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Abstract: We present the three-loop remainder function, which describes the scattering

of six gluons in the maximally-helicity-violating configuration in planar N = 4 super-

Yang-Mills theory, as a function of the three dual conformal cross ratios. The result can

be expressed in terms of multiple Goncharov polylogarithms. We also employ a more

restricted class of hexagon functions which have the correct branch cuts and certain other

restrictions on their symbols. We classify all the hexagon functions through transcendental

weight five, using the coproduct for their Hopf algebra iteratively, which amounts to a

set of first-order differential equations. The three-loop remainder function is a particular

weight-six hexagon function, whose symbol was determined previously. The differential

equations can be integrated numerically for generic values of the cross ratios, or analytically

in certain kinematic limits, including the near-collinear and multi-Regge limits. These

limits allow us to impose constraints from the operator product expansion and multi-

Regge factorization directly at the function level, and thereby to fix uniquely a set of

Riemann ζ valued constants that could not be fixed at the level of the symbol. The near-

collinear limits agree precisely with recent predictions by Basso, Sever and Vieira based

on integrability. The multi-Regge limits agree with the factorization formula of Fadin and

Lipatov, and determine three constants entering the impact factor at this order. We plot

the three-loop remainder function for various slices of the Euclidean region of positive cross

ratios, and compare it to the two-loop one. For large ranges of the cross ratios, the ratio of

the three-loop to the two-loop remainder function is relatively constant, and close to −7.
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1 Introduction

For roughly half a century we have known that many physical properties of scattering

amplitudes in quantum field theories are encoded in different kinds of analytic behavior in

various regions of the kinematical phase space. The idea that the amplitudes of a theory

can be reconstructed (or ‘bootstrapped’) from basic physical principles such as unitarity,

by exploiting the link to the analytic behavior, became known as the “Analytic S-Matrix

program” (see e.g. ref. [1]). In the narrow resonance approximation, crossing symmetry

duality led to the Veneziano formula [2] for tree-level scattering amplitudes in string theory.

In conformal field theories, there exists a different kind of bootstrap program, whereby

correlation functions can be determined by imposing consistency with the operator product

expansion (OPE), crossing symmetry, and unitarity [3, 4]. This program was most suc-

cessful in two-dimensional conformal field theories, for which conformal symmetry actually

extends to an infinite-dimensional Virasoro symmetry [5]. However, the basic idea can be

applied in any dimension and recent progress has been made in applying the program to

conformal field theories in three and four dimensions [6–8].

In recent years, the scattering amplitudes of the planar N = 4 super-Yang-Mills the-

ory have been seen to exhibit remarkable properties. In particular, the amplitudes exhibit

dual conformal symmetry and a duality to light-like polygonal Wilson loops [9–14]. The

dual description and its associated conformal symmetry mean that CFT techniques can

be applied to calculating scattering amplitudes. In particular, the idea of imposing consis-

tency with the OPE applies. However, since the dual observables are non-local Wilson loop

operators, a different OPE, involving the near-collinear limit of two sides of the light-like

polygon, has to be employed [15–18].

– 1 –
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Dual conformal symmetry implies that the amplitudes involving four or five particles

are fixed, because there are no invariant cross ratios that can be formed from a five-sided

light-like polygon [19–21]. The four- and five-point amplitudes are governed by the BDS

ansatz [22]. The amplitudes not determined by dual conformal symmetry begin at six

points. When the external gluons are in the maximally-helicity-violating (MHV) configu-

ration, such amplitudes can be expressed in terms of the BDS ansatz, which contains all of

the infrared divergences and transforms anomalously under dual conformal invariance, and

a so-called “remainder function” [23, 24], which only depends on dual-conformally-invariant

cross ratios. In the case of non-MHV amplitudes, one can define the “ratio function” [25],

which depends on the cross ratios as well as dual superconformal invariants. For six exter-

nal gluons, the remainder and ratio functions are described in terms of functions of three

dual conformal cross ratios.

At low orders in perturbation theory, these latter functions can be expressed in terms

of multiple polylogarithms. In general, multiple polylogarithms are functions of many vari-

ables that can be defined as iterated integrals over rational kernels. A particularly useful

feature of such functions is that they can be classified according to their symbols [26–28],

elements of the n-fold tensor product of the algebra of rational functions. The integer n is

referred to as the transcendental weight or degree. The symbol can be defined iteratively

in terms of the total derivative of the function, or alternatively, in terms of the maximally

iterated coproduct by using the Hopf structure conjecturally satisfied by multiple polylog-

arithms [29–31]. Complicated functional identities among polylogarithms become simple

algebraic relations satisfied by their symbols, making the symbol a very useful tool in the

study of polylogarithmic functions. The symbol can miss terms in the function that are

proportional to transcendental constants (which in the present case are all multiple zeta

values), so special care must be given to account for these terms. The symbol and co-

product have been particularly useful in recent field theory applications [17, 32–35]. In the

case of N = 4 super-Yang-Mills theory, all amplitudes computed to date have exhibited

a uniform maximal transcendentality, in which the finite terms (such as the remainder or

ratio functions) always have weight n = 2L at the L loop order in perturbation theory.

Based on the simplified form of the two-loop six-point remainder function obtained in

ref. [32] (which was first constructed analytically in terms of multiple polylogarithms [36,

37]), it was conjectured [33, 34] that for multi-loop six-point amplitudes, both the MHV

remainder function and the next-to-MHV (NMHV) ratio function are described in terms of

polylogarithmic functions whose symbols are made from an alphabet of nine letters. The

nine letters are related to the nine projectively-inequivalent differences zij of projective vari-

ables zi [32], which can also be represented in terms of momentum twistors [38]. Using this

conjecture, the symbol for the three-loop six-point remainder function was obtained up to

two undetermined parameters [33], which were later fixed [39] using a dual supersymmetry

“anomaly” equation [39, 40]. The idea of ref. [33] was to start with an ansatz for the symbol,

based on the above nine-letter conjecture, and then impose various mathematical and phys-

ical consistency conditions. For example, imposing a simple integrability condition [27, 28]

guarantees that the ansatz is actually the symbol of some function, and demanding that the

amplitude has physical branch cuts leads to a condition on the initial entries of the symbol.

– 2 –
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Because of the duality between scattering amplitudes and Wilson loops, one can also

impose conditions on the amplitude that are more naturally expressed in terms of the

Wilson loop, such as those based on the OPE satisfied by its near-collinear limit. In

refs. [15–18], the leading-discontinuity terms in the OPE were computed. In terms of

the cross ratio variable that vanishes in the near-collinear limit, the leading-discontinuity

terms correspond to just the maximum powers of logarithms of this variable (L − 1 at

L loops), although they can be arbitrarily power suppressed. These terms require only

the one-loop anomalous dimensions of the operators corresponding to excitations of the

Wilson line, or flux tube. That is, higher-loop corrections to the anomalous dimensions

and to the OPE coefficients can only generate subleading logarithmic terms. While the

leading-discontinuity information is sufficient to determine all terms in the symbol at two

loops, more information is necessary starting at three loops [33].

Very recently, a new approach to polygonal Wilson loops has been set forth [41, 42],

which is fully nonperturbative and based on integrability. The Wilson loop is partitioned

into a number of “pentagon transitions”, which are labeled by flux tube excitation states on

either side of the transition. (If one edge of the pentagon coincides with an edge of the Wil-

son loop, then the corresponding state is the flux tube vacuum.) The pentagon transitions

obey a set of bootstrap consistency conditions. Remarkably, they can be solved in terms of

factorizable S matrices for two-dimensional scattering of the flux tube excitations [41, 42].

In principle, the pentagon transitions can be solved for arbitrary excitations, but it is

simplest to first work out the low-lying excitations, which correspond to the leading power-

suppressed terms in the near-collinear limit in the six-point case (and similar terms in

multi-near-collinear limits for more than six particles). Compared with the earlier leading-

discontinuity data, now all terms at a given power-suppressed order can be determined

(to all loop orders), not just the leading logarithms. This information is very powerful.

The first power-suppressed order in the six-point near-collinear limit is enough to fix the

two terms in the ansatz for the symbol of the three-loop remainder function that could

not be fixed using the leading discontinuity [41]. At four loops, the first power-suppressed

order [41] and part of the second power-suppressed order [43] are sufficient to fix all terms in

the symbol [44]. At these orders, the symbol becomes heavily over-constrained, providing

strong cross checks on the assumptions about the letters of the symbol, as well as on the

solutions to the pentagon transition bootstrap equations.

In short, the application of integrability to the pentagon-transition decomposition of

Wilson loops provides, through the OPE, all-loop-order boundary-value information for

the problem of determining Wilson loops (or scattering amplitudes) at generic nonzero

(interior) values of the cross ratios. We will use this information in the six-point case to

uniquely determine the three-loop remainder function, not just at symbol level, but at

function level as well.

A second limit we study is the limit of multi-Regge kinematics (MRK), which has

provided another important guide to the perturbative structure of the six-point remainder

function [33, 45–51], as well as higher-point remainder functions [52, 53] and NMHV am-

plitudes [54]. The six-point remainder function and, more generally, the hexagon functions

that we define shortly have simple behavior in the multi-Regge limit. These functions
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depend on three dual-conformally-invariant cross ratios, but in the multi-Regge limit they

collapse [55] into single-valued harmonic polylogarithms [56], which are functions of two sur-

viving real variables, or of a complex variable and its conjugate. The multi-Regge limit fac-

torizes [51] after taking the Fourier-Mellin transform of this complex variable. This factor-

ization imposes strong constraints on the remainder function at high loop order [51, 55, 57].

Conversely, determining the multi-loop remainder function, or just its multi-Regge

limit, allows the perturbative extraction of the two functions that enter the factorized form

of the amplitude, the BFKL eigenvalue (in the adjoint representation) and a corresponding

impact factor. This approach makes use of a map between the single-valued harmonic poly-

logarithms and their Fourier-Mellin transforms, which can be constructed from harmonic

sums [55]. Using the three- and four-loop remainder-function symbols, the BFKL eigen-

value has been determined to next-to-next-to-leading-logarithmic accuracy (NNLLA), and

the impact factor at NNLLA and N3LLA [55]. However, the coefficients of certain tran-

scendental constants in these three quantities could not be fixed, due to the limitation

of the symbol. Here we will use the MRK limit at three loops to fix the three undeter-

mined constants in the NNLLA impact factor. Once the four-loop remainder function is

determined, a similar analysis will fix the undetermined constants in the NNLLA BFKL

eigenvalue and in the N3LLA impact factor.

In general, polylogarithmic functions are not sufficient to describe scattering ampli-

tudes. For example, an elliptic integral, in which the kernel is not rational but contains a

square root, enters the two-loop equal-mass sunrise graph [58, 59], and it has been shown

that a very similar type of integral enters a particular N3MHV 10-point scattering ampli-

tude in planar N = 4 super-Yang-Mills theory [60]. However, it has been argued [61], based

on a novel form of the planar loop integrand, that MHV and NMHV amplitudes can all be

described in terms of multiple polylogarithms alone. Similar “dlog” representations have

appeared in a recent twistor-space formulation [62, 63]. Because six-particle amplitudes are

either MHV (or the parity conjugate MHV) or NMHV, we expect that multiple polylog-

arithms and their associated symbols should suffice in this case. The nine letters that we

assume for the symbol then follow naturally from the fact that the kinematics can be de-

scribed in terms of dual conformally invariant combinations of six momentum twistors [38].

Having the symbol of an amplitude is not the same thing as having the function. In

order to reconstruct the function one first needs a representative, well-defined function in

the class of multiple polylogarithms which has the correct symbol. Before enough physical

constraints are imposed, there will generally be multiple functions matching the symbol,

because of the symbol-level ambiguity associated with transcendental constants multiplying

well-defined functions of lower weight. Here we will develop techniques for building up the

relevant class of functions for hexagon kinematics, which we call hexagon functions, whose

symbols are as described above, but which are well-defined and have the proper branch

cuts at the function level as well. We will argue that the hexagon functions form the basis

for a perturbative solution to the MHV and NMHV six-point problem.

We will pursue two complementary routes toward the construction of hexagon func-

tions. The first route is to express them explicitly in terms of multiple polylogarithms. This

route has the advantage of being completely explicit in terms of functions with well-known
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mathematical properties, which can be evaluated numerically quite quickly, or expanded an-

alytically in various regions. However, it also has the disadvantages that the representations

are rather lengthy, and they are specific to particular regions of the full space of cross ratios.

The second route we pursue is to define each weight-n hexagon function iteratively in

the weight, using the three first-order differential equations they satisfy. This information

can also be codified by the {n − 1, 1} component of the coproduct of the function, whose

elements contain weight-(n − 1) hexagon functions (the source terms for the differential

equations). The differential equations can be integrated numerically along specific contours

in the space of cross ratios. In some cases, they can be integrated analytically, at least up

to the determination of certain integration constants.

We can carry out numerical comparisons of the two approaches in regions of over-

lapping validity. We have also been able to determine the near-collinear and multi-Regge

limits of the functions analytically using both routes. As mentioned above, these limits

are how we fix all undetermined constants in the function-level ansatz, and how we extract

additional predictions for both regimes.

We have performed a complete classification of hexagon functions through weight five.

Although the three-loop remainder function is a hexagon function of weight six, its con-

struction is possible given the weight-five basis. There are other potential applications of

our classification, beyond the three-loop remainder function. One example is the three-

loop six-point NMHV ratio function, whose components are expected [34] to be hexagon

functions of weight six. Therefore, it should be possible to construct the ratio function in

an identical fashion to the remainder function.

Once we have fixed all undetermined constants in the three-loop remainder function,

we can study its behavior in various regions, and compare it with the two-loop function.

On several lines passing through the space of cross ratios, the remainder function collapses

to simple combinations of harmonic polylogarithms of a single variable. Remarkably, over

vast swathes of the space of positive cross ratios, the two- and three-loop remainder func-

tions are strikingly similar, up to an overall constant rescaling. This similarity is in spite of

the fact that they have quite different analytic behavior along various edges of this region.

We can also compare the perturbative remainder function with the result for strong cou-

pling, computed using the AdS/CFT correspondence, along the line where all three cross

ratios are equal [64]. We find that the two-loop, three-loop and strong-coupling results all

have a remarkably similar shape when the common cross ratio is less than unity. Although

we have not attempted any kind of interpolation formula from weak to strong coupling,

it seems likely from the comparison that the nature of the interpolation will depend very

weakly on the common cross ratio in this region.

The similarity of the weak and strong coupling limits of remainder functions has been

noticed before. For the eight-point case in two-dimensional (AdS3) kinematics, there are

two real kinematical parameters. Refs. [65, 66] found impressive numerical agreement, to

within 3% or better, between rescaled versions of the two-loop [67] and strong-coupling [68]

octagon remainder function, as a function of both parameters. The octagon, decagon, and

general 2n-point remainder functions were evaluated at strong coupling, analytically in an

expansion around the regular polygon limit, and the rescaled functions were found to be
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very similar to the two-loop result [69, 70]. The six-point case we consider in this paper

has also been studied at strong coupling using a Z4 symmetric integrable model [71] and

using the homogeneous sine-Gordon model and conformal perturbation theory [72]. In the

latter work, the strong-coupling result was compared with the two-loop one along a one-

dimensional curve in the space of the three cross ratios, corresponding to the trajectory

of an integrable renormalization group flow. Again, good numerical agreement was found

between the two rescaled functions.

The remainder of this paper is organized as follows. In section 2 we recall some prop-

erties of pure functions (iterated integrals) and their symbols, as well as a representation of

the two-loop remainder function (and its symbol) in terms of an “extra pure” function and

its cyclic images. We use this representation as motivation for an analogous decomposition

of the three-loop symbol. In section 3 we describe the first route to constructing hexagon

functions, via multiple polylogarithms. In section 4 we describe the second route to con-

structing the same set of functions, via the differential equations they satisfy. In section 5

we discuss how to extract the near-collinear limits, and give results for some of the basis

functions and for the remainder function in this limit. In section 6 we carry out the anal-

ogous discussion for the Minkowski multi-Regge limit. In section 7 we give the final result

for the three-loop remainder function, in terms of a specific integral, as well as defining it

through the {5, 1} components of its coproduct. We also present the specialization of the

remainder function onto various lines in the three-dimensional space of cross ratios; along

these lines its form simplifies dramatically. Finally, we plot the function on several lines

and two-dimensional slices. We compare it numerically to the two-loop function in some

of these regions, and to the strong-coupling result evaluated for equal cross ratios. In sec-

tion 8 we present our conclusions and outline avenues for future research. We include three

appendices. Appendix A provides some background material on multiple polylogarithms.

Appendix B gives the complete set of independent hexagon functions through weight five in

terms of the {n− 1, 1} components of their coproducts, and in appendix C we provide the

same description of the extra pure weight six function Rep entering the remainder function.

In attached, computer-readable files we give the basis of hexagon functions through

weight five, as well as the three-loop remainder function, expressed in terms of multiple

polylogarithms in two different kinematic regions. We also provide the near-collinear and

multi-Regge limits of these functions.

2 Extra-pure functions and the symbol of R
(3)
6

In this section, we describe the symbol of the three-loop remainder function as obtained in

ref. [33], which is the starting point for our reconstruction of the full function. Motivated

by an alternate representation [34] of the two-loop remainder function, we will rearrange

the three-loop symbol. In the new representation, part of the answer will involve products

of lower-weight (hence simpler) functions, and the rest of the answer will be expressible as

the sum of an extra-pure function, called Rep, plus its two images under cyclic permutations

of the cross ratios. An extra-pure function of m variables, by definition, has a symbol with

only m different final entries. For the case of hexagon kinematics, where there are three
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cross ratios, the symbol of an extra-pure function has only three final entries, instead of

the potential nine. Related to this, the three derivatives of the full function can be written

in a particularly simple form, which helps somewhat in its construction.

All the functions we consider in this paper will be pure functions. The definition of a

pure function f (n) of transcendental weight (or degree) n is that its first derivative obeys,

df (n) =
∑

r

f (n−1)
r d lnφr , (2.1)

where φr are rational functions and the sum over r is finite. The only weight-zero functions

are assumed to be rational constants. The f
(n−1)
r and φr are not all independent of each

other because the integrability condition d2f (n) = 0 imposes relations among them,

∑

r

df (n−1)
r ∧ d lnφr = 0 . (2.2)

Functions defined by the above conditions are iterated integrals of polylogarithmic type.

Such functions have a symbol, defined recursively as an element of the n-fold tensor product

of the algebra of rational functions, following eq. (2.1),

S(f (n)) =
∑

r

S(f (n−1)
r )⊗ φr . (2.3)

In the case of the six-particle amplitudes of planar N = 4 super Yang-Mills theory, we are

interested in pure functions depending on the three dual conformally invariant cross ratios,

u1 = u =
x213x

2
46

x214x
2
36

, u2 = v =
x224x

2
51

x225x
2
41

, u3 = w =
x235x

2
62

x236x
2
52

. (2.4)

The six particle momenta kµi are differences of the dual coordinates xµi : x
µ
i − xµi+1 = kµi ,

with indices taken mod 6.

Having specified the class of functions we are interested in, we impose further [33, 34]

that the entries of the symbol are drawn from the following set of nine letters,

Su = {u, v, w, 1− u, 1− v, 1− w, yu, yv, yw} . (2.5)

The nine letters are related to the nine projectively-inequivalent differences of six CP
1

variables zi [32] via

u =
(12)(45)

(14)(25)
, 1− u =

(24)(15)

(14)(25)
, yu =

(26)(13)(45)

(46)(12)(35)
, (2.6)

and relations obtained by cyclically rotating the six points. The variables yu, yv and yw
can be expressed locally in terms of the cross ratios,

yu =
u− z+
u− z−

, yv =
v − z+
v − z−

, yw =
w − z+
w − z−

, (2.7)

where

z± =
1

2

[

−1 + u+ v + w ±
√
∆
]

, ∆ = (1− u− v − w)2 − 4uvw . (2.8)
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Note that under the cyclic permutation zi → zi+1 we have u→ v → w → u, while the

yi variables transform as yu → 1/yv → yw → 1/yu. A three-fold cyclic rotation amounts to

a space-time parity transformation, under which the parity-even cross ratios are invariant,

while the parity-odd y variables invert. Consistent with the inversion of the y variables

under parity, and with eq. (2.7), the quantity
√
∆ must flip sign under parity, so we have

altogether,

Parity : ui → ui , yi →
1

yi
,

√
∆ → −

√
∆ . (2.9)

The transformation of
√
∆ can also be seen from its representation in terms of the zij

variables,
√
∆ =

(12)(34)(56)− (23)(45)(61)

(14)(25)(36)
, (2.10)

upon letting zi → zi+3. It will prove very useful to classify hexagon functions by their

parity. The remainder function is a parity-even function, but some of its derivatives (or

more precisely coproduct components) are parity odd, so we need to understand both the

even and odd sectors.

Since the y variables invert under parity, yu → 1/yu, etc., it is often better to think of

the y variables as fundamental and the cross ratios as parity-even functions of them. The

cross ratios can be expressed in terms of the y variables without any square roots,

u =
yu(1− yv)(1− yw)

(1− yuyv)(1− yuyw)
, v =

yv(1− yw)(1− yu)

(1− yvyw)(1− yvyu)
, w =

yw(1− yu)(1− yv)

(1− ywyu)(1− ywyv)
,

1−u =
(1− yu)(1− yuyvyw)

(1− yuyv)(1− yuyw)
, etc.,

√
∆=

(1− yu)(1− yv)(1− yw)(1− yuyvyw)

(1− yuyv)(1− yvyw)(1− ywyu)
, (2.11)

where we have picked a particular branch of
√
∆.

