allows for arbitrarily shaped structures with material insertions of 
permittive and/or permeable material. The examples presented here serve only as 
a proof of principle. 

We first consider a cylindrically symmetric cavity with beam tubes as shown in 
Fig. 4. Figure 5 shows the representation of this cavity on a 40 x 40 x 40 grid. For 
the actual calculation, however, we use only one-eighth and make use of the 
symmetry as shown in Fig. 6. Thus one has to run the code several times for the 
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FIGURE 4 Cylindrical cavity with beam tubes. 

same geometry but with different boundary conditions on the planes of symmetry. 
This example has been chosen since it is possible to calculate the eigenfrequencies 
quite accurately with the 2D-code URMEL7 (which makes use of the cylindrical 
symmetry and uses only a 2 0  grid). Table I shows the lowest modes found with 
both codes. 

FIGURE 5 Mesh representation of the cylindrical cavity in a 40 X 40 X 40 grid. 
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FIGURE 6 One eighth of the cylindrical cavity used for the calculation. 

The URMEL7 results are obtained for a plane grid of 5000 nodes giving a 
relative accuracy of Azimuthal mode numbers up to quadrupole (m = 
0,1,2) were used. 
For comparison with some measured results, we use the cavity shown in Fig. 7, 
a rectangular cavity with a rectangular post in the center. The two lowest modes 
have been measured8 and Table I1 shows a comparison with calculated data. 

TABLE I 

Lowest Modes in a Cylindrical Cavity with Side Tubes Found Using 
the 2D-Code URMEL and by the Three-Dimensional Calculation 

f/MHz 
URMEL 3D-calculation Relative 

Mode Type* N,= 5000 N3 = 213= 9261 Error 

* For notation, see Ref. 7 
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FIGURE 7 Simple rectangular cavity with metallic post. 

TABLE I1 

Lowest Modes in a Three-Dimensional Rectangular Cavity as Meas- 
ured and Calculated (Only One-quarter was Used in the Calculation 

with N, = 1 2 . 1 6 .  12 = 2304). 

Calculated Measured Relative 
Mode # Frequency (MHz) Frequency (MHz) Error 

As an example for a cavity with a dielectric insert, we use the rectangular 
cavity loaded by a Teflon tubeg as shown in Fig. 8. Measured and calculated 
results agree very well, as can be seen in Table 111. 

TABLE I11 

Measured and Calculated Lowest Resonant Frequencies of a Dielectric-Loaded 
(Teflon Tube) Rectangular Cavity (see Fig. 8) 

Frequency (MHz) 
Measured Calculated, N ,  = 690 Calculated, N, = 3185 

With dielectric 
tube 1258 1255 1256 

Without dielec- 1319 1310 1319 
tric tube 
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+----121 -------I 
FIGURE 8 Rectangular cavity loaded with a dielectric tube. 

THE COMPUTER PROGRAM 

A preliminary computer program has been prepared that can handle up to 40,000 
nodes on an IBM 3081 using about 30 minutes cpu time for the ten lowest modes. 
The cpu time scales as N1.5 with N the total number of mesh points (see Fig. 9). 

T l s  In ( T l s )  

I I I I - 
100 1000 3000 8000 

FIGURE 9 cpu time T on an IBM 3081 D in seconds as function for number of nodes 
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This code is part of a family of 3D-codes (called MAFiA) and shares input and 
output facilities with other programs. 

A joint effort between Los Alamos National Laboratory, Kernforschungsanlage 
Jiilich and DESY has been started in order to prepare a much more user-friendly 
and a much-faster code within the near future. 
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APPENDIX A 

In order to prove that a time harmonic rotational solution in the grid is implicitly 
source free we rewrite Eq. (21) (setting Ds = DL' = DL = D, = unit matrix for 
simplicity) : 
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with 
e = (e,, e,, e,)" (A41 

b = (b,, b,, b,)" (-45) 

We multiply these three equations by A,, A, and A, and sum up to the result: 

= (Av Aw - A, Av )bu 

+ (Aw A, - AuA,)b, 

+ (A,A, - A,A,) b, 0, 
since one easily verifies that 

A,& = A,A,; A,A, = A,A,; A,A, = A,A,. 

Thus it follows that for any solution e we have 

either A) w=O, S - e f O  or S - e = O  

i.e. any time harmonic grid solution of the curl equations is implicitly source free, 
which follows from the special discretization ansatz used. A similar proof is found 
to show that every rotational time harmonic magnetic field is source free as well. 

APPENDIX B 

We rewrite Eqs. (18) and (19) using (22) as 

With the formal equations: 

b = D,h, k = wlc (B3) 

we find 

C"D,e = kDAD,h, (B4) 

CD,h= kD,D,e. 035) 

We perform the same transformation as Eq. (25) but also for the magnetic field: 

e' = (D,D, D,)lI2e, (B6) 

h1 = ( D , D , D ~ ) ~ / ~ ~ .  037) 

and obtain 
~ * ~ : / 2 ~ ~ 1 / 2 ~ ~ 1 / 2 ~ '  = ~1 /2~1 /2~-1 /2h l  

A + s  , (B8) 
C ~ ; / 2 ~ ; 1 / 2 ~ ~ 1 / 2 h l  = kD2D1/2Dp1/2 

E S (B9) 



Or with the abbreviation of Eq. (27) and (28) 

C * D ~  = k D - f ' ,  (B10) 

C D h =  kD-le1. 

We multiply Eq. (A10) by D from the left and Eq. ( A l l )  by D, we put h'and e' 
into one vector and find: 

The matrix of the eigenvalue problem in k is real and symmetric. Thus k is real 
and k2 positive or zero. Thus Eq. (35) has a semi positively defined matrix. 