Following the strategy of ref. [33], we construct all integrable symbols of the required

weight, using the letters (2.5), subject to certain additional physical constraints. In the

case of the six-point MHV remainder function at L loops, we require the symbol to be that

of a weight-2L parity-even function with full S3 permutation symmetry among the cross

ratios. The initial entries in the symbol can only be the cross ratios themselves, in order

to have physical branch cuts [17]:

first entry ∈ {u, v, w} . (2.12)

In addition we require that the final entries of the symbol are taken from the following

restricted set of six letters [33, 73]:

final entry ∈
{

u

1− u
,

v

1− v
,

w

1− w
, yu, yv, yw

}

. (2.13)

Next one can apply constraints from the collinear OPE of Wilson loops. The leading-

discontinuity constraints [15–17] can be expressed in terms of differential operators with a

simple action on the symbol [33]. At two loops, the leading (single) discontinuity is the only

discontinuity, and it is sufficient to determine the full remainder function R
(2)
6 (u, v, w) [16].
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At three loops, the constraint on the leading (double) discontinuity leaves two free param-

eters in the symbol, α1 and α2 [33]. These parameters were determined in refs. [39, 41],

but we will leave them arbitrary here to see what other information can fix them.

The two-loop remainder function R
(2)
6 can be expressed simply in terms of classical

polylogarithms [32]. However, here we wish to recall the form found in ref. [34] in terms

of the infrared-finite double pentagon integral Ω(2), which was introduced in ref. [74] and

studied further in refs. [34, 75]:

R
(2)
6 (u, v, w) =

1

4

[

Ω(2)(u, v, w) + Ω(2)(v, w, u) + Ω(2)(w, u, v)
]

+R
(2)
6,rat(u, v, w) . (2.14)

The function R
(2)
6,rat can be expressed in terms of single-variable classical polylogarithms,

R
(2)
6,rat = −1

2

[
1

4

(

Li2(1−1/u)+Li2(1−1/v)+Li2(1−1/w)
)2

+r(u)+r(v)+r(w)−ζ4
]

, (2.15)

with

r(u) =− Li4(u)− Li4(1− u) + Li4(1− 1/u)− lnuLi3(1− 1/u)− 1

6
ln3 u ln(1− u)

+
1

4

(

Li2(1− 1/u)
)2

+
1

12
ln4 u+ ζ2

(

Li2(1− u) + ln2 u
)

+ ζ3 lnu . (2.16)

We see that R
(2)
6,rat decomposes into a product of simpler, lower-weight functions Li2(1−

1/ui), plus the cyclic images of the function r(u), whose symbol can be written as,

S(r(u)) = −2 u⊗ u

1− u
⊗ u

1− u
⊗ u

1− u
+

1

2
u⊗ u

1− u
⊗ u⊗ u

1− u
. (2.17)

The symbol of Ω(2) can be deduced [34] from the differential equations it satisfies [75,

76]. There are only three distinct final entries of the symbol of Ω(2)(u, v, w), namely

{
u

1− u
,

v

1− v
, yuyv

}

. (2.18)

Note that three is the minimum possible number of distinct final entries we could hope for,

since Ω(2) is genuinely dependent on all three variables. As mentioned above, we define

extra-pure functions, such as Ω(2), to be those functions for which the number of final

entries in the symbol equals the number of variables on which they depend. Another way

to state the property (which also extends it from a property of symbols to a property of

functions) is that p-variable pure functions f of weight n are extra-pure if there exist p

independent commuting first-order differential operators Oi, such that Oif are themselves

all pure of weight (n− 1).

More explicitly, the symbol of Ω(2) can be written as [34],

S(Ω(2)(u, v, w)) = −1

2

[

S(Qφ)⊗ φ+ S(Qr)⊗ r + S(Φ̃6)⊗ yuyv

]

, (2.19)

where

φ =
uv

(1− u)(1− v)
, r =

u(1− v)

v(1− u)
. (2.20)
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The functions Qφ and Qr will be defined below. The function Φ̃6 is the weight-three, parity-

odd one-loop six-dimensional hexagon function [76, 77], whose symbol is given by [76],

S(Φ̃6) = −S(Ω(1)(u, v, w))⊗ yw + cyclic, (2.21)

where Ω(1) is a finite, four-dimensional one-loop hexagon integral [74, 75],

Ω(1)(u, v, w) = lnu ln v + Li2(1− u) + Li2(1− v) + Li2(1− w)− 2ζ2 . (2.22)

Although we have written eq. (2.21) as an equation for the symbol of Φ̃6, secretly it con-

tains more information, because we have written the symbol of a full function, Ω(1)(u, v, w),

in the first two slots. Later we will codify this extra information as corresponding to the

{2, 1} component of the coproduct of Φ̃6. Another way of saying it is that all three deriva-

tives of the function Φ̃6, with respect to the logarithms of the y variables, are given by

−Ω(1)(u, v, w) or its permutations, including the ζ2 term in eq. (2.22). Any other derivative

can be obtained by the chain rule. For example, to get the derivative with respect to u,

we just need,

∂ ln yu
∂u

=
1− u− v − w

u
√
∆

,
∂ ln yv
∂u

=
1− u− v + w

(1− u)
√
∆

,
∂ ln yw
∂u

=
1− u+ v − w

(1− u)
√
∆

,

(2.23)

which leads to the differential equation found in ref. [76],

∂uΦ̃6=−
1−u−v−w

u
√
∆

Ω(1)(v, w, u)− 1−u−v+w
(1−u)

√
∆

Ω(1)(w, u, v)− 1−u+v−w
(1−u)

√
∆

Ω(1)(u, v, w) .

(2.24)

Hence Φ̃6 can be fully specified, up to a possible integration constant, by promoting the

first two slots of its symbol to a function in an appropriate way. In fact, the ambiguity

of adding a constant of integration is actually fixed in this case, by imposing the property

that the function Φ̃6 is parity odd.

Note that for the solution to the differential equation (2.24) and its cyclic images to

have physical branch cuts, the correct coefficients of the ζ2 terms in eq. (2.22) are crucial.

Changing the coefficients of these terms in any of the cyclic images of Ω(1) would corre-

spond to adding a logarithm of the y variables to Φ̃6, which would have branch cuts in

unphysical regions.

The other weight-three symbols in eq. (2.19) can similarly be promoted to full func-

tions. To do this we employ the harmonic polylogarithms (HPLs) in one variable [78],

H~w(u). In our case, the weight vector ~w contains only 0’s and 1’s. If the weight vector is

a string of n 0’s, ~w = 0n, then we have H0n(u) =
1
n! log

n u. The remaining functions are

defined recursively by

H0, ~w(u) =

∫ u

0

dt

t
H~w(t), H1, ~w(u) =

∫ u

0

dt

1− t
H~w(t). (2.25)

Such functions have symbols with only two letters, {u, 1 − u}. We would like the point

u = 1 to be a regular point for the HPLs. This can be enforced by choosing the argument

to be 1− u, and restricting to weight vectors whose last entry is 1. The symbol and HPL
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definitions have a reversed ordering, so to find an HPL with argument 1−u corresponding

to a symbol in {u, 1 − u}, one reverses the string, replaces u → 1 and 1 − u → 0, and

multiplies by (−1) for each 1 in the weight vector. We also use a compressed notation

where (k − 1) 0’s followed by a 1 is replaced by k in the weight vector, and the argument

(1−u) is replaced by the superscript u. For example, ignoring ζ-value ambiguities we have,

u⊗ (1− u) → −H0,1(1− u) → −Hu
2 ,

u⊗ u⊗ (1− u) → H0,1,1(1− u) → Hu
2,1 ,

v ⊗ (1− v)⊗ v ⊗ (1− v) → H0,1,0,1(1− v) → Hv
2,2 . (2.26)

The combination

Hu
2 +

1

2
ln2 u = −Li2(1− 1/u) (2.27)

occurs frequently, because it is the lowest-weight extra-pure function, with symbol u ⊗
u/(1− u).

In terms of HPLs, the functions corresponding to the weight-three, parity-even symbols

appearing in eq. (2.19) are given by,

Qφ =

[

−Hu
3 −Hu

2,1 −Hv
2 lnu− 1

2
ln2 u ln v + (Hu

2 − ζ2) lnw + (u↔ v)

]

+ 2Hw
2,1 +Hw

2 lnw + lnu ln v lnw ,

Qr =

[

−Hu
3 +Hu

2,1 + (Hu
2 +Hw

2 − 2ζ2) lnu+
1

2
ln2 u ln v − (u↔ v)

]

.

(2.28)

Here we have added some ζ2 terms with respect to ref. [34], in order to match the {3, 1}
component of the coproduct of Ω(2) that we determine later.

Note that the simple form of the symbol of R
(2)
6,rat in eq. (2.15) means that it can be

absorbed into the three cyclic images of Ω(2)(u, v, w) without ruining the extra-purity of

the latter functions. Hence R
(2)
6 is the cyclic sum of an extra-pure function.

With the decomposition (2.14) in mind, we searched for an analogous decomposition of

the symbol of the three-loop remainder function [33] into extra-pure components. In other

words, we looked for a representation of S(R(3)
6 ) in terms a function whose symbol has the

same final entries (2.18) as Ω(2)(u, v, w), plus its cyclic rotations. After removing some prod-

ucts of lower-weight functions we find that this is indeed possible. Specifically, we find that,

S(R(3)
6 ) = S(Rep(u, v, w) +Rep(v, w, u) +Rep(w, u, v)) + S(P6(u, v, w)). (2.29)

Here P6 is the piece constructed from products of lower-weight functions,

P6(u, v, w) =− 1

4

[

Ω(2)(u, v, w) Li2(1− 1/w) + cyclic
]

− 1

16
(Φ̃6)

2

+
1

4
Li2(1− 1/u) Li2(1− 1/v) Li2(1− 1/w) . (2.30)

The function Rep is very analogous to Ω(2) in that it has the same (u↔ v) symmetry, and

its symbol has the same final entries,

S (Rep(u, v, w)) = S(Ru
ep(u, v, w))⊗

u

1− u
+S(Ru

ep(v, u, w))⊗
v

1− v
+S(Ryu

ep(u, v, w))⊗yuyv .
(2.31)
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In the following we will describe a systematic construction of the function Rep and

hence the three-loop remainder function. As in the case just described for Φ̃6, and implicitly

for Ω(2), the construction will involve promoting the quantities S(Ru
ep) and S(Ryu

ep) to full

functions, with the aid of the coproduct formalism. In fact, we will perform a complete

classification of all well-defined functions corresponding to symbols with nine letters and

obeying the first entry condition (2.12) (but not the final entry condition (2.13)), iteratively

in the weight through weight five. Knowing all such pure functions at weight five will then

enable us to promote the weight-five quantities S(Ru
ep) and S(Ryu

ep) to well-defined functions,

subject to ζ-valued ambiguities that we will fix using physical criteria.

3 Hexagon functions as multiple polylogarithms

The task of the next two sections is to build up an understanding of the space of hexagon

functions, using two complementary routes. In this section, we follow the route of ex-

pressing the hexagon functions explicitly in terms of multiple polylogarithms. In the next

section, we will take a slightly more abstract route of defining the functions solely through

the differential equations they satisfy, which leads to relatively compact integral represen-

tations for them.

3.1 Symbols

Our first task is to classify all integrable symbols at weight n with entries drawn from the

set Su in eq. (2.5) that also satisfy the first entry condition (2.12). We do not impose

the final entry condition (2.13) because we need to construct quantities at intermediate

weight, from which the final results will be obtained by further integration; their final

entries correspond to intermediate entries of Rep.

The integrability of a symbol may be imposed iteratively, first as a condition on the

first n − 1 slots, and then as a separate condition on the {n − 1, n} pair of slots, as in

eq. (2.2). Therefore, if Bn−1 is the basis of integrable symbols at weight n − 1, then a

minimal ansatz for the basis at weight n takes the form,

{b⊗ x | b ∈ Bn−1, x ∈ Su} , (3.1)

and Bn can be obtained simply by enforcing integrability in the last two slots. This method

for recycling lower-weight information will also guide us toward an iterative construction

of full functions, which we perform in the remainder of this section.

Integrability and the first entry condition together require the second entry to be free

of the yi. Hence the maximum number of y entries that can appear in a term in the symbol

is n−2. In fact, the maximum number of y’s that appear in any term in the symbol defines

a natural grading for the space of functions. In table 1, we use this grading to tabulate the

number of irreducible functions (i.e. those functions that cannot be written as products of

lower-weight functions) through weight six. The majority of the functions at low weight

contain no y entries.

The y entries couple together u, v, w. In their absence, the symbols with letters

{u, v, w, 1 − u, 1 − v, 1 − w} can be factorized, so that the irreducible ones just have the
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Weight y0 y1 y2 y3 y4

1 3 - - - -

2 3 - - - -

3 6 1 - - -

4 9 3 3 - -

5 18 4 13 6 -

6 27 4 27 29 18

Table 1. The dimension of the irreducible basis of hexagon functions, graded by the maximum

number of y entries in their symbols.

letters {u, 1 − u}, plus cyclic permutations of them. The corresponding functions are the

ordinary HPLs in one variable [78] introduced in the previous section, Hu
~w, with weight

vectors ~w consisting only of 0’s and 1’s. These functions are not all independent, owing

to the existence of shuffle identities [78]. On the other hand, we may exploit Radford’s

theorem [79] to solve these identities in terms of a Lyndon basis,

Hu =
{
Hu

lw | lw ∈ Lyndon(0, 1)\{0}
}
, (3.2)

where Hu
lw

≡ Hlw(1−u), and Lyndon(0, 1) is the set of Lyndon words in the letters 0 and 1.

The Lyndon words are those words w such that for every decomposition into two words

w = {u, v}, the left word u is smaller1 than the right word v, i.e. u < v. Notice that we

exclude the case lw = 0 because it corresponds to ln(1−u), which has an unphysical branch

cut. Further cuts of this type occur whenever lw has a trailing zero, but such words are

excluded from the Lyndon basis by construction.

The Lyndon basis of HPLs with proper branch cuts through weight six can be written

explicitly as,

Hu|n≤6 = {lnu, Hu
2 , H

u
3 , H

u
2,1, H

u
4 , H

u
3,1, H

u
2,1,1, H

u
5 , H

u
4,1, H

u
3,2, H

u
3,1,1, H

u
2,2,1, H

u
2,1,1,1,

Hu
6 , H

u
5,1, H

u
4,2, H

u
4,1,1, H

u
3,2,1, H

u
3,1,2, H

u
3,1,1,1, H

u
2,2,1,1, H

u
2,1,1,1,1} . (3.3)

Equation (3.3) and its two cyclic permutations, Hv and Hw, account entirely for the y0

column of table 1. Although the y-containing functions are not very numerous through

weight five or so, describing them is considerably more involved.

In order to parametrize the full space of functions whose symbols can be written in

terms of the elements in the set Su, it is useful to reexpress those elements in terms of three

independent variables. The cross ratios themselves are not a convenient choice of variables

because rewriting the yi in terms of the ui produces explicit square roots. A better choice is

to consider the yi as independent variables, in terms of which the ui are given by eq. (2.11).

In this representation, the symbol has letters drawn from the ten-element set,

Sy = {yu, yv, yw, 1− yu, 1− yv, 1− yw, 1− yuyv, 1− yuyw, 1− yvyw, 1− yuyvyw} . (3.4)

1We take the ordering of words to be lexicographic. The ordering of the letters is specified by the order

in which they appear in the argument of “Lyndon(0, 1)”, i.e. 0 < 1. Later we will encounter words with

more letters for which this specification is less trivial.
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We appear to have taken a step backward since there is an extra letter in Sy relative

to Su. Indeed, writing the symbol of a typical function in this way greatly increases the

length of its expression. Also, the first entry condition becomes more complicated in the y

variables. On the other hand, Sy contains purely rational functions of the yi, and as such

it is easy to construct the space of functions that give rise to symbol entries of this type.

We will discuss these functions in the next subsection.

3.2 Multiple polylogarithms

Multiple polylogarithms are a general class of multi-variable iterated integrals, of which

logarithms, polylogarithms, harmonic polylogarithms, and various other iterated integrals

are special cases. They are defined recursively by G(z) = 1, and,

G(a1, . . . , an; z) =

∫ z

0

dt

t− a1
G(a2, . . . , an; t) , G(0, . . . , 0

︸ ︷︷ ︸

p

; z) =
lnp z

p!
. (3.5)

Many of their properties are reviewed in appendix A, including an expression for their

symbol, which is also defined recursively [80],

S(G(an−1, . . . , a1; an)) =
n−1∑

i=1

[

S(G(an−1, . . . , âi, . . . , a1; an))⊗ (ai − ai+1)

−S(G(an−1, . . . , âi, . . . , a1; an))⊗ (ai − ai−1)

]

, (3.6)

where a0 = 0 and the hat on ai on the right-hand side indicates that this index should be

omitted.

Using eq. (3.6), it is straightforward to write down a set of multiple polylogarithms

whose symbol entries span Sy,

G=
{

G(~w; yu)|wi∈{0, 1}
}

∪
{

G(~w; yv)
∣
∣
∣wi∈

{

0, 1,
1

yu

}}

∪
{

G(~w; yw)
∣
∣
∣wi∈

{

0, 1,
1

yu
,
1

yv
,

1

yuyv

}}

,

(3.7)

The set G also emerges naturally from a simple procedure by which symbols are directly

promoted to polylogarithmic functions. For each letter φi(yu, yv, yw) ∈ Sy we write ωi =

d log φi(tu, tv, tw). Then following refs. [27, 81], which are in turn based on ref. [26], we use

the integration map,

φ1 ⊗ . . .⊗ φn 7→
∫

γ
ωn ◦ . . . ◦ ω1 . (3.8)

The integration is performed iteratively along the contour γ which we choose to take from

the origin ti = 0 to the point ti = yi. The precise choice of path is irrelevant, provided

the symbol we start from is integrable [26, 27]. So we may choose to take a path which

goes sequentially along the tu, tv, tw directions. Near the axes we may find some divergent

integrations of the form
∫ y
0 dt/t ◦ . . . ◦ dt/t. We regularize these divergences in the same

way as in the one-dimensional HPL case (see the text before eq. (2.25)) by replacing them

with 1
n! log

n y. In this way we immediately obtain an expression in terms of the functions

in G, with the three subsets corresponding to the three segments of the contour.
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Figure 1. Illustration of Regions I, II, III and IV. Each region lies between the colored surface and

the respective corner of the unit cube.

The set G is larger than what is required to construct the basis of hexagon functions.

One reason for this is that G generates unwanted symbol entries outside of the set Su, such

as the differences yi−yj , as is easy to see from eq. (3.6); the cancellation of such terms is an

additional constraint that any valid hexagon function must satisfy. Another reason is that

multiple polylogarithms satisfy many identities, such as the shuffle and stuffle identities

(see appendix A or refs. [80, 82] for a review). While there are no relevant stuffle relations

among the functions in G, there are many relations resulting from shuffle identities. Just as

for the single-variable case of HPLs, these shuffle relations may be resolved by constructing

a Lyndon basis, GL
I ⊂ G,

GL
I =

{

G(~w; yu)|wi ∈ Lyndon(0, 1)

}

∪
{

G(~w; yv)

∣
∣
∣
∣
wi ∈ Lyndon

(

0, 1,
1

yu

)}

∪
{

G(~w; yw)

∣
∣
∣
∣
wi ∈ Lyndon

(

0, 1,
1

yu
,
1

yv
,

1

yuyv

)}

.

(3.9)

A multiple polylogarithm G(w1, . . . , wn; z) admits a convergent series expansion if

|z|≤ |wi| for all nonzero wi, and it is manifestly real-valued if the nonzero wi and z are real

and positive. Therefore, the set GL
I is ideally suited for describing configurations for which

0 < yi < 1. In terms of the original cross ratios, this region is characterized by,

Region I :

{

∆ > 0 , 0 < ui < 1 , and u+ v + w < 1,

0 < yi < 1 .
(3.10)

We will construct the space of hexagon functions in Region I as a subspace of GL
I with good

branch-cut properties.

What about other regions? As we will discuss in the next subsection, multiple poly-

logarithms in the y variables are poorly suited to regions where ∆ < 0; in these regions

the yi are complex. For such cases, we turn to certain integral representations that we

will describe in section 4. In this section, we restrict ourselves to the subspace of the unit
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cube for which ∆ > 0. As shown in figure 1, there are four disconnected regions with

∆ > 0, which we refer to as Regions I, II, III, and IV. They are the regions that extend

respectively from the four points (0, 0, 0), (1, 1, 0), (0, 1, 1), and (1, 0, 1) to the intersection

with the ∆ = 0 surface. Three of the regions (II, III and IV) are related to one another by

permutations of the ui, so it suffices to consider only one of them,

Region II :

{

∆ > 0 , 0 < ui < 1 , and u+ v − w > 1,

0 < yw <
1

yuyv
< 1

yu
, 1
yv
< 1 .

(3.11)

In Region II, the set GL
I includes functions G(w1, . . . , wn; z) for which |wi|< |z| for

some i. As mentioned above, such functions require an analytic continuation and are not

manifestly real-valued. On the other hand, it is straightforward to design an alternative

basis set that does not suffer from this issue,

GL
II =

{

G

(

~w;
1

yu

)∣
∣
∣
∣
wi ∈ Lyndon(0, 1)

}

∪
{

G

(

~w;
1

yv

)∣
∣
∣
∣
wi ∈ Lyndon(0, 1, yu)

}

∪
{

G(~w; yw)

∣
∣
∣
∣
wi ∈ Lyndon

(

0, 1,
1

yu
,
1

yv
,

1

yuyv

)}

.

(3.12)

Like GL
I , GL

II also generates symbols with the desired entries. It is therefore a good starting

point for constructing a basis of hexagon functions in Region II.

3.3 The coproduct bootstrap

The space of multiple polylogarithms enjoys various nice properties, many of which are

reviewed in appendix A. For example, it can be endowed with the additional structure

necessary to promote it to a Hopf algebra. For the current discussion, we make use of one

element of this structure, namely the coproduct. The coproduct on multiple polylogarithms

has been used in a variety of contexts [35, 82–86]. It serves as a powerful tool to help lift

symbols to full functions and to construct functions or identities iteratively in the weight.

Let A denote the Hopf algebra of multiple polylogarithms and An the weight-n sub-

space, so that,

A =
∞⊕

n=0

An . (3.13)

Then, for Gn ∈ An, the coproduct decomposes as,

∆(Gn) =
∑

p+q=n

∆p,q(Gn) , (3.14)

where ∆p,q ∈ Ap ⊗ Aq. It is therefore sensible to discuss an individual {p, q} component

of the coproduct, ∆p,q. In fact, we will only need two cases, {p, q} = {n − 1, 1} and

{p, q} = {1, n − 1}, though the other components carry additional information that may

be useful in other contexts.

A simple (albeit roundabout) procedure to extract the coproduct of a generic multiple

polylogarithm, G, is reviewed in appendix A. One first rewrites G in the notation of a

slightly more general function, usually denoted by I in the mathematical literature. Then
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one applies the main coproduct formula, eq. (A.15), and finally converts back into the G

notation.

Let us discuss how the coproduct can be used to construct identities between multiple

polylogarithms iteratively. Suppose we know all relevant identities up to weight n − 1,

and we would like to establish the validity of some potential weight-n identity, which can

always be written in the form,

An = 0 , (3.15)

for some combination of weight-n functions, An. If this identity holds, then we may further

conclude that each component of the coproduct of An should vanish. In particular,

∆n−1,1(An) = 0 . (3.16)

Since this is an equation involving functions of weight less than or equal to n− 1, we

may check it explicitly. Equation (3.16) does not imply eq. (3.15), because ∆n−1,1 has a

nontrivial kernel. For our purposes, the only relevant elements of the kernel are multiple

zeta values, zeta values, iπ, and their products. Through weight six, the elements of the

kernel are the transcendental constants,

K = {iπ, ζ2, ζ3, iπ3, ζ4, iπζ3, ζ2ζ3, ζ5, iπ5, ζ6, ζ23 , iπζ5, iπ3ζ3, . . .} . (3.17)

At weight two, for example, we may use this information to write,

∆1,1(A2) = 0 ⇒ A2 = c ζ2 , (3.18)

for some undetermined rational number c, which we can fix numerically or by looking at

special limits. Consider the following example for some real positive x ≤ 1,

A2 = −G(0, x; 1)−G

(

0,
1

x
; 1

)

+
1

2
G(0;x)2 − iπG(0;x)

= Li2

(
1

x

)

+ Li2(x) +
1

2
ln2 x− iπ lnx .

(3.19)

Using eq. (3.19) and simple identities among logarithms, it is easy to check that

∆1,1(A2) = 0 , (3.20)

so we conclude that A2 = c ζ2. Specializing to x = 1, we find c = 2 and therefore A2 = 2 ζ2.

Indeed, this confirms the standard inversion relation for dilogarithms.

The above procedure may be applied systematically to generate all identities within

a given ring of multiple polylogarithms and multiple zeta values. Denote this ring by C
and its weight-n subspace by Cn. Assume that we have found all identities through weight

n− 1. To find the identities at weight n, we simply look for all solutions to the equation,

∆n−1,1

(
∑

i

ciGi

)

=
∑

i

ci

(

∆n−1,1(Gi)
)

= 0 , (3.21)
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where Gi ∈ Cn and the ci are rational numbers. Because we know all identities through

weight n− 1, we can write each ∆n−1,1(Gi) as a combination of linearly-independent func-

tions of weight n− 1. The problem is then reduced to one of linear algebra. The nullspace

encodes the set of new identities, modulo elements of the kernel K. The latter tran-

scendental constants can be fixed numerically, or perhaps analytically with the aid of an

integer-relation algorithm like PSLQ [87, 88].

For the appropriate definition of C, the above procedure can generate a variety of

interesting relations. For example, we can choose C = GL
I or C = GL

II and confirm that

there are no remaining identities within these sets.

We may also use this method to express all harmonic polylogarithms with argument

ui or 1−ui in terms of multiple polylogarithms in the set GL
I or the set GL

II . The only trick

is to rewrite the HPLs as multiple polylogarithms. For example, using the uncompressed

notation for the HPLs,

Ha1,...,an(u) = (−1)w1 G(a1, . . . , an;u) = (−1)w1 G

(

a1, . . . , an;
yu(1− yv)(1− yw)

(1− yuyv)(1− yuyw)

)

,

(3.22)

where w1 is the number of ai equal to one. With this understanding, we can simply take,

C = {H~w(ui)} ∪ GL
I or C = {H~w(ui)} ∪ GL

II , (3.23)

and then proceed as above to generate all identities within this expanded ring.

In all cases, the starting point for the iterative procedure for generating identities is

the set of identities at weight one, i.e. the set of identities among logarithms. All identities

among logarithms are of course known, but in some cases they become rather cumbersome,

and one must take care to properly track various terms that depend on the ordering of the

yi. For example, consider the following identity, which is valid for all complex yi,

lnu = ln

(
yu(1− yv)(1− yw)

(1− yuyv)(1− yuyw)

)

= ln yu + ln(1− yv) + ln(1− yw)− ln(1− yuyv)− ln(1− yuyw)

+ i

[

Arg

(
yu(1− yv)(1− yw)

(1− yuyv)(1− yuyw)

)

−Arg(yu)−Arg(1− yv)−Arg(1− yw)

+ Arg(1− yuyv) + Arg(1− yuyw)

]

,

(3.24)

where Arg denotes the principal value of the complex argument. In principle, this identity

can be used to seed the iterative procedure for constructing higher-weight identities, which

would also be valid for all complex yi. Unfortunately, the bookkeeping quickly becomes

unwieldy and it is not feasible to track the proliferation of Arg’s for high weight.

To avoid this issue, we will choose to focus on Regions I and II, defined by eqs. (3.10)

and (3.11). In both regions, ∆ > 0, so the y variables are real, and the Arg’s take on

specific values. In Region I, for example, we may write,

lnu
Region I

= ln yu + ln(1− yv) + ln(1− yw)− ln(1− yuyv)− ln(1− yuyw)

= G(0; yu) +G (1; yv) +G (1; yw)−G

(
1

yu
; yv

)

−G

(
1

yu
; yw

)

.
(3.25)
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In the last line, we have rewritten the logarithms in terms of multiple polylogarithms in

the set GL
I , which, as we argued in the previous subsection, is the appropriate basis for this

region. In Region II, the expression for lnu looks a bit different,

lnu
Region II

= ln

(

1− 1

yv

)

+ ln(1− yw)− ln

(

1− 1

yuyv

)

− ln(1− yuyw)

= G

(

1;
1

yv

)

+G (1; yw)−G

(

yu;
1

yv

)

−G

(
1

yu
; yw

)

.

(3.26)

In this case, we have rewritten the logarithms as multiple polylogarithms belonging to the

set GL
II .

We now show how to use these relations and the coproduct to deduce relations at

weight two. In particular, we will derive an expression for Hu
2 = H2(1 − u) in terms of

multiple polylogarithms in the basis GL
I in Region I. A similar result holds in Region II.

First, we need one more weight-one identity,

ln(1− u)
Region I

= G (1; yu)−G

(
1

yu
; yv

)

−G

(
1

yu
; yw

)

+G

(
1

yuyv
; yw

)

. (3.27)

Next, we take the {1, 1} component of the coproduct,

∆1,1(H
u
2 ) = − lnu⊗ ln(1− u) , (3.28)

and substitute eqs. (3.25) and (3.27),

∆1,1(H
u
2 ) = −

[

G(0; yu) +G (1; yv) +G (1; yw)−G

(
1

yu
; yv

)

−G

(
1

yu
; yw

)]

⊗
[

G (1; yu)−G

(
1

yu
; yv

)

−G

(
1

yu
; yw

)

+G

(
1

yuyv
; yw

)]

.

(3.29)

Finally, we ask which combination of weight-two functions in GL
I has the {1, 1} component

of its coproduct given by eq. (3.29). There is a unique answer, modulo elements in K,

Hu
2

Region I
= −G

(
1

yu
,

1

yuyv
; yw

)

+G

(

1,
1

yuyv
; yw

)

−G
(

1,
1

yu
; yw

)

−G
(

1,
1

yu
; yv

)

+G (0, 1; yu) +G

(
1

yuyv
; yw

)

G

(
1

yu
; yw

)

+G

(
1

yu
; yv

)

G

(
1

yuyv
; yw

)

−G(1; yw)G

(
1

yuyv
; yw

)

−G(1; yv)G
(

1

yuyv
; yw

)

−G(0; yu)G
(

1

yuyv
; yw

)

− 1

2
G

(
1

yu
; yw

)2

−G

(
1

yu
; yv

)

G

(
1

yu
; yw

)

+G (1; yw)G

(
1

yu
; yw

)

+G (1; yv)G

(
1

yu
; yw

)

+G (0; yu)G

(
1

yu
; yw

)

− 1

2
G

(
1

yu
; yv

)2

+G (1; yv)G

(
1

yu
; yv

)

+G (0; yu)G

(
1

yu
; yv

)

−G (0; yu)G (1; yu) + ζ2 .

(3.30)

We have written a specific value for the coefficient of ζ2, though at this stage it is completely

arbitrary since ∆1,1(ζ2) = 0. To verify that we have chosen the correct value, we specialize
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to the surface yu = 1, on which u = 1 and Hu
2 = 0. It is straightforward to check that the

right-hand side of eq. (3.30) does indeed vanish in this limit.

An alternative way to translate expressions made from HPLs of arguments ui into

expressions in terms of the y variables is as follows. Any expression in terms of HPLs of

arguments u, v, w may be thought of as the result of applying the integration map to words

made from the letters ui and 1− ui only. For example,

Hu
2 = H2(1− u) = H10(u) + ζ2 (3.31)

= −
∫

γ
d log(1− s1) ◦ d log s1 + ζ2 , (3.32)

where, to verify the final equality straightforwardly, we may choose the contour γ to run

from si = 0 to (s1 = u, s2 = v, s3 = w) sequentially along the s1, s2, s3 axes. In the above

simple example the second and third parts of the contour are irrelevant since the form to

be integrated only depends on s1 anyway. Then we can change variables from u, v, w to

yu, yv, yw by defining

s1 =
t1(1− t2)(1− t3)

(1− t1t2)(1− t1t3)
, (3.33)

and similarly for s2, s3. Since the result obtained depends only on the end points of the

contour, and not the precise path taken, we may instead choose the contour as the one

which goes from the origin ti = 0 to the point t1 = yu, t2 = yv, t3 = yw sequentially along

the t1, t2, t3 axes, as in the discussion around eq. (3.8). Then expression (3.32) yields an

expression equivalent to eq. (3.30).

Continuing this procedure on to higher weights is straightforward, although the ex-

pressions become increasingly complicated. For example, the expression for Hw
4,2 has 9439

terms. It is clear that GL
I is not an efficient basis, at least for representing harmonic

polylogarithms with argument ui. Despite this inefficiency, GL
I and GL

II have the virtue of

spanning the space of hexagon functions, although they still contain many more functions

than desired. In the next subsection, we describe how we can iteratively impose constraints

in order to construct a basis for just the hexagon functions.

3.4 Constructing the hexagon functions

Unitarity requires the branch cuts of physical quantities to appear in physical channels.

For dual conformally-invariant functions corresponding to the scattering of massless parti-

cles, the only permissible branching points are when a cross ratio vanishes or approaches

infinity. The location of branch points in an iterated integral is controlled by the first

entry of the symbol; hence the first entry should be one of the cross ratios, as discussed

previously. However, it is not necessary to restrict our attention to the symbol: it was

argued in ref. [35] that the condition of only having physical branch points can be pro-

moted to the coproduct. Then the monodromy operator Mzk=z0 (which gives the phase

in analytically continuing the variable zk around the point z0) acts on the first component

of the coproduct ∆ (see appendix A.2),

∆ ◦Mzk=z0 = (Mzk=z0 ⊗ id) ◦ ∆ . (3.34)
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We conclude that if Fn is a weight-n function with the proper branch-cut locations, and

∆n−1,1(Fn) =
∑

r

F r
n−1 ⊗ d lnφr , (3.35)

then F r
n−1 must also be a weight-(n− 1) function with the proper branch-cut locations, for

every r (which labels the possible letters in the symbol). Working in the other direction,

suppose we know the basis of hexagon functions through weight n − 1. We may then use

eq. (3.35) and the coproduct bootstrap of section 3.3 to build the basis at weight n.

There are a few subtleties that must be taken into account before applying this method

directly. To begin with, the condition that all the F r
n−1 belong to the basis of hexagon

functions guarantees that they have symbol entries drawn from Su. However, it does not

guarantee that Fn has this property since the φr are drawn from the set Sy, which is

larger than Su. This issue is easily remedied by simply disregarding those functions whose

symbols have final entries outside of the set Su.

In pushing to higher weights, it becomes necessary to pursue a more efficient construc-

tion. For this purpose, it is useful to decompose the space of hexagon functions, which we

denote by H, into its parity-even and parity-odd components,

H = H+ ⊕H− . (3.36)

The coproduct can be taken separately on each component,

∆n−1,1(H+
n ) ⊆ (H+

n−1 ⊗ L+
1 ) ⊕ (H−

n−1 ⊗ L−
1 ) ,

∆n−1,1(H−
n ) ⊆ (H+

n−1 ⊗ L−
1 ) ⊕ (H−

n−1 ⊗ L+
1 ) ,

(3.37)

where L+
1 and L−

1 are the parity-even and parity-odd functions of weight one,

L+
1 = {lnu, ln(1− u), ln v, ln(1− v), lnw, ln(1− w)} ,

L−
1 = {ln yu, ln yv, ln yw} .

(3.38)

To construct H±
n , we simply write down the most general ansatz for both the left-hand

side and the right-hand side of eq. (3.37) and solve the linear system. The ansatz for H±
n

will be constructed from the either GL
I or GL

II , supplemented by multiple zeta values, while

a parametrization of the right-hand side is known by assumption. For high weights, the

linear system becomes prohibitively large, which is one reason why it is useful to construct

the even and odd sectors separately, since it effectively halves the computational burden.

We note that not every element on the right hand side of eq. (3.37) is actually in the image

of ∆n−1,1. For such cases, we will simply find no solution to the linear equations. Finally,

this parametrization of the {n − 1, 1} component of the coproduct guarantees that the

symbol of any function in Hn will have symbol entries drawn from Su.

Unfortunately, the procedure we just have outlined does not actually guarantee proper

branch cuts in all cases. The obstruction is related to the presence of weight-(n − 1)

multiple zeta values in the space H+
n−1. Such terms may become problematic when used as

in eq. (3.37) to build the weight-n space, because they get multiplied by logarithms, which

may contribute improper branch cuts. For example,

ζn−1 ⊗ ln(1− u) ∈ H+
n−1 ⊗ L+

1 , (3.39)
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but the function ζn−1 ln(1− u) has a spurious branch point at u = 1. Naively, one might

think such terms must be excluded from our ansatz, but this turns out to be incorrect.

In some cases, they are needed to cancel off the bad behavior of other, more complicated

functions.

We can exhibit this bad behavior in a simple one-variable function,

f2(u) = Li2(u) + lnu ln(1− u) ∈ H+
2 . (3.40)

It is easy to write down a weight-three function f3(u) that satisfies,

∆2,1(f3(u)) = f2(u)⊗ ln(1− u) . (3.41)

Indeed, one may easily check that

f3(u) = H2,1(u) + Li2(u) ln(1− u) +
1

2
ln2(1− u) lnu (3.42)

does the job. The problem is that f3(u) 6∈ H+
3 because it has a logarithmic branch cut

starting at u = 1. In fact, the presence of this cut is indicated by a simple pole at u = 1

in its first derivative,

f ′3(u)|u→1 → − ζ2
1− u

. (3.43)

The residue of the pole is just f2(1) and can be read directly from eq. (3.40) without ever

writing down f3(u). This suggests that the problem can be remedied by subtracting ζ2
from f2(u). Indeed, for

f̃2(u) = f2(u)− ζ2 = −Li2(1− u) , (3.44)

there does exist a function,

f̃3(u) = −Li3(1− u) ∈ H+
3 , (3.45)

for which,

∆2,1(f̃3(u)) = f̃2(u)⊗ ln(1− u) . (3.46)

More generally, any function whose first derivative yields a simple pole has a logarith-

mic branch cut starting at the location of that pole. Therefore, the only allowed poles

in the ui-derivative are at ui = 0. In particular, the absence of poles at ui = 1 provides

additional constraints on the space H±
n .

These constraints were particularly simple to impose in the above single-variable ex-

ample, because the residue of the pole at u = 1 could be directly read off from a single term

in the coproduct, namely the one with ln(1−u) in the last slot. In the full multiple-variable

case, the situation is slightly more complicated. The coproduct of any hexagon function

will generically have nine terms,

∆n−1,1(F ) ≡
3∑

i=1

[

F ui ⊗ lnui + F 1−ui ⊗ ln(1− ui) + F yi ⊗ ln yi

]

, (3.47)
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where F is a function of weight n and the nine functions {F ui , F 1−ui , F yi} are of weight

(n− 1) and completely specify the {n− 1, 1} component of the coproduct. The derivative

with respect to u can be evaluated using eqs. (2.23) and (3.47) and the chain rule,

∂F

∂u

∣
∣
∣
∣
v,w

=
F u

u
− F 1−u

1− u
+

1− u− v − w

u
√
∆

F yu +
1− u− v + w

(1− u)
√
∆

F yv +
1− u+ v − w

(1− u)
√
∆

F yw .

(3.48)

Clearly, a pole at u = 1 can arise from F 1−u, F yv or F yw , or it can cancel between these

terms.

The condition that eq. (3.48) has no pole at u = 1 is a strong one, because it must

hold for any values of v and w. In fact, this condition mainly provides consistency checks,

because a much weaker set of constraints turns out to be sufficient to fix all undetermined

constants in our ansatz.

It is useful to consider the constraints in the even and odd subspaces separately. Refer-

ring to eq. (2.9), parity sends
√
∆ → −

√
∆, and, therefore, any parity-odd function must

vanish when ∆ = 0. Furthermore, recalling eq. (2.11),

√
∆ =

(1− yu)(1− yv)(1− yw)(1− yuyvyw)

(1− yuyv)(1− yvyw)(1− ywyu)
, (3.49)

we see that any odd function must vanish when yi → 1 or when yuyvyw → 1. It turns

out that these conditions are sufficient to fix all undetermined constants in the odd sector.

One may then verify that there are no spurious poles in the ui-derivatives.

There are no such vanishing conditions in the even sector, and to fix all undetermined

constants we need to derive specific constraints from eq. (3.48). We found it convenient

to enforce the constraint for the particular values of v and w such that the u → 1 limit

coincides with the limit of Euclidean multi-Regge kinematics (EMRK). In this limit, v and

w vanish at the same rate that u approaches 1,

EMRK: u→ 1, v → 0, w → 0;
v

1− u
≡ x,

w

1− u
≡ y, (3.50)

where x and y are fixed. In the y variables, the EMRK limit takes yu → 1, while yv and

yw are held fixed, and can be related to x and y by,

x =
yv(1− yw)

2

(1− yvyw)2
, y =

yw(1− yv)
2

(1− yvyw)2
. (3.51)

This limit can also be called the (Euclidean) soft limit, in which one particle gets soft. The

final point, (u, v, w) = (1, 0, 0), also lies at the intersection of two lines representing different

collinear limits: (u, v, w) = (x, 1− x, 0) and (u, v, w) = (x, 0, 1− x), where x ∈ [0, 1].

In the case at hand, F is an even function and so the coproduct components F yi are

odd functions of weight n− 1, and as such have already been constrained to vanish when

yi → 1. (Although the coefficients of F yv and F yw in eq. (3.48) contain factors of 1/
√
∆,

which diverge in the limit yu → 1, the numerator factors 1 − u ∓ (v − w) can be seen

from eq. (3.50) to vanish in this limit, cancelling the 1/
√
∆ divergence.) Therefore, the

constraint that eq. (3.48) have no pole at u = 1 simplifies considerably:

F 1−u(yu = 1, yv, yw) = 0 . (3.52)

– 23 –



J
H
E
P
1
2
(
2
0
1
3
)
0
4
9

Of course, two additional constraints can be obtained by taking cyclic images. These nar-

rower constraints turn out to be sufficient to completely fix all free coefficients in our ansatz

in the even sector.

Finally, we are in a position to construct the functions of the hexagon basis. At weight

one, the basis simply consists of the three logarithms, lnui. Before proceeding to weight

two, we must rewrite these functions in terms of multiple polylogarithms. This necessitates

a choice between Regions I and II, or between the bases GL
I and GL

II . We construct the

basis for both cases, but for definiteness let us work in Region I.

Our ansatz for ∆1,1(H+
2 ) consists of the 18 tensor products,

{lnui ⊗ x | x ∈ L+
1 } , (3.53)

which we rewrite in terms of multiple polylogarithms in GL
I . Explicit linear algebra shows

that only a nine-dimensional subspace of these tensor products can be written as ∆1,1(G2)

for G2 ∈ GL
I . Six of these weight-two functions can be written as products of logarithms.

The other three may be identified with H2(1 − ui) by using the methods of section 3.3.

(See e.g. eq. (3.30).)

Our ansatz for ∆1,1(H−
2 ) consists of the nine tensor products,

{lnui ⊗ x | x ∈ L−
1 } , (3.54)

which we again rewrite in terms of multiple polylogarithms in GL
I . In this case, it turns out

that there is no linear combination of these tensor products that can be written as ∆1,1(G2)

for G2 ∈ GL
I . This confirms the analysis at symbol level as summarized in table 1, which

shows three parity-even irreducible functions of weight two (which are identified as HPLs),

and no parity-odd functions.

A similar situation unfolds in the parity-even sector at weight three, namely that the

space is spanned by HPLs of a single variable. However, the parity-odd sector reveals a

new function. To find it, we write an ansatz for ∆2,1(H−
3 ) consisting of the 39 objects,

{f2 ⊗ x | f2 ∈ H+
2 , x ∈ L−

1 } (3.55)

(where H+
2 = {ζ2, lnui lnuj , Hui

2 }), and then look for a linear combination that can be

written as ∆2,1(G3) for G3 ∈ GL
I . After imposing the constraints that the function vanish

when yi → 1 and when yuyvyw → 1, there is a unique solution,

Φ̃6
Region I

= −G (0; yu)G (0; yv)G (0; yw) +G (0, 1; yu)G (0; yu)−G (0, 1; yu)G (0; yv)

−G (0, 1; yu)G (0; yw)−G (0, 1; yv)G (0; yu) +G (0, 1; yv)G (0; yv)

−G (0, 1; yv)G (0; yw)−G

(

0,
1

yu
; yv

)

G (0; yu)−G

(

0,
1

yu
; yv

)

G (0; yv)

+G

(

0,
1

yu
; yv

)

G (0; yw)−G (0, 1; yw)G (0; yu)−G (0, 1; yw)G (0; yv)

+G (0, 1; yw)G (0; yw) + 2G (0, 1; yw)G

(
1

yu
; yv

)

−G

(

0,
1

yu
; yw

)

G (0; yu)
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+G

(

0,
1

yu
; yw

)

G (0; yv)−G

(

0,
1

yu
; yw

)

G (0; yw)− 2G

(

0,
1

yu
; yw

)

G (1; yv)

+G

(

0,
1

yv
; yw

)

G (0; yu)−G

(

0,
1

yv
; yw

)

G (0; yv)−G

(

0,
1

yv
; yw

)

G (0; yw)

− 2G

(

0,
1

yv
; yw

)

G(1; yu)+G

(

0,
1

yuyv
; yw

)

G(0; yu)+G

(

0,
1

yuyv
; yw

)

G(0; yv)

+G

(

0,
1

yuyv
; yw

)

G(0; yw)+2G

(

0,
1

yuyv
; yw

)

G(1; yu)+2G

(

0,
1

yuyv
; yw

)

G(1; yv)

− 2G

(

0,
1

yuyv
; yw

)

G

(
1

yu
; yv

)

− 2G (0, 0, 1; yu)− 2G (0, 0, 1; yv)

+ 2G

(

0, 0,
1

yu
; yv

)

− 2G (0, 0, 1; yw) + 2G

(

0, 0,
1

yu
; yw

)

+ 2G

(

0, 0,
1

yv
; yw

)

− 2G

(

0, 0,
1

yuyv
; yw

)

− 2G (0, 1, 1; yu)− 2G (0, 1, 1; yv) + 2G

(

0,
1

yu
,
1

yu
; yv

)

− 2G (0, 1, 1; yw) + 2G

(

0,
1

yu
,
1

yu
; yw

)

+ 2G

(

0,
1

yv
,
1

yv
; yw

)

+ 2G

(

0,
1

yuyv
, 1; yw

)

− 2G

(

0,
1

yuyv
,
1

yu
; yw

)

− 2G

(

0,
1

yuyv
,
1

yv
; yw

)

− ζ2G (0; yu)− ζ2G (0; yv)− ζ2G (0; yw) . (3.56)

The normalization can be fixed by comparing to the differential equation for Φ̃6, eq. (2.24).

This solution is totally symmetric under the S3 permutation group of the three cross ratios

{u, v, w}, or equivalently of the three variables {yu, yv, yw}. However, owing to our choice

of basis GL
I , this symmetry is broken in the representation (3.56).

In principle, this procedure may be continued and used to construct a basis for the

space Hn for any value of n. In practice, it becomes computationally challenging to proceed

beyond moderate weight, say n = 5. The three-loop remainder function is a weight-six

function, but, as we will see shortly, to find its full functional form we do not need to know

anything about the other weight-six functions. On the other hand, we do need a complete

basis for all functions of weight five or less. We have constructed all such functions using

the methods just described. Referring to table 1, there are 69 functions with weight less

than or equal to five. However, any function with no y’s in its symbol can be written in

terms of ordinary HPLs, so there are only 30 genuinely new functions. The expressions for

these functions in terms of multiple polylogarithms are quite lengthy, so we present them

in computer-readable format in the attached files.

The 30 new functions can be obtained from the permutations of 11 basic functions

which we call Φ̃6, F1, Ω
(2), G, H1, J1, K1, M1, N , O, and Qep. Two of these functions, Φ̃6

and Ω(2), have appeared in other contexts, as mentioned in section 2. Also, a linear combi-

nation of F1 and its cyclic image can be identified with the odd part of the two-loop ratio

function, denoted by Ṽ [34]. (The precise relation is given in eq. (B.20).) We believe that

the remaining functions are new. In table 2, we organize these functions by their weight and

y-grading. We also indicate how many independent functions are generated by permuting

the cross ratios. For example, Φ̃6 is totally symmetric, so it generates a unique entry, while
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Weight y0 y1 y2 y3 y4

1 3 HPLs - - - -

2 3 HPLs - - - -

3 6 HPLs Φ̃6 - - -

4 9 HPLs 3× F1 3× Ω(2) - -

5 18 HPLs G, 3×K1 5×M1, N , O, 6×Qep 3×H1, 3×J1 -

6 27 HPLs 4 27 29 3×Rep+15

Table 2. Irreducible basis of hexagon functions, graded by the maximum number of y entries in

the symbol. The indicated multiplicities specify the number of independent functions obtained by

applying the S3 permutations of the cross ratios.

F1 and Ω(2) are symmetric under exchange of two variables, so they sweep out a triplet of

independent functions under cyclic permutations. The function Qep has no symmetries, so

under S3 permutations it sweeps out six independent functions. The same would be true of

M1, except that a totally antisymmetric linear combination of its S3 images and those ofQep

are related, up to products of lower-weight functions and ordinary HPLs (see eq. (B.50)).

Therefore we count only five independent functions arising from the S3 permutations ofM1.

We present the {n− 1, 1} components of the coproduct of these 11 basis functions in

appendix B. This information, together with the value of the function at the point (1, 1, 1)

(which we take to be zero in all but one case), is sufficient to uniquely define the basis of

hexagon functions. We will elaborate on these ideas in the next section.

4 Integral representations

In the previous section, we described an iterative procedure to construct the basis of

hexagon functions in terms of multiple polylogarithms in the y variables. The result is

a fully analytic, numerically efficient representation of any given basis function. While

convenient for many purposes, this representation is not without some drawbacks. Because

Sy has one more element than Su, and because the first entry condition is fairly opaque

in the y variables, the multiple polylogarithm representation is often quite lengthy, which

in turn sometimes obscures interesting properties. Furthermore, the iterative construction

and the numerical evaluation of multiple polylogarithms are best performed when the yi are

real-valued, limiting the kinematic regions in which these methods are practically useful.

For these reasons, it is useful to develop a parallel representation of the hexagon

functions, based directly on the system of first-order differential equations they satisfy.

These differential equations can be solved in terms of (iterated) integrals over lower-weight

functions. Since most of the low weight functions are HPLs, which are easy to evaluate,

one can obtain numerical representations for the hexagon functions, even in the kinematic

regions where the yi are complex. The differential equations can also be solved in terms of

simpler functions in various limits, which will be the subject of subsequent sections.
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4.1 General setup

One benefit of the construction of the basis of hexagon functions in terms of multiple

polylogarithms is that we can explicitly calculate the coproduct of the basis functions.

We tabulate the {n − 1, 1} component of the coproduct for each of these functions in ap-

pendix B. This data exposes how the various functions are related to one another, and,

moreover, this web of relations can be used to define a system of differential equations that

the functions obey. These differential equations, together with the appropriate boundary

conditions, provide an alternative definition of the hexagon functions. In fact, as we will

soon argue, it is actually possible to derive these differential equations iteratively, without

starting from an explicit expression in terms of multiple polylogarithms. It is also possi-

ble to express the differential equations compactly in terms of a Knizhnik-Zamolodchikov

equation along the lines studied in ref. [27]. Nevertheless, the coproduct on multiple poly-

logarithms, in particular the {n− 1, 1} component as given in eq. (3.47), is useful to frame

the discussion of the differential equations and helps make contact with section 3.

It will be convenient to consider not just derivatives with respect to a cross ratio, as in

eq. (3.48), but also derivatives with respect to the y variables. For that purpose, we need

the following derivatives, which we perform holding yv and yw constant,

∂ lnu

∂yu
=

(1− u)(1− v − w)

yu
√
∆

,
∂ ln v

∂yu
= −u(1− v)

yu
√
∆

,

∂ ln(1− u)

∂yu
= −u(1− v − w)

yu
√
∆

,
∂ ln(1− v)

∂yu
=

uv

yu
√
∆
.

(4.1)

We also consider the following linear combination,

∂

∂ ln(yu/yw)
≡ yu

∂

∂yu

∣
∣
∣
∣
yv ,yw

− yw
∂

∂yw

∣
∣
∣
∣
yv ,yu

. (4.2)

Using eqs. (2.23) and (4.1), as well as the definition (4.2), we obtain three differential equa-

tions (plus their cyclic images) relating a function F to its various coproduct components,

∂F

∂u

∣
∣
∣
∣
v,w

=
F u

u
−F 1−u

1−u +
1−u−v−w
u
√
∆

F yu+
1−u−v+w
(1−u)

√
∆
F yv+

1−u+v−w
(1−u)

√
∆
F yw , (4.3)

√
∆ yu

∂F

∂yu

∣
∣
∣
∣
yv ,yw

=(1−u)(1−v−w)F u−u(1−v)F v−u(1−w)Fw−u(1−v−w)F 1−u

+uv F 1−v + uw F 1−w +
√
∆F yu , (4.4)

√
∆

∂F

∂ ln(yu/yw)
=(1−u)(1−v)F u−(u−w)(1−v)F v−(1−v)(1−w)Fw−u(1−v)F 1−u

+(u− w)v F 1−v + w(1− v)F 1−w +
√
∆F yu −

√
∆F yw . (4.5)

Let us assume that we somehow know the coproduct components of F , either from the

explicit representations given in appendix B, or from the iterative approach that we will

discuss in the next subsection. We then know the right-hand sides of eqs. (4.3)–(4.5), and

we can integrate any of these equations along the appropriate contour to obtain an integral

representation for the function F . While eq. (4.3) integrates along a very simple contour,
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namely a line that is constant in v and w, this also means that the boundary condition, or

initial data, must be specified over a two-dimensional plane, as a function of v and w for

some value of u. In contrast, we will see that the other two differential equations have the

convenient property that the initial data can be specified on a single point.

Let us begin with the differential equation (4.4) and its cyclic images. For definite-

ness, we consider the differential equation in yv. To integrate it, we must find the contour

in (u, v, w) that corresponds to varying yv, while holding yu and yw constant. Following

ref. [34], we define the three ratios,

r =
w(1− u)

u(1− w)
=
yw(1− yu)

2

yu(1− yw)2
,

s =
w(1− w)u(1− u)

(1− v)2
=
yw(1− yw)

2yu(1− yu)
2

(1− ywyu)4
,

t =
1− v

uw
=

(1− ywyu)
2(1− yuyvyw)

yw(1− yw)yu(1− yu)(1− yv)
.

(4.6)

Two of these ratios, r and s, are actually independent of yv, while the third, t, varies.

Therefore, we can let t parameterize the contour, and denote by (ut, vt, wt) the values of

the cross ratios along this contour at generic values of t. Since r and s are constants, we

have two constraints,

wt(1− ut)

ut(1− wt)
=
w(1− u)

u(1− w)
,

wt(1− wt)ut(1− ut)

(1− vt)2
=
w(1− w)u(1− u)

(1− v)2
.

(4.7)

We can solve these equations for vt and wt, giving,

vt = 1− (1− v)ut(1− ut)

u(1− w) + (w − u)ut
, wt =

(1− u)wut
u(1− w) + (w − u)ut

. (4.8)

Finally, we can change variables so that ut becomes the integration variable. Calculating

the Jacobian, we find,

d ln yv
dut

=
d ln yv
d ln t

d ln t

dut
=

(1− yv)(1− yuyvyw)

yv(1− ywyu)

1

ut(ut − 1)
=

√
∆t

vt ut(ut − 1)
, (4.9)

where ∆t ≡ ∆(ut, vt, wt). There are two natural basepoints for the integration: ut = 0,

for which yv = 1 and (u, v, w) = (0, 1, 0); and ut = 1, for which yv = 1/(yuyw) and

(u, v, w) = (1, 1, 1). Both choices have the convenient property that they correspond to

a surface in terms of the variables (yu, yv, yw), but only to a single point in terms of the

variables (u, v, w). This latter fact allows for the simple specification of boundary data.
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For most purposes, we choose to integrate off of the point ut = 1, in which case we

find the following solution to the differential equation,

F (u, v, w) = F (1, 1, 1) +

∫ yv

1
yuyw

d ln ŷv
∂F

∂ ln yv
(yu, ŷv, yw)

= F (1, 1, 1) +

∫ u

1

dut
ut(ut − 1)

√
∆t

vt

∂F

∂ ln yv
(ut, vt, wt)

= F (1, 1, 1)−
√
∆

∫ u

1

dut
vt[u(1− w) + (w − u)ut]

∂F

∂ ln yv
(ut, vt, wt) .

(4.10)

The last step follows from the observation that
√
∆/(1 − v) is independent of yv, which

implies √
∆t

1− vt
=

√
∆

1− v
. (4.11)

The integral representation (4.10) for F may be ill-defined if the integrand diverges at

the lower endpoint of integration, ut = 1 or (u, v, w) = (1, 1, 1). On the other hand, for F to

be a valid hexagon function, it must be regular near this point, and therefore no such diver-

gence can occur. In fact, this condition is closely related to the constraint of good branch-

cut behavior near u = 1 discussed in section 3.4. As we build up integral representations for

hexagon functions, we will use this condition to help fix various undetermined constants.

Furthermore, if F is a parity-odd function, we may immediately conclude that

F (1, 1, 1) = 0, since this point corresponds to the surface yuyvyw = 1. If F is parity

even, we are free to define the function by the condition that F (1, 1, 1) = 0. We use this

definition for all basis functions, except for Ω(2)(u, v, w), whose value at (1, 1, 1) is specified

by its correspondence to a particular Feynman integral.

While eq. (4.10) gives a representation that can be evaluated numerically for most

points in the unit cube of cross ratios 0 ≤ ui ≤ 1, it is poorly suited for Region I. The

problem is that the integration contour leaves the unit cube, requiring a cumbersome

analytic continuation of the integrand. One may avoid this issue by integrating along

the same contour, but instead starting at the point ut = 0 or (u, v, w) = (0, 1, 0). The

resulting representation is,

F (u, v, w) = F (0, 1, 0)−
√
∆

∫ u

0

dut
vt[u(1− w) + (w − u)ut]

∂F

∂ ln yv
(ut, vt, wt) . (4.12)

If F is a parity-odd function, then the boundary value F (0, 1, 0) must vanish, since this

point corresponds to the EMRK limit yv → 1. In the parity-even case, there is no such

condition, and in many cases this limit is in fact divergent. Therefore, in contrast to

eq. (4.10), this expression may require some regularization near the ut = 0 endpoint in

the parity-even case.

It is also possible to integrate the differential equation (4.5). In this case, we look for

a contour where yv and yuyw are held constant, while the ratio yu/yw is allowed to vary.

The result is a contour (ut, vt, wt) defined by,

vt =
vut(1− ut)

uw + (1− u− w)ut
, wt =

uw(1− ut)

uw + (1− u− w)ut
. (4.13)
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Again, there are two choices for specifying the boundary data: either we set yu/yw = yuyw
for which we may take ut = 0 and (u, v, w) = (0, 0, 1); or we set yu/yw = 1/(yuyw), for

which we may take ut = 1 and (u, v, w) = (1, 0, 0). We therefore obtain two different

integral representations,

F (u, v, w) = F (0, 0, 1) +

∫ u

0

dut
√
∆t

ut(1− ut)(1− vt)

∂F

∂ ln(yu/yw)
(ut, vt, wt)

= F (0, 0, 1)+
√
∆

∫ u

0

dut
(1−vt)[uw+(1−u−w)ut]

∂F

∂ ln(yu/yw)
(ut, vt, wt) ,

(4.14)

and,

F (u, v, w) = F (1, 0, 0) +
√
∆

∫ u

1

dut
(1− vt)[uw + (1− u− w)ut]

∂F

∂ ln(yu/yw)
(ut, vt, wt) .

(4.15)

Here we used the relation, √
∆t

vt
=

√
∆

v
, (4.16)

which follows from the observation that
√
∆/v is constant along either integration contour.

Finally, we remark that the boundary values F (1, 0, 0) and F (0, 0, 1) must vanish for

parity-odd functions, since the points (1, 0, 0) and (0, 0, 1) lie on the ∆ = 0 surface. In

the parity-even case, there may be issues of regularization near the endpoints, just as

discussed for eq. (4.12).

Altogether, there are six different contours, corresponding to the three cyclic images of

the two types of contours just described. They may be labeled by the y-variables or their

ratios that are allowed to vary along the contour: {yu, yv, yw, yu/yw, yv/yu, yw/yv}. The

base points for these contours together encompass (1, 1, 1), (0, 1, 0), (1, 0, 0) and (0, 0, 1),

the four corners of a tetrahedron whose edges lie on the intersection of the surface ∆ = 0

with the unit cube. See figure 2 for an illustration of the contours passing through the

point (u, v, w) = (34 ,
1
4 ,

1
2).

4.2 Constructing the hexagon functions

In this subsection, we describe how to construct differential equations and integral rep-

resentations for the basis of hexagon functions. We suppose that we do not have any of

the function-level data that we obtained from the analysis of section 3; instead, we will

develop a completely independent alternative method starting from the symbol. The two

approaches are complementary and provide important cross-checks of one another.

In section 3.1, we presented the construction of the basis of hexagon functions at symbol

level. Here we will promote these symbols to functions in a three-step iterative process:

1. Use the symbol of a given weight-n function to write down an ansatz for the {n−1, 1}
component of its coproduct in terms of a function-level basis at weight n− 1 that we

assume to be known.

2. Fix the undetermined parameters in this ansatz by imposing various function-level

consistency conditions. These conditions are:
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Figure 2. The six different integration contours for the point (u, v, w) = ( 34 ,
1
4 ,

1
2 ), labeled by the

y-variables (or their ratios) that vary along the contour.

(a) Symmetry. The symmetries exhibited by the symbol should carry over to the

function.

(b) Integrability. The ansatz should be in the image of ∆n−1,1. This condition is

equivalent to the consistency of mixed partial derivatives.

(c) Branch cuts. The only allowed branch cuts start when a cross ratio vanishes or

approaches infinity.

3. Integrate the resulting coproduct using the methods of the previous subsection, speci-

fying the boundary value and thereby obtaining a well-defined function-level member

of the hexagon basis.

Let us demonstrate this procedure with some examples. Recalling the discussion in sec-

tion 3.1, any function whose symbol contains no y variables can be written as products of

single-variable HPLs. Therefore, the first nontrivial example occurs at weight three. As

previously mentioned, this function corresponds to the one-loop six-dimensional hexagon

integral, Φ̃6. Its symbol is given by,

S(Φ̃6) =
[

−u⊗ v− v⊗ u+ u⊗ (1− u) + v⊗ (1− v) +w⊗ (1−w)
]

⊗ yw + cyclic . (4.17)

It is straightforward to identify the object in brackets as the symbol of a linear combination

of weight-two hexagon functions (which are just HPLs), allowing us to write an ansatz for

the {2, 1} component of the coproduct,

∆2,1

(

Φ̃6

)

= −
[

lnu ln v+Li2(1−u)+Li2(1−v)+Li2(1−w)+aζ2
]

⊗ln yw + cyclic , (4.18)

for some undetermined rational number a.
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The single constant, a, can be fixed by requiring that Φ̃6 have the same symmetries

as its symbol. In particular, we demand that Φ̃6 be odd under parity. As discussed in the

previous section, this implies that it must vanish in the limit that one of the yi goes to

unity. In this EMRK limit (3.50), the corresponding ui goes to unity while the other two

cross ratios go to zero. The right-hand side of eq. (4.18) vanishes in this limit only for the

choice a = −2. So we can write,

∆2,1

(

Φ̃6

)

= −Ω(1)(u, v, w)⊗ ln yw + cyclic , (4.19)

where,

Ω(1)(u, v, w) = lnu ln v + Li2(1− u) + Li2(1− v) + Li2(1− w)− 2ζ2

= Hu
2 +Hv

2 +Hw
2 + lnu ln v − 2ζ2 ,

(4.20)

confirming the expression given in eq. (2.21). It is also straightforward to verify

that eq. (4.18) is integrable and that it does not encode improper branch cuts. We will

not say more about these conditions here, but we will elaborate on them shortly, in the

context of our next example.

Now that we have the coproduct, we can use eqs. (4.4) and (4.5) to immediately write

down the differential equations,

∂Φ̃6

∂ ln yv
= −Ω(1)(w, u, v) , (4.21)

∂Φ̃6

∂ ln(yu/yw)
= −Ω(1)(v, w, u) + Ω(1)(u, v, w) = ln(u/w) ln v . (4.22)

These derivatives lead, via eqs. (4.10) and (4.14), to the following integral representations:

Φ̃6 =
√

∆(u, v, w)

∫ u

1

dut Ω
(1)(wt, ut, vt)

vt[u(1− w) + (w − u)ut]
, (4.23)

with (ut, vt, wt) as in eq. (4.8), or

Φ̃6 =
√

∆(u, v, w)

∫ u

0

dut ln(ut/wt) ln vt
(1− vt)[uw + (1− u− w)ut]

, (4.24)

with (ut, vt, wt) as in eq. (4.13). We have set the integration constants to zero because Φ̃6

is a parity-odd function.

We have now completed the construction of the hexagon basis through weight three.

Moving on to weight four, the symbol-level classification reveals one new parity-even func-

tion, Ω(2)(u, v, w), and one new parity-odd function, F1(u, v, w), as well as their cyclic

images. We will discuss the parity-even function Ω(2)(u, v, w) since it exhibits a variety of

features that the parity-odd functions lack.

As discussed in section 2, Ω(2)(u, v, w) is an extra-pure function, and as such its symbol

has only three distinct final entries, which were given in eq. (2.18),

final entry ∈
{

u

1− u
,

v

1− v
, yuyv

}

. (4.25)
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Furthermore, the symbol is symmetric under the exchange of u with v. Taken together,

these symmetry properties dictate the form of the {3, 1} component of the coproduct,

∆3,1(Ω
(2)(u, v, w)) = Ω(2),u ⊗ ln

(
u

1− u

)

+Ω(2),u

∣
∣
∣
∣
u↔v

⊗ ln

(
v

1− v

)

+Ω(2),yu ⊗ ln yuyv .

(4.26)

There are two independent functions in eq. (4.26), Ω(2),u and Ω(2),yu . The symbols of

these functions can be read off from the symbol of Ω(2)(u, v, w). Both functions must be

valid hexagon functions of weight three. The symbol indicates that Ω(2),u is parity even

and Ω(2),yu is parity odd.

The most general linear combination of parity-even hexagon functions of weight three

whose symbol is consistent with that of Ω(2),u is

Ω(2),u = Hu
3 +Hv

2,1 −Hw
2,1 −

1

2
ln(uw/v)(Hu

2 +Hw
2 ) +

1

2
ln(uv/w)Hv

2

+
1

2
lnu ln v ln(v/w) + a1 ζ2 lnu+ a2 ζ2 ln v + a3 ζ2 lnw + a4 ζ3 ,

(4.27)

for four arbitrary rational numbers ai. There is only a single parity-odd hexagon function

of weight three, so Ω(2),yu is uniquely determined from its symbol,

Ω(2),yu = −1

2
Φ̃6 . (4.28)

It is not necessarily the case that the right hand side of eq. (4.26) is actually the {3, 1}
component of the coproduct of a well-defined function for arbitrary values of the parameters

ai. This integrability condition can be formalized by the requirement that the operator

(id⊗ d ∧ d)(∆2,1 ⊗ id) (4.29)

annihilate the right hand side of eq. (4.26). To see this, note that (∆2,1⊗ id)◦∆3,1 = ∆2,1,1,

and therefore d ∧ d acts on the last two slots, which are just weight-one functions

(logarithms). This can be recognized as the familiar symbol-level integrability condi-

tion, eq. (2.2), promoted to function-level.

Another way of thinking about the integrability condition is that it guarantees the

consistency of mixed partial derivatives. Since there are three variables, there are three

pairs of derivatives to check. To illustrate the procedure, we will examine one pair of

derivatives by verifying the equation,

√
∆

∂

∂ ln yw

[

∂Ω(2)(u, v, w)

∂ ln(yv/yu)

]

=
√
∆

∂

∂ ln(yv/yu)

[

∂Ω(2)(u, v, w)

∂ ln yw

]

. (4.30)

We have multiplied by an overall factor of
√
∆ for convenience. To simplify the notation,

let us define,

U ≡ Ω(2),u and V ≡ Ω(2),u|u↔v . (4.31)
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Then, using eqs. (4.4) and (4.5), we can immediately write down an expression for the

left-hand side of eq. (4.30),

√
∆

∂

∂ ln yw

[

∂Ω(2)(u, v, w)

∂ ln(yv/yu)

]

=
√
∆

∂

∂ ln yw

[

−1− w√
∆

(U − V )

]

=(1− w)2(1− u− v)(V w − Uw)

+ w(1− w)(Uu + Uv + U1−w − V u − V v − V 1−w)

− uw(1−w)(Uu+U1−u+U1−w−V u−V 1−u−V 1−w)

− vw(1−w)(Uv+U1−v+U1−w−V v−V 1−v−V 1−w) .

(4.32)

The algebra leading to the second line may be simplified by using the fact that (1−w)/
√
∆

is independent of yw. Similarly, it is straightforward to write down an expression for the

right-hand side of eq. (4.30),

√
∆

∂

∂ ln(yv/yu)

[

∂Ω(2)(u, v, w)

∂ ln yw

]

=
√
∆

∂

∂ ln(yv/yu)

[

− w√
∆
(U + V )

]

=−w(1− w)(Uv − Uu + V v − V u)

− uw(1−w)(Uw+Uu+U1−u+V w+V u+V 1−u)

+ vw(1−w)(Uw+Uv+U1−v+V w+V v+V 1−v)

+ w2(u− v)(U1−w + V 1−w) ,

(4.33)

where we have used the fact that w/
√
∆ is annihilated by ∂/∂ ln(yv/yu).

As usual, the superscripts indicate the various coproduct components. A special

feature of this example is that the functions U and V are built entirely from single-variable

HPLs, so it is straightforward to extract these coproduct components using the definitions

in appendix A. More generally, the functions may contain non-HPL elements of the

hexagon basis. For these cases, the coproduct components are already known from

previous steps in the iterative construction of the basis.

The nonzero coproduct components of U are,

Uu=−1

2

(

Hu
2 −Hv

2+H
w
2 −ln v ln(v/w)

)

+a1 ζ2 , U1−u=Hu
2 +

1

2
lnu ln(uw/v) ,

Uv=
1

2

(

Hu
2 +H

v
2+H

w
2 +2 lnu ln v−lnu lnw

)

+a2 ζ2 , U1−v=−1

2
ln v ln(u/w) ,

Uw=−1

2

(

Hu
2 +H

v
2+H

w
2 +lnu ln v

)

+a3 ζ2 , U1−w=
1

2
lnw ln(u/v) , (4.34)

while those of V are related by symmetry,

V u = Uv ,

V 1−u = U1−v ,

V v = Uu ,

V 1−v = U1−u ,

V w = Uw|u↔v ,

V 1−w = U1−w|u↔v .
(4.35)

Using eqs. (4.33), (4.34), and (4.35), it is straightforward to check that the equality of

mixed-partial derivatives, eq. (4.30), is satisfied if and only if a2 = −a3.
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Continuing in this way, we can derive similar constraints from the remaining two mixed

partial derivative consistency conditions. The result is that

a2 = −1 , and a3 = 1 . (4.36)

Finally, we must impose good branch-cut behavior. As discussed in section 3.4, this con-

straint can be implemented by imposing eq. (3.52), or, in this case,

U(1, 0, 0) = 0 , (4.37)

which implies that a4 = 0.

The one remaining parameter, a1, corresponds to an ambiguity that cannot be fixed

by considering mathematical consistency conditions. Indeed, it arises from a well-defined

weight-four function with all the appropriate symmetries and mathematical properties. In

particular, it is the product of ζ2 with an extra-pure weight-two hexagon function that is

symmetric under u↔ v,

− ζ2

[

Li2(1− 1/u) + Li2(1− 1/v)
]

. (4.38)

In general, we would resolve such an ambiguity by making an arbitrary (though perhaps

convenient) choice in order to define the new hexagon function. But because Ω(2)(u, v, w)

corresponds to a particular Feynman integral, the value of a1 is not arbitrary, and the

only way to fix it is to bring in specific data about that integral. We are not interested in

determining the value of a1 directly from the Feynman integral since this integral has been

evaluated previously [34]. Instead, we will be satisfied simply to verify that a consistent

value of a1 exists.

From eq. (4.33) we have,

√
∆
∂Ω(2)(u, v, w)

∂ ln yw
= −w (U + V ) , (4.39)

√
∆
∂Ω(2)(u, v, w)

∂ ln(yv/yu)
= −(1− w) (U − V ) . (4.40)

Equation (4.39) is consistent with the differential equations of section 4 of ref. [34] only if

the function Qφ from that reference (and eq. (2.28)) is related to U and V by,

Qφ = −(U + V ) . (4.41)

This equation is satisfied, provided that a1 = 1. Having fixed all ai, we have uniquely

determined the {3, 1} component of the coproduct of Ω(2)(u, v, w). Indeed, eq. (4.26) is

consistent with the expressions in eqs. (2.19) and (2.28), as of course it must be.

We remark that the antisymmetric combination appearing in eq. (4.40) is related to

another function defined in ref. [34],

Z̃(v, w, u) = −2(U − V ) , (4.42)

where Z̃ appears in a derivative of the odd part of the NMHV ratio function (see eq. (B.19)).
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Following the discussion in section 4.1, the differential equation (4.39) gives rise to the

integral representation,

Ω(2)(u, v, w) = −6ζ4 +

∫ u

1
dut

Qφ(ut, vt, wt)

ut(ut − 1)
, (4.43)

where,

vt =
(1− u)vut

u(1− v) + (v − u)ut
, wt = 1− (1− w)ut(1− ut)

u(1− v) + (v − u)ut
. (4.44)

While our conventions for generic hexagon functions require the functions to vanish at the

boundary value (1, 1, 1), in this specific case we must specify a nonzero value Ω(2)(1, 1, 1) =

−6ζ4 in order to match a prior definition of the function.

The differential equation (4.40) gives rise to another integral representation for Ω(2),

Ω(2)(u, v, w) =
1

2

∫ v

0

dvt Z̃(vt, wt, ut)

vt(1− vt)
, (4.45)

where,

ut =
uv(1− vt)

uv + (1− u− v)vt
, wt =

wvt(1− vt)

uv + (1− u− v)vt
. (4.46)

There is no constant of integration in eq. (4.45) because in this case Ω(2) vanishes at the

lower endpoint, Ω(2)(1, 0, 0) = 0 [34, 75].

Continuing onward, we construct the remaining functions of the hexagon basis in an

iterative fashion, using the above methods. We collect the results through weight five

in appendix B. We present the data by the {n − 1, 1} component of the coproduct, plus

the constraint that the functions vanish at (u, v, w) = (1, 1, 1) (except for the special case

of Ω(2)). With this information, we can build an ansatz for the three-loop remainder

function, as we discuss in the next subsection.

4.3 Constructing the three-loop remainder function

In this subsection, we complete the construction of an ansatz for the three-loop remainder

function. We use the decomposition (2.29) of the symbol of R
(3)
6 as a template, and extend

it to a definition of the function using the same steps as in section 4.2:

1. From the symbol of the extra-pure function Rep(u, v, w), which depends on α1 and

α2, we expand the {5, 1} components of its coproduct in terms of our weight-five basis

functions. These functions can be given as multiple polylogarithms, as in section 3.4,

or as integral representations, as in section 4.2. We also allow for the addition of zeta

values multiplying lower-weight basis functions.

2. We fix as many undetermined parameters in this ansatz as possible by enforcing

various mathematical consistency conditions. In particular,
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(a) We impose extra-purity and symmetry in the exchange of u and v as function-

level conditions on the coproduct entries, since these conditions are satisfied at

symbol level:

Rv
ep = −R1−v

ep = −R1−u
ep (u↔ v) = Ru

ep(u↔ v) ,

Ryv
ep = Ryu

ep , Rw
ep = R1−w

ep = Ryw
ep = 0 .

(4.47)

In principle, beyond-the-symbol terms do not need to obey the extra-purity

relations. At the end of section 5, we will relax this assumption and use the

near-collinear limits to show that the potential additional terms vanish.

(b) We demand that the ansatz be integrable. For the multiple polylogarithm ap-

proach, this amounts to verifying that there is a weight-six function with our

ansatz as the {5, 1} component of its coproduct. For the approach based on inte-

gral representations, we check that there are consistent mixed partial derivatives.

(c) We require that the resulting function have the proper branch-cut structure.

We impose this constraint by verifying that there are no spurious poles in the

first derivatives, just as we did in the construction of the hexagon basis.

After imposing these constraints, there are still nine undetermined beyond-the-

symbol parameters. They correspond to well-defined extra-pure hexagon functions

of weight six, and cannot be fixed by mathematical consistency conditions.

3. We integrate the resulting coproduct. This result is a weight-six function, R
(α1,α2)
ep ,

which depends on the symbol-level constants, α1 and α2, and nine lower-weight func-

tions r1, . . . , r9, which come multiplied by zeta values. The ri may be expressed in

terms of previously-determined hexagon functions, while R
(α1,α2)
ep may be given as an

integral representation or explicitly in terms of multiple polylogarithms.

This procedure leaves us with the following ansatz for R
(3)
6 :

R
(3)
6 (u, v, w) =

[(

R(α1,α2)
ep (u, v, w)+

9∑

i=1

ci ri(u, v)

)

+cyclic

]

+P6(u, v, w)+c10 ζ6+c11 (ζ3)
2 ,

(4.48)
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where the ci are undetermined rational numbers, and

r1 = ζ4

[

Hu
2 +

1

2
ln2 u+ (u↔ v)

]

,

r2 = ζ3

[

Hu
2,1 −

1

6
ln3 u+ (u↔ v)

]

,

r3 = ζ3

[

Hu
3 − 2Hu

2,1 +Hu
1H

u
2 + (u↔ v)

]

,

r4 = ζ2

[

Hu
4 +Hu

1H
u
3 − 1

2
(Hu

2 )
2 + (u↔ v)

]

,

r5 = ζ2

[

Hu
4 − 3Hu

2,1,1 +Hu
1H

u
3 +

1

2
(Hu

1 )
2Hu

2 + (u↔ v)

]

,

r6 = ζ2

[

Hu
3,1 − 3Hu

2,1,1 +Hu
1H

u
2,1 + (u↔ v)

]

,

r7 = ζ2

[

Hu
2,1,1 +

1

24
(Hu

1 )
4 + (u↔ v)

]

,

r8 = ζ2

(

Hu
2 +

1

2
ln2 u

)(

Hv
2 +

1

2
ln2 v

)

,

r9 = ζ2Ω
(2)(u, v, w) .

(4.49)

In the following section we will use the collinear limits of this expression to fix α1, α2 and

the ci. After fixing these parameters, we can absorb all but the constant terms into a

redefinition of Rep. The {5, 1} component of its coproduct is given in appendix C. The

final integral representation for R
(3)
6 , having fixed also c10 and c11, is given in section 7,

eq. (7.1). The final expression in terms of multiple polylogarithms is quite lengthy, but it

is provided in a computer-readable format in the attached files.

5 Collinear limits

In the previous section, we constructed a 13-parameter ansatz for the three-loop remainder

function. It has the correct symbol, proper branch structure, and total S3 symmetry in

the cross ratios. In other words, the ansatz obeys all relevant mathematical consistency

conditions. So in order to fix the undetermined constants, we need to bring in some

specific physical data.

Some of the most useful data available comes from the study of the collinear limit. In

the strict collinear limit in which two gluons are exactly collinear, the remainder function

must vanish to all loop orders. This condition fixes many, but not all, of the parameters in

our ansatz. To constrain the remaining constants, we expand in the near-collinear limit,

keeping track of the power-suppressed terms. These terms are predicted by the OPE for

flux tube excitations. In fact, the information about the leading discontinuity terms in the

OPE [15–17] was already incorporated at symbol level and used to constrain the symbol

for the three-loop remainder function up to two undetermined parameters [33].

Here we take the same limit at function level, and compare to the recent work of Basso,

Sever and Vieira (BSV) [41], which allows us to uniquely constrain all of the beyond-the-

– 38 –



J
H
E
P
1
2
(
2
0
1
3
)
0
4
9

symbol ambiguities, as well as the two symbol-level parameters. The two symbol-level

parameters were previously fixed by using dual supersymmetry [39], and also by studying

the near-collinear limit at symbol level [41], and we agree with both of these determinations.

5.1 Expanding in the near-collinear limit

In the (Euclidean) limit that two gluons become collinear, one of the cross ratios goes to

zero and the sum of the other two cross ratios goes to one. For example, if we let k2 and

k3 become parallel, then x224 ≡ (k2 + k3)
2 → 0, corresponding to v → 0, and u + w → 1.

BSV [41] provide a convenient set of variables (τ, σ, φ) with which one can approach this

collinear limit. They are related to the (ui, yi) variables by [43]:

u =
FS2

(1 + T 2)(F + FS2 + ST + F 2ST + FT 2)
,

v =
T 2

1 + T 2
,

w =
F

F + FS2 + ST + F 2ST + FT 2
,

yu =
FS + T

F (S + FT )
,

yv =
(S + FT )(1 + FST + T 2)

(FS + T )(F + ST + FT 2)
,

yw =
F + ST + FT 2

F (1 + FST + T 2)
,

(5.1)

where T = e−τ , S = eσ, and F = eiφ.

As T → 0 (τ → ∞) we approach the collinear limit. The parameter S controls the

partitioning of the momentum between the two collinear gluons, according to k2/k3 ∼ S2,

or k2/(k2+k3) ∼ S2/(1+S2). The parameter F controls the azimuthal dependence as the

two gluons are rotated around their common axis with respect to the rest of the scattering

process. This dependence is related to the angular momentum of flux-tube excitations in

the OPE interpretation.

By expanding an expression in T we can probe its behavior in the near-collinear limit,

order by order in T . Each order in T also contains a polynomial in lnT . In general, the

expansions of parity-even and parity-odd hexagon functions f even and fodd have the form,

f even(T, F, S) =
∞∑

m=0

N∑

n=0

m∑

p=0

Tm (− lnT )n cosp φ f evenm,n,p(S) , (5.2)

fodd(T, F, S) = 2i sinφ
∞∑

m=1

N∑

n=0

m−1∑

p=0

Tm (− lnT )n cosp φ foddm,n,p(S) . (5.3)

Odd parity necessitates an extra overall factor of sinφ. The maximum degree of the

polynomial in e±iφ is m, the number of powers in the T expansion, which is related to

the twist of a flux tube excitation in the final answer. The maximum degree N of the

polynomial in τ ≡ − lnT satisfies N = w − 2 for the non-HPL hexagon functions with
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weight w in appendix C, although in principle it could be as large as N = w for the m = 0

term (but only from the function lnw v), and as large as N = w − 1 when m > 0. For the

final remainder function at L loops, with weight w = 2L, the leading discontinuity terms in

the OPE imply a relatively small value of N compared to the maximum possible, namely

N = L− 1 = 2L− (L+ 1) for R
(L)
6 , or N = 2 for R

(3)
6 .

BSV predict the full order T 1 behavior of the remainder function [41]. The part of

the T 2 behavior that is simplest for them to predict (because it is purely gluonic) contains

azimuthal variation proportional to cos2 φ, i.e. the T 2F 2 or T 2F−2 terms; however, they can

also extract the T 2F 0 behavior, which depends upon the scalar and fermionic excitations as

well [43]. To compare with this data, we must expand our expression for R
(3)
6 to this order.

The expansion of an expression is relatively straightforward when its full analytic form

is known, for example when the expression is given in terms of multiple polylogarithms.

In this case, one merely needs to know how to take a derivative with respect to T and how

to evaluate the functions at T = 0. The derivative of a generic multiple polylogarithm

can be read off from its coproduct, which is given in appendix A. Evaluating the functions

at T = 0 is more involved because it requires taking yu → 1 and yw → 1 simultaneously.

However, the limit of all relevant multiple polylogarithms can be built up iteratively using

the coproduct bootstrap of section 3.3.

If the expression is instead represented in integral form, or is defined through

differential equations, then it becomes necessary to integrate up the differential equations,

iteratively in the transcendental weight, and order by order in the T expansion. Recall

that for any function in our basis we have a complete set of differential equations whose

inhomogeneous terms are lower weight hexagon functions. The change of variables (5.1)

and its Jacobian allow us to go from differential equations in the ui or y variables to

differential equations in (F, S, T ).

The structure of the T → 0 expansion makes most terms very straightforward to

integrate. In eqs. (5.2) and (5.3), T only appears as powers of T , whose coefficients are

polynomials of fixed order in lnT . The variable F only appears as a polynomial in cosφ

and sinφ, i.e. as powers of F and F−1. Hence any T or F derivative can be integrated

easily, up to a constant of integration, which can depend on S. The S derivatives require

a bit of extra work. However, the differential equation in S is only required for the T - and

F -independent term arising in the parity-even case, f even0,0,0(S). This coefficient is always a

pure function of the same transcendental weight as f itself, and it can be constructed from

a complete set of HPLs in the argument −S2. Thus we can integrate the one required

differential equation in S by using a simple ansatz built out of HPLs.

There is still one overall constant of integration to determine for each parity-even

function, a term that is completely independent of T , F and S. It is a linear combination

of zeta values. (The parity-odd functions all vanish as T → 0, so they do not have this

problem.) The constant of integration can be determined at the endpoint S = 0 or S = ∞,

with the aid of a second limiting line, (u, v, w) = (u, u, 1). On this line, all the hexagon

functions are very simple, collapsing to HPLs with argument (1−u). In the limit u→ 0 this

line approaches the point (0, 0, 1), which can be identified with the S → 0 “soft-collinear”

corner of the T → 0 collinear limit in the parametrization (5.1). Similarly, the S → ∞
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corner of the T → 0 limit intersects the line (1, v, v) at v = 0. Both lines (u, u, 1) and

(1, v, v) pass through the point (1, 1, 1). At this point, (most of) the hexagon functions

are defined to vanish, which fixes the integration constants on the (u, u, 1) and (1, v, v)

lines. HPL identities then give the desired values of the functions in the soft-collinear

corner, which is enough to fix the integration constant for the near-collinear limit. We will

illustrate this method with an example below.

The coefficients of the power-suppressed terms that also depend on T and F , namely

fm,n,p(S) in eqs. (5.2) and (5.3) for m > 0, are functions of S that involve HPLs with the

same argument −S2, but they also can include prefactors to the HPLs that are rational

functions of S. The fm,n,p(S) for m > 0 generally have a mixed transcendental weight.

Mixed transcendentality is common when series expanding generic HPLs around particular

points. For example, expanding Li2(1− x) around x = 0 gives

Li2(1− x) ∼ π2

6
+ x(lnx− 1) + x2

(
lnx

2
− 1

4

)

+ x3
(
lnx

3
− 1

9

)

+O(x4) . (5.4)

Using an HPL ansatz for the pure S-dependent terms, we use the differential equations

to fix any unfixed parameters and cross-check the ansatz. Repeating this process order by

order we build up the near-collinear limiting behavior of each element of the basis of

hexagon functions as a series expansion.

5.2 Examples

In order to illustrate the collinear expansion, it is worthwhile to present a few low-weight

examples. We begin with the simplest nontrivial example, the weight-three parity-odd

function Φ̃6. Since Φ̃6 is fully symmetric in the ui and vanishes in the collinear limit (like

any parity-odd function), its expansion is particularly simple. To conserve space in later

formulas, we adopt the notation,

s = S2 , L = lnS2 , H~w = H~w(−S2) . (5.5)

The expansion of Φ̃6 is then

Φ̃6 =
2iT sinφ

S

[

2 lnT
(

(1 + s)H1 + sL
)

− (1 + s)
(

H2
1 + (L+ 2)H1

)

− 2sL

]

+
2iT 2 cosφ sinφ

S2

[

−2 lnT
(

(1 + s2)H1 + s(sL+ 1)
)

+ (1 + s2)(H2
1 + LH1)

+ (1 + s)2H1 + s
(

(1 + s)L+ 1
)]

+O(T 3) .

(5.6)

The sign of eq. (5.6), and of the collinear expansions of all of the parity-odd functions,

depend on the values of the y variables used. This sign is appropriate to approaching the

collinear limit from Region I, with 0 < yi < 1.

Because Ω(2) lacks the symmetries of Φ̃6, its expansion must be evaluated in multiple

channels, and it is substantially lengthier. Through order T 2, we find,

Ω(2)(u, v, w) = ln2 T
(

2(H2 + ζ2) + L2
)

+ 2 lnT
(

H3 − 2(H2,1 − ζ3)− LH2

)

+H4 − 4H3,1

+ 4H2,1,1 +
1

2

(

H2
2 + L2(H2 + ζ2)

)

− L
(

H3 − 2(H2,1 + ζ3)
)

+ 2ζ2H2 +
5

2
ζ4
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+
T cosφ

S

[

−4 ln2 T s(H1 + L) + 4 lnT
(

(1 + s)H1 + s(H2
1 + L(H1 + 1))

)

+ s

(

4(H2,1−ζ3)−
4

3
H3

1−H1(2H2+L2)−2L(H2
1+2)−2ζ2(2H1+L)

)

− 2(1 + s)(H2
1 +H1(L+ 2))

]

+
T 2

S2

{

cos2 φ

[

4 ln2 T s2
(

H1 + L+
1

1 + s

)

− 2 lnT

(

2s2H1(H1 + L) +H1 + s+
s2

1 + s

(

(5 + s)H1 + (3 + s)L
)

)

+ s2
(

−4(H2,1 − ζ3) +H1(2H2 + L2 + 4ζ2) +
4

3
H3

1 + 2L(H2
1 + ζ2)

)

(5.7)

+H1(H1 + L) + (1 + 3s)
(

(1 + s)H1 + sL
)

+ s

+
s2

1 + s

(

(5 + s)H1(H1 + L)− s(2H2 + L2)
)

+ 2ζ2
s2(1− s)

1 + s

]

− 2 ln2 T s((2 + s)(H1 + L) + 1)

+ lnT
(

s2(2H1(H1 + L) + 3(H1 + L)) + s(4H1(H1 + L+ 1) + 2L+ 3) +H1

)

+ s(2 + s)

(

2H2,1 −H1H2 − LH2
1 − 2

3
H3

1 − 1

2
L2H1 − ζ2(2H1 + L)− 2ζ3

)

− s

(

H2 +
1

2
L2 + 2ζ2 +

3

2

)

− 1

2

(

(1 + s)(1 + 3s)H1(H1 + L) + (1 + 5s)H1

+ s(3 + 7s)(H1 + L)
)

}

+O(T 3) .

The integral Ω(2)(u, v, w) is symmetric under the exchange of u and v. This implies

that the limiting behavior of Ω(2)(v, w, u) can be determined from that of Ω(2)(u, v, w) by

exchanging the roles of u and w in the collinear limit. At leading order in T , this symmetry

corresponds to letting S ↔ 1/S. This symmetry is broken by the parametrization (5.1) at

order T 2; nevertheless, the correction at order T 2 is relatively simple,

Ω(2)(v, w, u) = Ω(2)(u, v, w)
∣
∣
∣
S→1/S

+ 4T 2

[

ln2 T H1 − lnT H1(H1 + L)−H3 +H2,1

− 1

2

(

H1(H2 − ζ2)− L(H2 +H2
1 )
)

+
1

3
H3

1

]

+O(T 3) .

(5.8)

The last independent permutation is Ω(2)(w, u, v). It is symmetric under u ↔ w and

vanishes at order T 0, which together imply that its near-collinear expansion is symmetric

under S ↔ 1/S through order T 2, although that symmetry is not manifest in the HPL

representation,

Ω(2)(w, u, v) =
T cosφ

S
(1 + s)

(

2LH2 −H1(L
2 + 2ζ2)

)

+
T 2

S2

{

cos2 φ

[

(1 + s2)
(

−2LH2 +H1(L
2 + 2ζ2)

)

+ 2(1− s2)H2

+ s(1− s)(L2 + 2ζ2)− 2(1 + s)((1 + s)H1 + sL)

]
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− 2 lnT (1 + s)((1 + s)H1 + sL)

+(1+s)2
[

LH2−H1

(
1

2
L2+ζ2−L−3

)

+H2
1

]

+3s(1+s)L

}

+O(T 3) .

(5.9)

We determine these expansions by integrating the differential equations in F , S, and T ,

as described in the previous subsection. For parity-even functions, it is necessary to fix

the constants of integration. Here we present one technique for doing so. Suppose we set

S = T in eq. (5.1). Then the limit T → 0 corresponds to the EMRK limit, u = v → 0,

w → 1, approached along the line (u, u, 1). As an example, let us consider applying this

limit to the expansion of Ω(2)(u, v, w), eq. (5.7). We only need to keep the T 0 terms,

and among them we find that the H~w terms vanish, L → lnu, and lnT → 1
2 lnu (since

u ∼ T 2). Therefore, as u→ 0 we obtain,

Ω(2)(u, u, 1) =
1

4
ln4 u+ ζ2 ln

2 u+ 4ζ3 lnu+
5

2
ζ4 +O(u) . (5.10)

The constant of integration, 5
2ζ4, clearly survives in this limit. So, assuming we did not

know its value, it could be fixed if we had an independent way of examining this limit.

This independent method comes from the line (u, u, 1), on which all the hexagon

functions have simple representations. This can be seen from the form of the integration

contour parametrized by vt and wt in eq. (4.8). Setting v = u and w = 1, it collapses to

vt = ut , wt = 1 . (5.11)

The integral (4.43) then becomes

Ω(2)(u, u, 1) = −6ζ4 −
∫ u

1

dut ω
u(ut, ut, 1)

ut(ut − 1)
, (5.12)

where

ωu(u, u, 1) = [Ω(2),u + (u↔ v)](u, u, 1) = 2

[

Hu
3 +Hu

2,1 + lnuHu
2 +

1

2
ln3 u

]

. (5.13)

Such integrals can be computed directly using the definition (2.25) after a partial fraction

decomposition of the factor 1/[ut(ut − 1)]. Expressing the result in terms of the Lyndon

basis (3.3) gives,

Ω(2)(u, u, 1) = −2Hu
4 −2Hu

3,1+6Hu
2,1,1+2(Hu

2 )
2+2 lnu(Hu

3 +H
u
2,1)+ln2 uHu

2 +
1

4
ln4 u−6 ζ4 .

(5.14)

At the point u = 1, all the Hu
~w = H~w(1 − u) vanish, as does lnu = −Hu

1 , so we see that

eq. (5.14) becomes

Ω(2)(1, 1, 1) = −6 ζ4 , (5.15)

– 43 –



J
H
E
P
1
2
(
2
0
1
3
)
0
4
9

in agreement with the explicit −6ζ4 in eq. (5.12). In order to take the limit u→ 0, we use

HPL identities to reexpress the function in terms of HPLs with argument u instead of (1−u):

Ω(2)(u, u, 1) =
1

4
ln4 u+H1(u) ln

3 u+

(

−2H2(u) +
1

2
(H1(u))

2 + ζ2

)

ln2 u

+

(

4(H3(u)−H2,1(u) + ζ3)−
1

3
(H1(u))

3 + 2ζ2H1(u)

)

lnu

− 6H4(u) + 2H3,1(u) + 2H2,1,1(u) + 2(H2(u))
2 +H2(u)(H1(u))

2

− 2(H3(u) +H2,1(u)− 2ζ3)H1(u)− ζ2(4H2(u) + (H1(u))
2) +

5

2
ζ4 .

(5.16)

In the limit u → 0, the H~w(u) vanish, leaving only the zeta values and powers of lnu,

which are in complete agreement with eq. (5.10). In particular, the coefficient of ζ4 agrees,

and this provides a generic method to determine such constants.

In this example, we inspected the (u, u, 1) line, whose u→ 0 limit matches the S → 0

limit of the T → 0 expansion. One can also use the (1, v, v) line in exactly the same way;

its v → 0 limit matches the S → ∞ limit of the T → 0 expansion.

Continuing on in this fashion, we build up the near-collinear expansions through

order T 2 for all of the functions in the hexagon basis, and ultimately for R
(3)
6 itself. The

expansions are rather lengthy, but we present them in a computer-readable file attached

to this document.

5.3 Fixing most of the parameters

In section 4.3 we constructed an ansatz (4.48) for R
(3)
6 that contained 13 undetermined

rational parameters, after imposing mathematical consistency and extra-purity of Rep.

Two of the parameters affect the symbol: α1 and α2. (They could have been fixed using a

dual supersymmetry anomaly equation [39].) The remaining 11 parameters ci we refer to

as “beyond-the-symbol” because they accompany functions (or constants) with Riemann

ζ value prefactors. Even before we compare to the OPE expansion, the requirement

that R
(3)
6 vanish at order T 0 in the collinear limit is already a powerful constraint. It

represents 11 separate conditions when it is organized according to powers of lnT , lnS2

and H~w(−S2), as well as the Riemann ζ values. (There is no dependence on F at the

leading power-law order.) The 11 conditions lead to two surviving free parameters. They

can be chosen as α2 and c9.

Within Rep, the coefficient c9 multiplies ζ2Ω
(2)(u, v, w), as seen from eq. (4.49). How-

ever, after summing over permutations, imposing vanishing in the collinear limit, and using

eq. (2.14), c9 is found to multiply ζ2R
(2)
6 . It is clear that c9 cannot be fixed at this stage

(vanishing at order T 0) because the two-loop remainder function vanishes in all collinear

limits. Furthermore, its leading discontinuity is of the form Tm(lnT ), which is subleading

with respect to the three-loop leading discontinuity, terms of the form Tm(lnT )2. It is

rather remarkable that there is only one other ambiguity, α2, at this stage.

The fact that α1 can be fixed at the order T 0 stage was anticipated in ref. [33]. There

the symbol multiplying α1 was extended to a full function, called f1. It was observed that

the collinear limit of f1, while vanishing at symbol level, did not vanish at function level,
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and the limit contained a divergence proportional to ζ2 lnT times a particular function of

S2. It was argued that this divergence should cancel against contributions from completing

the αi-independent terms in the symbol into a function. Now that we have performed this

step, we can fix the value of α1. Indeed when we examine the ζ2 lnT terms in the collinear

limit of the full R
(3)
6 ansatz, we obtain α1 = −3/8, in agreement with refs. [39, 41].

5.4 Comparison to flux tube OPE results

In order to fix α2 and c9, as well as obtain many additional consistency checks, we examine

the expansion of R
(3)
6 to order T and T 2, and compare with the flux tube OPE results of

BSV.

BSV formulate scattering amplitudes in planar N = 4 super-Yang-Mills theory, or

rather the associated polygonal Wilson loops, in terms of pentagon transitions. The pen-

tagon transitions map flux tube excitations on one edge of a light-like pentagon, to exci-

tations on another, non-adjacent edge. They have found that the consistency conditions

obeyed by the pentagon transitions can be solved in terms of factorizable S matrices for

two-dimensional scattering of the flux tube excitations. These S matrices can in turn be

determined nonperturbatively for any value of the coupling, as well as expanded in per-

turbation theory in order to compare with perturbative results [41, 42]. The lowest twist

excitations dominate the near-collinear or OPE limit τ → ∞ or T → 0. The twist n ex-

citations first appear at O(Tn). In particular, the O(T 1) term comes only from a gluonic

twist-one excitation, whereas at O(T 2) there can be contributions of pairs of gluons, gluonic

bound states, and pairs of scalar or fermionic excitations. As mentioned above, BSV have

determined the full order T 1 behavior [41], and an unpublished analysis gives the T 2F 2 or

T 2F−2 terms, plus the expansion of the T 2F 0 terms around S = 0 through S10 [43].

BSV consider a particular ratio of Wilson loops: the basic hexagonWilson loop, divided

by two pentagons, and then multiplied back by a box (square). The pentagons and box

combine to cancel off all of the cusp divergences of the hexagon, leading to a finite, dual

conformally invariant ratio. We compute the remainder function, which can be expressed

as the hexagon Wilson loop divided by the BDS ansatz [22] for Wilson loops. To relate the

two formulations, we need to evaluate the logarithm of the BDS ansatz for the hexagon

configuration, subtract the analogous evaluation for the two pentagons, and add back the

one for the box. The pentagon and box kinematics are determined from the hexagon by

intersecting a light-like line from a hexagon vertex with an edge on the opposite side of the

hexagon [41]. For example, if we have lightlike momenta ki, i = 1, 2, . . . , 6 for the hexagon,

then one pentagon is found by replacing three of the momenta, say k4, k5, k6, with two

light-like momenta, say k′4 and k′5, having the same sum. Also, one of the new momenta

has to be parallel to one of the three replaced momenta:

k′4 + k′5 = k4 + k5 + k6 , k′4 = ξ′k4 . (5.17)

The requirement that k′5 is a null vector implies that ξ′ = s123/(s123 − s56), where sij =

(ki + kj)
2, sijm = (ki + kj + km)2. The five (primed) kinematic variables of the pentagon
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are then given in terms of the (unprimed) hexagon variables by

s′12 = s12 , s′23 = s23 , s′34 =
s34s123
s123 − s56

, s′45 = s123 , s′51 =
s123s234 − s23s56

s123 − s56
.

(5.18)

The other pentagon replaces k1, k2, k3 with k′′1 and k′′2 and has k′1 parallel to k1, which

leads to its kinematic variables being given by

s′′12 = s123 , s′′23 =
s123s234 − s23s56

s123 − s23
, s′′34 = s45 , s′′45 = s56 , s′′51 =

s61s123
s123 − s23

.

(5.19)

Finally, for the box Wilson loop one makes both replacements simultaneously; as a result,

its kinematic invariants are given by

s′′′12 = s123 , s′′′23 =
s123(s123s234 − s23s56)

(s123 − s23)(s123 − s56)
. (5.20)

The correction term to go between the logarithm of the BSV Wilson loop and the

six-point remainder function requires the combination of one-loop normalized amplitudes

Vn (from the BDS formula [22]),

V6 − V ′
5 − V ′′

5 + V ′′′
4 , (5.21)

which is finite and dual conformal invariant. There is also a prefactor proportional to the

cusp anomalous dimension, whose expansion is known to all orders [89],

γK(a) = 4a− 4ζ2a
2 + 22ζ4a

3 − 4

(
219

8
ζ6 + (ζ3)

2

)

a4 + . . . , (5.22)

where a = g2YMNc/(32π
2) = λ/(32π2). Including the proper prefactor, we obtain the

following relation between the two observables,

ln
[

1 +Whex(a/2)
]

= R6(a) +
γK(a)

8
X(u, v, w) , (5.23)

where

X(u, v, w) = −Hu
2 −Hv

2 −Hw
2 − ln

(
uv

w(1− v)

)

ln(1− v)− lnu lnw + 2ζ2 . (5.24)

Here Whex is BSV’s observable (they use the expansion parameter g2 = λ/(16π2) = a/2)

and R6 is the remainder function.

In the near-collinear limit, the correction function X(u, v, w) becomes,

X(u, v, w) = 2T cosφ

(
H1

S
+ S (H1 + L)

)

+ T 2

[

(1− 2 cos2 φ)

(
H1

S2
+ S2 (H1 + L)

)

+ 2(H1 + L)

]

+ O(T 3) .

(5.25)

Next we apply this relation in the near-collinear limit, first at order T 1. We find that the

T 1 ln2 T terms from BSV’s formula match perfectly the ones we obtain from our expression
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for R
(3)
6 . The T 1 lnT terms also match, given one linear relation between α2 and the

coefficient of ζ2R
(2)
6 . Finally, the T 1 ln0 T terms match if we fix α2 = 7/32, which is the

last constant to be fixed. The value of α2 is in agreement with refs. [39, 41]. The agreement

with ref. [41] (BSV) is no surprise, because both are based on comparing the near-collinear

limit of R
(3)
6 with the same OPE results, BSV at symbol level and here at function level.

Here we give the formula for the leading, order T term in the near-collinear limit of

R
(3)
6 , after fixing all parameters as just described:

R
(3)
6 =

T

S
cosφ

{

ln2 T

[

2

3
H3

1 +H2
1 (L+ 2) +H1

(

1

4
L2 + 2L+

1

2
ζ2 + 3

)

−H3 +
1

2
H2(L− 1)

]

− lnT

[

1

2
H4

1 +H3
1 (L+ 2) +H2

1

(

1

4
L2 + 3L+

3

2
ζ2 + 5

)

+H1

(

1

2
L2 + (H2 + 2ζ2 + 5)L

− ζ3 + 3ζ2 + 9

)

+
1

2
(H3 − 2H2,1)(L+ 1) +

1

2
H2(L− 1)

]

+
1

10
H5

1 +
1

4
H4

1 (L+ 2) +
1

12
H3

1 (L
2 + 12L+ 6ζ2 + 20) +

1

4
H2

1

(

L2 + 2(H2 + 2ζ2 + 5)L

− 2ζ3 + 6ζ2 + 18
)

+
1

8
H1

[

8(H4 −H3,1) + 2H2
2 + (H2 + ζ2 + 3)L2 +

(

8(H2 −H2,1) + 4ζ3

+ 16ζ2 + 36
)

L+ 2ζ2(H2 + 9)− 39ζ4 − 8ζ3 + 72
]

− 1

4
H2,1L

2 +
1

8

(

−6H4 + 8H2,1,1 +H2
2

+ 2H3 − 12H2,1 + 2(ζ2 + 2)H2

)

L+
1

8
H2

2 − 1

4
H2(2H3 + 4H2,1 + 2ζ3 + ζ2)−

1

4
(2ζ2 − 3)H3

− 1

2
(ζ2 + 1)H2,1 +

9

2
H5 +H4,1 +H3,2 + 6H3,1,1 + 2H2,2,1 +

3

4
H4 −H2,1,1

}

+

(

S → 1

S

)

+ O(T 2) .

(5.26)

The T 2 terms are presented in an attached, computer-readable file. The T 2 terms

match perfectly with OPE results provided to us by BSV [43], and at this order there are

no free parameters in the comparison. This provides a very nice consistency check on two

rather different approaches.

Recall that we imposed an extra-pure condition on the terms in eq. (4.49) that we added

to the ansatz for R
(3)
6 . We can ask what would happen if we relaxed this assumption. To

do so we consider adding to the solution that we found a complete set of beyond-the-

symbol terms. Imposing total symmetry, there are 2 weight-6 constants (ζ6 and (ζ3)
2),

and 2 weight-5 constants (ζ5 and ζ2ζ3) multiplying lnuvw. Multiplying the zeta values

ζ4, ζ3 and ζ2 there are respectively 3, 7 and 18 symmetric functions, for a total of 32 free

parameters. Imposing vanishing of these additional terms at order T 0 fixes all but 5 of

the 32 parameters to be zero. We used constraints from the multi-Regge limit (see the

next section) to remove 4 of the 5 remaining parameters. Finally, the order T 1 term in

the near-collinear limit fixes the last parameter to zero. We conclude that there are no

additional ambiguities in R
(3)
6 associated with relaxing the extra-purity assumption.

6 Multi-Regge limits

The multi-Regge or MRK limit of n-gluon scattering is a 2 → (n − 2) scattering process

in which the (n − 2) outgoing gluons are strongly ordered in rapidity. It generalizes the

Regge limit of 2 → 2 scattering with large center-of-mass energy at fixed momentum
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transfer, s ≫ t. Here we are interested in the case of 2 → 4 gluon scattering, for which

the MRK limit means that two of the outgoing gluons are emitted at high energy, almost

parallel to the incoming gluons. The other two gluons are also typically emitted at small

angles, but they are well-separated in rapidity from each other and from the leading two

gluons, giving them smaller energies.

The strong ordering in rapidity for the 2 → 4 process leads to the following strong

ordering of momentum invariants:

s12 ≫ s345, s123 ≫ s34, s45, s56 ≫ s23, s61, s234 . (6.1)

In this limit, the cross ratio u = s12s45/(s123s345) approaches one. The other two cross

ratios vanish,

u→ 1, v → 0, ŵ → 0. (6.2)

In this section, we denote the original cross ratio w by ŵ, in order to avoid confusion with

another variable which we are about to introduce. The cross ratios v and ŵ vanish at the

same rate that u→ 1, so that the ratios x and y, defined by

x ≡ v

1− u
, y ≡ ŵ

1− u
, (6.3)

remain fixed. The variable y in eq. (6.3) should not be confused with the variables yi. In

the y variables, the multi-Regge limit consists of taking yu → 1, while yv and yw are left

arbitrary. (Their values in this limit are related to x and y by eq. (3.51).)

It is very convenient [49] to change variables from x and y to the complex-conjugate

pair (w,w∗) defined by,

x =
1

(1 + w)(1 + w∗)
, y =

ww∗

(1 + w)(1 + w∗)
. (6.4)

(Again, this variable w should not be confused with the original cross ratio called ŵ in this

section.) This change of variables rationalizes the y variables in the MRK limit, so that

yu → 1, yv → 1 + w∗

1 + w
, yw → (1 + w)w∗

w(1 + w∗)
. (6.5)

As an aside, we remark here that the variables T, S, F in eq. (5.1), used by BSV to

describe the near-collinear limit, are closely related to the variables w,w∗ introduced for

the MRK limit. To establish this correspondence, we consider (in this paragraph only) the

MRK limit u → 0, v → 0, ŵ → 1, which is related to eq. (6.2) by a cyclic permutation

ui → ui−1, yi → yi−1. This limit corresponds to the T → 0 limit in eq. (5.1) if we also send

S → 0 at the same rate, so that T/S is fixed. Let’s rewrite yu from eq. (5.1) as

yu =
1 + T

SF

1 + TF
S

(6.6)

and compare it with the limiting behavior of yv in eq. (6.5). (Comparing yu with yv is

required by the cyclic permutation of the ui and yi variables which we need for the two

limits to correspond.) If we let

w =
T

S
F , w∗ =

T

S

1

F
, (6.7)
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then yv in eq. (6.5) correctly matches eq. (6.6). If we start with the variables T, S, F in

eq. (5.1), insert the inverse relations to eq. (6.7),

T = S
√
ww∗, F =

√
w

w∗
, (6.8)

and then let S → 0 with w,w∗ fixed, we can check that all variables approach the values

appropriate for the multi-Regge limit u→ 0, v → 0, ŵ → 1. The cross-ratio ŵ approaches

unity as S vanishes, through the relation ŵ = (1 + S2|1 + w|2)−1. Finally, we note that

the MRK limit interpolates between three different limits: the collinear limit v → 0,

corresponding to |w|→ 0; the endpoint of the line (u, u, 1) with u → 0, corresponding to

w → −1; and a second collinear limit u→ 0, corresponding to |w|→ ∞.

Now we return to the u → 1 version of the MRK limit in eq. (6.2). If this limiting

behavior of the cross ratios is approached directly from the Euclidean region in which all

cross ratios are positive, we call it the EMRK limit (see also eq. (3.50)). In this limit, the

remainder function vanishes, as it does in the Euclidean collinear limit discussed in the

previous section. However, the physical region for 2 → 4 scattering is obtained by first

analytically continuing u → e−2πiu, then taking u → 1, v, ŵ → 0 as above. The analytic

continuation generates imaginary terms corresponding to the discontinuity of the function

in the u channel, which survive into the MRK limit; in fact they can be multiplied by

logarithmic singularities as u→ 1.

The general form of the remainder function at L loops in the MRK limit is

R
(L)
6 (1−u,w,w∗) = (2πi)

L−1∑

r=0

lnr(1−u)
[

g(L)r (w,w∗) + 2πih(L)r (w,w∗)
]

+O(1−u) , (6.9)

where the coefficient functions g
(L)
r (w,w∗) are referred to as the leading-log approximation

(LLA) for r = L − 1, next-to-LLA (NLLA) for r = L − 2, and so on. The coefficient

functions h
(L)
r (w,w∗) can be determined simply from the g

(L)
r , by using a crossing relation

from the 3 → 3 channel [50, 55].

The coefficient functions in this limit are built out of HPLs with arguments −w and

−w∗. Only special combinations of such HPLs are allowed, with good branch-cut behavior

in the (w,w∗) plane, corresponding to symbols whose first entries are limited to x and

y [55]. Such functions may be called single-valued harmonic polylogarithms (SVHPLs),

and were constructed by Brown [56].

Using a Fourier-Mellin transformation, Fadin, Lipatov, and Prygarin wrote an all-loop

expression for the MRK limit in a factorized form depending on two quantities, the BFKL

eigenvalue ω(ν, n) and the impact factor ΦReg(ν, n) [51]:

eR+iπδ|MRK= cosπωab + i
a

2

∞∑

n=−∞

(−1)n
( w

w∗

)n
2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν ΦReg(ν, n)

×
(

− 1

1− u

|1 + w|2
|w|

)ω(ν,n)

.

(6.10)
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Here

ωab =
1

8
γK(a) log|w|2 , (6.11)

δ =
1

8
γK(a) log

|w|2
|1 + w|4 , (6.12)

where the cusp anomalous dimension γK(a) is given in eq. (5.22).

By taking the MRK limit of the symbol of the three-loop remainder function, it was

possible to determine all of the coefficient functions g
(l)
r and h

(l)
r through three loops, up

to four undetermined rational numbers, d1, d2, γ
′ and γ′′, representing beyond-the-symbol

ambiguities [33]. (Two other parameters, c and γ′′′, could be fixed using consistency

between the MRK limits in 2 → 4 kinematics and in 3 → 3 kinematics.) One of these four

constants was fixed by Fadin and Lipatov [51], using a direct calculation of the NLLA

BFKL eigenvalue: γ′ = −9/2. The remaining three undetermined constants, d1, d2 and

γ′′, all appear in the NNLLA coefficient g
(3)
0 (w,w∗).

In ref. [55], the coefficient functions g
(3)
r (w,w∗) and h

(3)
r (w,w∗) that appear in the

MRK limit (6.9) of R
(3)
6 were expressed in terms of the SVHPLs defined in ref. [56]. More

specifically, they were rewritten in terms of particular linear combinations of SVHPLs,

denoted by L±
~w , that have definite eigenvalues under inversion of w and under its complex

conjugation. The coefficient function g
(3)
0 (w,w∗) then becomes [55]:

g
(3)
0 (w,w∗) =

27

8
L+
5 +

3

4
L+
3,1,1 −

1

2
L+
3 [L+

1 ]
2 − 15

32
L+
3 [L−

0 ]
2 − 1

8
L+
1 L

−
2,1 L

−
0

+
3

32
[L−

0 ]
2 [L+

1 ]
3+

19

384
L+
1 [L−

0 ]
4+

3

8
[L+

1 ]
2 ζ3−

5

32
[L−

0 ]
2 ζ3+

π2

96
[L+

1 ]
3

− π2

384
L+
1 [L−

0 ]
2 − 3

4
ζ5−

π2

6
γ′′

{

L+
3 −

1

6
[L+

1 ]
3− 1

8
[L−

0 ]
2 L+

1

}

+
1

4
d1 ζ3

{

[L+
1 ]

2− 1

4
[L−

0 ]
2

}

−π2

3
d2 L

+
1

{

[L+
1 ]

2− 1

4
[L−

0 ]
2

}

+
1

30
[L+

1 ]
5 .

(6.13)

In the remainder of this section we will describe how to extract the MRK limit of

the three-loop remainder function at the full function level. Comparing this limit with

eq. (6.13) (as well as the other g
(3)
r and h

(3)
r coefficient functions) will serve as a check

of our construction of R
(3)
6 , and it will also provide for us the remaining three-loop MRK

constants, d1, d2 and γ′′.

6.1 Method for taking the MRK limit

Let us begin by discussing a method for taking the multi-Regge limit of hexagon functions

in general, or of R
(3)
6 in particular, starting from an expression in terms of multiple poly-

logarithms. The first step is to send u → e−2πiu, i.e. to extract the monodromy around

u = 0. Owing to the non-linear relationship between the ui and the yi, eq. (2.11), it is

not immediately clear what the discontinuity looks like in the y variables. The correct

prescription turns out simply to be to take yu around 0. To see this, consider the ∆1,n−1

component of the coproduct, which can be written as,

∆1,n−1(F ) ≡ lnu⊗ uF + ln v ⊗ vF + lnw ⊗ wF . (6.14)
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There are only three terms, corresponding to the three possible first entries of the symbol.

Using the coproduct formulas in appendix A, it is straightforward to extract the

functions uF , vF , and wF for any given hexagon function. These functions capture

information about the discontinuities as each of the cross ratios is taken around zero. In

particular, since the monodromy operator acts on the first component of the coproduct,

we have (cf. eq. (3.34)),

∆1,n−1

[

Mu=0(F )
]

=
[

Mu=0(lnu)
]

⊗ uF

= (lnu− 2πi)⊗ uF .
(6.15)

Equation (6.15) is not quite sufficient to deduce Mu=0(F ). The obstruction comes from

the fact that all higher powers of (2πi) live in the kernel of ∆1,n−1. On the other hand,

these terms can be extracted from the other components of the coproduct: the (2πi)k

terms come from the piece of ∆k,n−k(F ) with lnk u in the first slot.

If we write eq. (6.14) in terms of the yi variables, we find,

∆1,n−1(F )=

[

G(0; yu)+G (1; yv)+G (1; yw)−G
(

1

yu
; yv

)

−G
(

1

yu
; yw

)]

⊗uF

+

[

G(0; yv)+G (1; yu)+G (1; yw)−G
(

1

yu
; yv

)

−G
(

1

yv
; yw

)]

⊗vF

+

[

G(0; yw)+G (1; yu)+G (1; yv)−G
(

1

yu
; yw

)

−G
(

1

yv
; yw

)]

⊗wF ,

(6.16)

where we have now assumed that we are working in Region I. Equation (6.16) indicates

that uF can be extracted uniquely from the terms with G(0; yu) in the first slot. Similarly,

the elements of the full coproduct with lnk u in the first slot are given exactly by the terms

with G(0; yu)
k in the first slot. Therefore the discontinuity around u = 0 is the same as the

discontinuity around yu = 0. Furthermore, because our basis GL
I exposes all logarithms

G(0; yu) (by exploiting the shuffle algebra), the only sources of such discontinuities are

powers of G(0; yu). As a result, we have a simple shortcut to obtain the monodromy

around u = 0,

Mu=0(F ) = F |G(0;yu)→G(0;yu)−2πi . (6.17)

The final step in obtaining the MRK limit is to take yu → 1. This limit is trivially

realized on functions in the basis GL
I because the only source of singularities is G(1; yu); all

other functions are finite as yu → 1. Writing the divergence in terms of ξ ≡ 1 − u, which

approaches 0 in this limit, we take

G(1; yu)
yu→1−−−→ ln ξ +G(1; yv) +G(1; yw)−G

(
1

yv
; yw

)

, (6.18)

and then set yu = 1 in all other terms.

The result of this procedure will be a polynomial in ln ξ whose coefficients are multiple

polylogarithms in the variables yv and yw. On the other hand, we know from general consid-
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erations that the coefficient functions should be SVHPLs. To translate the multiple polylog-

arithms into SVHPLs, we use the coproduct bootstrap of section 3.3, seeded by the weight-

one identities which follow from eq. (6.5) and from combining eqs. (3.51), (6.4) and (6.5),

1

|1 + w|2 =
yv(1− yw)

2

(1− yvyw)2
,

|w|2
|1 + w|2 =

yw(1− yv)
2

(1− yvyw)2
. (6.19)

We obtain,

L−
0 =ln|w|2 = −G(0; yv) +G(0, yw) + 2G(1; yv)− 2G(1; yw) ,

L+
1 =ln

|w|
|1+w|2 =

1

2
G(0; yv)+

1

2
G(0; yw)+G(1; yv) +G(1; yw)−2G

(
1

yv
; yw

)

,
(6.20)

and,

ln

(
1 + w

1 + w∗

)

= −G(0; yv) and ln
( w

w∗

)

= −G(0; yv)−G(0; yw) . (6.21)

Alternatively, we can extract the MRK limits of the hexagon functions iteratively in

the weight, by using their definitions in terms of differential equations. This procedure is

similar to that used in section 5 to find the collinear limits of the hexagon functions, in

that we expand the differential equations around the limiting region of u→ 1.

However, first we have to compute the discontinuities from letting u → e−2πiu in

the inhomogeneous (source) terms for the differential equations. For the lowest weight

non-HPL function, Φ̃6, the source terms are pure HPLs. For pure HPL functions we use

standard HPL identities to exchange the HPL argument (1−u) for argument u, and again

use the Lyndon basis so that the trailing index in the weight vector ~w in each H~w(u) is

1. In this new representation, the only discontinuities come from explicit factors of lnu,

which are simply replaced by lnu− 2πi under the analytic continuation. After performing

the analytic continuation, we take the MRK limit of the pure HPL functions.

Once these limits are known, we can integrate up the differential equations for the

non-HPL functions in much the same fashion that we did for the collinear limits, by using

a restricted ansatz built from powers of ln ξ and SVHPLs. The Jacobian factors needed

to transform from differential equations in (u, v, ŵ) to differential equations in the MRK

variables (ξ, w,w∗), are easily found to be:

∂F

∂ξ
= −∂F

∂u
+ x

∂F

∂v
+ y

∂F

∂w
,

∂F

∂w
=

ξ

w(1 + w)

[

−wx∂F
∂v

+ y
∂F

∂w

]

,

∂F

∂w∗
=

ξ

w∗(1 + w∗)

[

−w∗x
∂F

∂v
+ y

∂F

∂w

]

.

(6.22)

We compute the derivatives on the right-hand side of these relations using the formula

for ∂F/∂ui in terms of the coproduct components, eq. (4.3). We also implement the

transformation u → e−2πiu on the coproduct components, as described above for the

HPLs, and iteratively in the weight for the non-HPL hexagon functions. When we expand
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as ξ → 0, we drop all power-suppressed terms in ξ, keeping only polynomials in ln ξ. (In

∂F/∂ξ, we keep the derivatives of such expressions, i.e. terms of the form 1/ξ × lnk ξ.)

In our definition of the MRK limit, we include any surviving terms from the EMRK

limit. This does not matter for the remainder function, whose EMRK limit vanishes, but

the individual parity-even hexagon functions can have nonzero, and even singular, EMRK

limits.

6.2 Examples

We first consider the simplest non-HPL function, Φ̃6. Starting with the expression for Φ̃6

in Region I, eq. (3.56), we take the monodromy around u = 0, utilizing eq. (6.17),

Mu=0(Φ̃6)=2πi

[

−G
(

0,
1

yuyv
; yw

)

−G
(

0,
1

yv
; yw

)

+G

(

0,
1

yu
; yw

)

+G

(

0,
1

yu
; yv

)

+G (0, 1; yw)+G (0, 1; yv)−G (0, 1; yu)+G (0; yv)G (0; yw)+ζ2

]

.

(6.23)

Next, we take the limit yu → 1. There are no divergent factors, so we are free to set yu = 1

without first applying eq. (6.18). The result is,

Φ̃6|MRK=2πi

[

−2G

(

0,
1

yv
; yw

)

+2G (0, 1; yw)+2G (0, 1; yv)+G (0; yv)G (0; yw)+2ζ2

]

. (6.24)

To transform this expression into the SVHPL notation of ref. [55], we use the coproduct

bootstrap to derive an expression for the single independent SVHPL of weight two, the

Bloch-Wigner dilogarithm, L−
2 ,

∆1,1(L
−
2 )=∆1,1

(

Li2(−w)− Li2(−w∗) +
1

2
ln|w|2 ln 1 + w

1 + w∗

)

=
1

2
L−
0 ⊗

[

ln

(
1 + w

1 + w∗

)

− 1

2
ln
( w

w∗

)]

+
1

2
L+
1 ⊗ ln

( w

w∗

)

=∆1,1

(

G

(

0,
1

yv
; yw

)

−G (0, 1; yw)−G (0, 1; yv)−
1

2
G (0; yv)G (0; yw)

)

.

(6.25)

In the last line we used eqs. (6.20) and (6.21). Lifting eq. (6.25) from coproducts to

functions introduces one undetermined rational-number constant, proportional to ζ2. It is

easily fixed by specializing to the point yv = yw = 1, yielding,

L−
2 = G

(

0,
1

yv
; yw

)

−G (0, 1; yw)−G (0, 1; yv)−
1

2
G (0; yv)G (0; yw)− ζ2 , (6.26)

which, when compared to eq. (6.24), gives,

Φ̃6|MRK = −4πiL−
2 . (6.27)

Let us derive this result in a different way, using the method based on differential

equations. Like all parity-odd functions, Φ̃6 vanishes in the Euclidean MRK limit; however,

it survives in the MRK limit due to discontinuities in the function Ω(1) given in eq. (2.22),
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which appears on the right-hand side of the Φ̃6 differential equation (2.24). The MRK

limits of the three cyclic permutations of Ω(1) are given by

Ω(1)(u, v, ŵ)
∣
∣
∣MRK = 2πi ln|1 + w|2 ,

Ω(1)(v, ŵ, u)
∣
∣
∣MRK = 2πi ln ξ ,

Ω(1)(ŵ, u, v)
∣
∣
∣MRK = 2πi ln

|1 + w|2
|w|2 .

(6.28)

Inserting these values into eq. (2.24) for ∂Φ̃6/∂u and its cyclic permutations, and then

inserting those results into eq. (6.22), we find that

∂Φ̃6

∂ξ

∣
∣
∣
∣
ξ−1

= 0,

∂Φ̃6

∂w

∣
∣
∣
∣
ξ0

= 2πi

[

− ln|w|2
1 + w

+
ln|1 + w|2

w

]

,

∂Φ̃6

∂w∗

∣
∣
∣
∣
ξ0

= 2πi

[
ln|w|2
1 + w∗

− ln|1 + w|2
w∗

]

.

(6.29)

The first differential equation implies that there is no ln ξ term in the MRK limit of Φ̃6.

The second two differential equations imply that the MRK limit is proportional to the

Bloch-Wigner dilogarithm,

Φ̃6|MRK = −4πi

[

Li2(−w)− Li2(−w∗) +
1

2
ln|w|2 ln 1 + w

1 + w∗

]

= −4πiL−
2 .

(6.30)

Now that we have the MRK limit of Φ̃6, we can find the limiting behavior of all the

coproduct components of Ω(2) appearing in eq. (4.26), and perform the analogous expansion

of the differential equations in the MRK limit. For Ω(2)(u, v, ŵ) we obtain,

∂Ω(2)(u, v, ŵ)

∂ξ

∣
∣
∣
∣
ξ−1

=
2πi

ξ
ln|1 + w|2

[

− ln ξ +
1

2
ln|1 + w|2−πi

]

,

∂Ω(2)(u, v, ŵ)

∂w

∣
∣
∣
∣
ξ0

=
2πi

1 + w

[

−1

2
ln2

(
ξ

|1 + w|2
)

+
1

2
ln|w|2 ln|1 + w|2−L−

2 + ζ2

− πi ln

(
ξ

|1 + w|2
)]

,

(6.31)

plus the complex conjugate equation for ∂Ω(2)(u, v, ŵ)/∂w∗.

The solution to these differential equations can be expressed in terms of SVHPLs.

One can write an ansatz for the result as a linear combination of SVHPLs, and fix the

coefficients using the differential equations. One can also take the limit first at the level of

the symbol, matching to the symbols of the SVHPLs; then one only has to fix the smaller

set of beyond-the-symbol terms using the differential equations. The result is

Ω(2)(u, v, ŵ)|MRK=2πi

[
1

4
ln2 ξ (2L+

1 −L−
0 )+

1

8
ln ξ (2L+

1 −L−
0 )

2+
5

48
[L−

0 ]
3+

1

8
[L−

0 ]
2 L+

1
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+
1

4
L−
0 [L+

1 ]
2 +

1

6
[L+

1 ]
3 − L+

3 − 2L−
2,1 −

ζ2
2
(2L+

1 − L−
0 )− 2 ζ3

]

− (4π)2
[
1

4
ln ξ(2L+

1 − L−
0 ) +

1

16
(2L+

1 − L−
0 )

2

]

. (6.32)

In this case the constant term, proportional to ζ3, can be fixed by requiring vanishing in

the collinear-MRK corner where |w|2→ 0. The last set of terms, multiplying (4π)2, come

from a double discontinuity.

The MRK limit of Ω(2)(ŵ, u, v) is related by symmetry to that of Ω(2)(u, v, ŵ):

Ω(2)(ŵ, u, v)|MRK = Ω(2)(u, v, ŵ)|MRK(w → 1/w,w∗ → 1/w∗) . (6.33)

The final MRK limit of Ω(2) is,

Ω(2)(v, ŵ, u)|MRK=
1

4
L4
X−

(
1

8
[L−

0 ]
2−ζ2

)

L2
X+4 ζ3 LX+

1

64
[L−

0 ]
4+

1

4
ζ2 [L

−
0 ]

2+
5

2
ζ4

+ 2πi

[
1

3
L3
X−2

(
1

8
[L−

0 ]
2−ζ2

)

LX+
1

2
[L−

0 ]
2 L+

1 −2(L+
3 −ζ3)

]

,

(6.34)

where LX = ln ξ + L+
1 . Note that this orientation of Ω(2) has a nonvanishing (indeed,

singular) EMRK limit, i.e. even before analytically continuing into the Minkowski region

to pick up the imaginary part. On the other hand, there is no surviving double discontinuity

for this ordering of the arguments.

As our final (simple) example, we give the MRK limit of the totally symmetric, weight

five, parity-odd function G(u, v, ŵ). As was the case for Φ̃6, the limit of G is again propor-

tional to the Bloch-Wigner dilogarithm, but with an extra factor of ζ2 to account for the

higher transcendental weight of G:

G(u, v, ŵ)|MRK = 16πiζ2 L
−
2 . (6.35)

As usual for parity-odd functions, the EMRK limit vanishes. In this case the double

discontinuity also vanishes. In general the MRK limits of the parity-odd functions must

be odd under w ↔ w∗, which forbids any nontrivial constants of integration.

Continuing onward, we build up the MRK limits for all the remaining hexagon func-

tions. The results are attached to this document in a computer-readable format.

6.3 Fixing d1, d2, and γ′′

Using the MRK limit of all the hexagon functions appearing in eq. (4.48), we obtain the

MRK limit of R
(3)
6 . This is a powerful check of the function, although as mentioned above,

much of it is guaranteed by the limiting behavior of the symbol. In fact, there are only

three rational parameters to fix, d1, d2 and γ′′, and they all enter the coefficient of the

NNLLA imaginary part, g
(3)
0 (w,w∗), given in eq. (6.13). Inspecting the MRK limit of

R
(3)
6 , we find first of all perfect agreement with the functions h

(L)
r (w,w∗) entering the real

part. (These can be determined on general grounds using consistency between the 2 → 4

and 3 → 3 MRK limits.) We also agree perfectly with the imaginary part coefficients g
(3)
2

at LLA and g
(3)
1 at NLLA.
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Finally, we find for the NNLLA coefficient g
(3)
0 ,

g
(3)
0 (w,w∗)=

27

8
L+
5 +

3

4
L+
3,1,1 −

1

2
L+
3 [L+

1 ]
2 − 15

32
L+
3 [L−

0 ]
2 − 1

8
L+
1 L

−
2,1 L

−
0

+
3

32
[L−

0 ]
2 [L+

1 ]
3+

19

384
L+
1 [L−

0 ]
4+

1

30
[L+

1 ]
5+

1

2
[L+

1 ]
2 ζ3−

3

16
[L−

0 ]
2 ζ3

+
5π2

24
L+
3 − π2

48
L+
1 [L−

0 ]
2 − π2

18
[L+

1 ]
3 − 3

4
ζ5 .

(6.36)

Comparing this result with eq. (6.13) fixes the three previously undetermined rational

parameters, d1, d2, and γ
′′. We find

d1 =
1

2
, d2 =

3

32
, γ′′ = −5

4
. (6.37)

These three parameters were also the only ambiguities in the expression found in

ref. [55] for the two-loop (NNLLA) impact factor Φ
(2)
Reg(ν, n) defined in ref. [51]. Inserting

eq. (6.37) into that expression, we obtain,

Φ
(2)
Reg(ν, n) =

1

2

[

Φ
(1)
Reg(ν, n)

]2
− E(1)

ν,nEν,n +
1

8
[DνEν,n]

2 +
5

64
N2 (N2 + 4V 2)

− ζ2
4

(

2E2
ν,n +N2 + 6V 2

)

+
17

4
ζ4 .

(6.38)

Here Φ
(1)
Reg is the one-loop (NLLA) impact factor, and Eν,n and E

(1)
ν,n are the LLA and

NLLA BFKL eigenvalues [51, 55]. These functions all are combinations of polygamma (ψ)

functions and their derivatives, plus accompanying rational terms in ν and n. For example,

Eν,n = ψ

(

1 + iν +
|n|
2

)

+ ψ

(

1− iν +
|n|
2

)

− 2ψ(1)− 1

2

|n|
ν2 + n2

4

. (6.39)

Additional rational dependence on ν and n enters eq. (6.38) via the combinations

V ≡ iν

ν2 + |n|2

4

, N ≡ n

ν2 + |n|2

4

. (6.40)

We recall that the NNLLA BFKL eigenvalue E
(2)
ν,n also has been determined [55], up

to nine rational parameters, ai, i = 0, 1, 2, . . . , 8. These parameters enter the NNLLA

coefficient function g
(4)
1 (w,w∗). If the above exercise can be repeated at four loops, then it

will be possible to fix all of these parameters in the same way, and obtain an unambiguous

result for the NNLLA approximation to the MRK limit.

Finally, we ask whether we could have determined all coefficients from the collinear

vanishing of R
(3)
6 and the MRK limit alone, i.e. without using the near-collinear information

from BSV. The answer is yes, if we assume extra purity and if we also take the value of

α2 from ref. [39]. After imposing collinear vanishing, we have two parameters left: α2 and

the coefficient of ζ2R
(2)
6 . We can fix the latter coefficient in terms of α2 using the known

NLLA coefficient g
(1)
3 in the MRK limit. (The LLA coefficient g

(2)
3 automatically comes
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out correct.) Then we compare to the NNLLA coefficient g
(0)
3 . We find that we can fix d2

and γ′′ to the values in eq. (6.37), but that α2 is linked to d1 by the equation,

α2 =
d1
8

+
5

32
. (6.41)

If we do take α2 from ref. [39], then the near-collinear limit of our result for R
(3)
6 provides

an unambiguous test of BSV’s approach at three loops, through O(T 2).

7 Final formula for R
(3)
6 and its quantitative behavior

Now that we have used the (near) collinear limits to fix all undetermined constants in

eq. (4.48) for R
(3)
6 , we can write an expression for the full function, either in terms of

multiple polylogarithms or integral representations. We absorb the ciri(u, v) terms in

eq. (4.48) into Rep. In total we have,

R
(3)
6 (u, v, w) = Rep(u, v, w)+Rep(v, w, u)+Rep(w, u, v)+P6(u, v, w)+

413

24
ζ6+(ζ3)

2 . (7.1)

Expressions for R
(3)
6 in terms of multiple polylogarithms, valid in Regions I and II, are

too lengthy to present here, but they are attached to this document in computer-readable

format. To represent Rep as an integral, we make use of its extra purity and similarity to

Ω(2)(u, v, w), writing a formula similar to eq. (4.43):

Rep(u, v, w) = −
∫ u

1
dut

[Ru
ep + (u↔ v)](ut, vt, wt)

ut(ut − 1)
, (7.2)

with vt and wt as defined in eq. (4.44). Note that the function Qφ in eq. (4.43) is given,

via eq. (4.41), as −[Ω(2),u+(u↔ v)], the analogous combination of coproduct components

entering eq. (7.2). The function Ru
ep is defined in appendix C.

We may also define R
(3)
6 via the {5, 1} component of its coproduct, which is easily

constructed from the corresponding coproducts of Rep in appendix C, and of the product

function P6. The general form of the {5, 1} component of the coproduct is,

∆5,1

(

R
(3)
6

)

= R
(3),u
6 ⊗ lnu+R

(3),v
6 ⊗ ln v +R

(3),w
6 ⊗ lnw

+R
(3),1−u
6 ⊗ ln(1−u)+R(3),1−v

6 ⊗ ln(1−v)+R(3),1−w
6 ⊗ ln(1−w)

+R
(3),yu
6 ⊗ ln yu +R

(3),yv
6 ⊗ ln yv +R

(3),yw
6 ⊗ ln yw .

(7.3)

Many of the elements are related to each other, e.g. by the total symmetry of R
(3)
6 :

R
(3),1−u
6 = −R(3),u

6 , R
(3),1−v
6 = −R(3),v

6 , R
(3),1−w
6 = −R(3),w

6 ,

R
(3),v
6 (u, v, w) = R

(3),u
6 (v, w, u) , R

(3),w
6 (u, v, w) = R

(3),u
6 (w, u, v) ,

R
(3),yv
6 (u, v, w) = R

(3),yu
6 (v, w, u) , R

(3),yw
6 (u, v, w) = R

(3),yu
6 (w, u, v) .

(7.4)

– 57 –



J
H
E
P
1
2
(
2
0
1
3
)
0
4
9

The two independent functions may be written as,

R
(3),yu
6 =

1

32

{

−4
(

H1(u, v, w) +H1(u,w, v)
)

− 2H1(v, u, w)

+
3

2

(

J1(u, v, w) + J1(v, w, u) + J1(w, u, v)
)

− 4

[

Hu
2 +H

v
2+H

w
2 +

1

2

(

ln2 u+ln2 v+ln2w
)

−9 ζ2

]

Φ̃6(u, v, w)

}

,

(7.5)

and

R
(3),u
6 =

1

32

[

A(u, v, w) +A(u,w, v)
]

, (7.6)

where

A = M1(u, v, w)−M1(w, u, v) +
32

3

(

Qep(v, w, u)−Qep(v, u, w)
)

+ (4 lnu− ln v + lnw) Ω(2)(u, v, w) + (lnu+ ln v) Ω(2)(v, w, u)

+ 24Hu
5 − 14Hu

4,1 +
5

2
Hu

3,2 + 42Hu
3,1,1 +

13

2
Hu

2,2,1 − 36Hu
2,1,1,1 +Hu

2

[

−5Hu
3 +

1

2
Hu

2,1 + 7ζ3

]

+ lnu

[

−14(Hu
4 − ζ4) + 19Hu

3,1 −
57

2
Hu

2,1,1 +
1

4
(Hu

2 )
2 +

7

4
ζ2H

u
2

]

+
1

2
ln2 u(Hu

3 − 12Hu
2,1 + 3ζ3)

+
1

4
ln3 u (Hu

2 − ζ2) + ζ2

(

33

4
Hu

3 +Hu
2,1

)

− 2Hv
4,1 −

5

2
Hv

3,2 + 30Hv
3,1,1 +

19

2
Hv

2,2,1 − 12Hv
2,1,1,1

+Hv
2

(

Hv
3 − 9

2
Hv

2,1 +
9

4
ζ2 ln v − 7ζ3

)

+ ln v

[

2Hv
4 + 5Hv

3,1 −
15

2
Hv

2,1,1 −
5

4
(Hv

2 )
2 + 6ζ4

]

− 1

2
ln2 v (Hv

3 + 4Hv
2,1 + 3ζ3)−

1

4
ln3 v (Hv

2 − ζ2)−
1

4
ζ2 (H

v
3 − 28Hv

2,1)

+
1

6

(

Hv
2 +

1

2
ln2 v

)(

−43Hu
3 + 41Hu

2,1 − 5 lnuHu
2 − 21

2
ln3 u

)

+
1

6

(

Hu
2 +

1

2
ln2 u

)(

−5Hv
3 − 17Hv

2,1 − 7 ln vHv
2 +

3

2
ln3 v

)

+ lnu
[

16Hv
4 − 4Hv

3,1 − 5(Hv
2 )

2 − 6 ln v(2Hv
3 −Hv

2,1) + 3 ln2 v(Hv
2 − 2ζ2) + 12ζ2H

v
2

]

+
1

2
ln2 u

[

4(Hv
3 +Hv

2,1) + ln vHv
2

]

+ ln v

[

2Hu
3,1 −

1

2
(Hu

2 )
2 + 2ζ2H

u
2

]

+ 2 ln2 v(Hu
2,1 + lnuHu

2 )

+ lnw

[

−6Hv
3,1 −

1

2
(Hv

2 )
2 − 2 ln v(2Hv

3 −Hv
2,1) + ln2 vHv

2 − 2ζ2(3H
v
2 + ln2 v)

]

+
1

2
ln2 w (4Hv

3 − ln vHv
2 ) +

1

2

(

Hv
2 +

1

2
ln2 v

)

(8Hw
2,1 + 4 lnwHw

2 − ln3 w)− 4 lnuHv
2H

w
2

− lnu lnw

[

4Hv
3 + 2Hv

2,1 +
3

2
lnu

(

Hv
2 +

1

2
ln2 v

)]

+ ln v lnw

[

−2Hu
2,1 −

1

2
ln vHu

2 − 2 lnu
(

Hu
2 + 2Hv

2 +
3

8
ln v lnw − 6ζ2

)

]

.

(7.7)

Since the {5, 1} component of the coproduct specifies all the first derivatives of R
(3)
6 ,

eqs. (7.5) and (7.6) should be supplemented by the value of R
(3)
6 at one point. For example,

the value at (u, v, w) = (1, 1, 1) will suffice (see below), or the constraint that it vanishes

in all collinear limits.

In the remainder of this section, we use the multiple polylogarithmic and integral

representations to obtain numerical values for R
(3)
6 for a variety of interesting contours and

surfaces within the positive octant of the (u, v, w) space. We also obtain compact formulae

for R
(3)
6 along specific lines through the space.

– 58 –



J
H
E
P
1
2
(
2
0
1
3
)
0
4
9

7.1 The line (u, u, 1)

On the line (u, u, 1), the two- and three-loop remainder functions can be expressed solely

in terms of HPLs of a single argument, 1− u. The two-loop function is,

R
(2)
6 (u, u, 1) = Hu

4 −Hu
3,1 + 3Hu

2,1,1 +Hu
1 (H

u
3 −Hu

2,1)−
1

2
(Hu

2 )
2 − (ζ2)

2 , (7.8)

while the three-loop function is,

R
(3)
6 (u, u, 1) = −3Hu

6 + 2Hu
5,1 − 9Hu

4,1,1 − 2Hu
3,2,1 + 6Hu

3,1,1,1 − 15Hu
2,1,1,1,1

− 1

4
(Hu

3 )
2 − 1

2
Hu

3 Hu
2,1 +

3

4
(Hu

2,1)
2 − 5

12
(Hu

2 )
3 +

1

2
Hu

2

[

3 (Hu
4 +Hu

2,1,1) +Hu
3,1

]

−Hu
1 (3Hu

5 − 2Hu
4,1 + 9Hu

3,1,1 + 2Hu
2,2,1 − 6Hu

2,1,1,1 −Hu
2 Hu

3 )

− 1

4
(Hu

1 )
2

[

3 (Hu
4 +Hu

2,1,1)− 5Hu
3,1 +

1

2
(Hu

2 )
2

]

− ζ2

[

Hu
4 +Hu

3,1 + 3Hu
2,1,1 +Hu

1 (Hu
3 +Hu

2,1)− (Hu
1 )

2 Hu
2 − 3

2
(Hu

2 )
2

]

− ζ4
[

(Hu
1 )

2 + 2Hu
2

]

+
413

24
ζ6 + (ζ3)

2 .

(7.9)

Setting u = 1 in the above formula leads to

R
(3)
6 (1, 1, 1) =

413

24
ζ6 + (ζ3)

2 . (7.10)

We remark that the four-loop cusp anomalous dimension in planar N = 4 SYM,

γ
(4)
K = −219

2
ζ6 − 4(ζ3)

2 , (7.11)

has a different value for the ratio of the ζ6 coefficient to the (ζ3)
2 coefficient.

The value of the two-loop remainder function at this same point is

R
(2)
6 (1, 1, 1) = −(ζ2)

2 = −5

2
ζ4 . (7.12)

The numerical value of the three-loop to two-loop ratio at the point (1, 1, 1) is:

R
(3)
6 (1, 1, 1)

R
(2)
6 (1, 1, 1)

= −7.004088513718 . . . . (7.13)

We will see that over large swaths of the positive octant, the ratio R
(3)
6 /R

(2)
6 does not stray

too far from −7.

We plot the function R
(3)
6 (u, u, 1) in figure 3. We also give the leading term in the

expansions of R
(2)
6 (u, u, 1) and R

(3)
6 (u, u, 1) around u = 0,

R
(2)
6 (u, u, 1)=u

[

−1

2
ln2 u+ 2 lnu+ ζ2 − 3

]

+O(u2) ,

R
(3)
6 (u, u, 1)=u

[

−1

4
ln3 u+

(

ζ2+
9

4

)

ln2 u−
(
5

2
ζ2+9

)

lnu− 11

2
ζ4−ζ3+

3

2
ζ2+15

]

+O(u2) .

(7.14)
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Figure 3. R
(3)
6 (u, u, 1) as a function of u.

Hence the ratio R
(3)
6 /R

(2)
6 diverges logarithmically as u→ 0 along this line:

R
(3)
6 (u, u, 1)

R
(2)
6 (u, u, 1)

∼ 1

2
lnu, as u→ 0. (7.15)

This limit captures a piece of the near-collinear limit T → 0, the case in which S → 0 at the

same rate, as discussed in section 5 near eq. (5.10). The fact that R
(3)
6 has one more power

of lnu than does R
(2)
6 is partly from its extra leading power of lnT (the leading singularity

behaves like (lnT )L−1), but also from an extra lnS2 factor in a subleading lnT term.

As u→ ∞, the leading behavior at two and three loops is,

R
(2)
6 (u, u, 1) = −27

4
ζ4 +

1

u

[
1

3
ln3 u+ ln2 u+ (ζ2 + 2) lnu+ ζ2 + 2

]

+O
(

1

u2

)

,

R
(3)
6 (u, u, 1) =

6097

96
ζ6 +

5

4
(ζ3)

2 +
1

u

[

− 1

10
ln5 u− 1

2
ln4 u− 1

3
(5ζ2 + 6) ln3 u

+

(
1

2
ζ3 − 5ζ2 − 6

)

ln2 u−
(
141

8
ζ4 − ζ3 + 10ζ2 + 12

)

lnu

− 2ζ5 + 2ζ2ζ3 −
141

8
ζ4 + ζ3 − 10ζ2 − 12

]

+O
(

1

u2

)

.

(7.16)

As u → ∞ along the line (u, u, 1), the two- and three-loop remainder functions, and thus

their ratio R
(3)
6 /R

(2)
6 , approach a constant. For the ratio it is:

R
(3)
6 (u, u, 1)

R
(2)
6 (u, u, 1)

∼ −
[
50

3

(ζ3)
2

π4
+

871

972
π2

]

= −9.09128803107 . . . , as u→ ∞. (7.17)
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Figure 4. R
(3)
6 /R

(2)
6 on the line (u, u, 1).

We plot the ratio R
(3)
6 /R

(2)
6 on the line (u, u, 1) in figure 4. The logarithmic scale for u

highlights how little the ratio varies over a broad range in u.

The line (u, u, 1) is special in that the remainder function is extra pure on it. That is,

applying the operator u(1− u) d/du returns a pure function for L = 2, 3:

u(1−u)dR
(2)
6 (u, u, 1)

du
=Hu

2,1 −Hu
3 ,

u(1−u)dR
(3)
6 (u, u, 1)

du
=3Hu

5 − 2Hu
4,1 + 9Hu

3,1,1 + 2Hu
2,2,1 − 6Hu

2,1,1,1 −Hu
2H

u
3

+Hu
1

[
3

2
(Hu

4 +H
u
2,1,1)−

5

2
Hu

3,1+
1

4
(Hu

2 )
2

]

+ζ2

[

Hu
3 +H

u
2,1−2Hu

1H
u
2

]

+ 2ζ4H
u
1 . (7.18)

The extra-pure property is related to the fact that the asymptotic behavior as u → ∞ is

merely a constant, with no lnu terms. Indeed, if one applies u(1− u) d/du to any positive

power of lnu, the result diverges at large u like u times a power of lnu, which is not the

limiting behavior of any combination of HPLs in Hu.

7.2 The line (1, 1, w)

We next consider the line (1, 1, w). As was the case for the line (u, u, 1), we can express

the two- and three-loop remainder functions on the line (1, 1, w) solely in terms of HPLs

of a single argument. However, in contrast to (u, u, 1), the expressions on the line (1, 1, w)

are not extra-pure functions of w.
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The two-loop result is,

R
(2)
6 (1, 1, w) =

1

2

[

Hw
4 −Hw

3,1 + 3Hw
2,1,1 −

1

4
(Hw

2 )
2 +Hw

1 (H
w
3 − 2Hw

2,1)

+
1

2
(Hw

2 − ζ2)(H
w
1 )

2 − 5ζ4

]

.

(7.19)

It is not extra pure on this line, because the quantity

w(1− w)
dR

(2)
6 (1, 1, w)

dw
=

1

4
(2− w)(2Hw

2,1 −Hw
1 H

w
2 )−

1

2
Hw

3 +
ζ2
2
(1− w)Hw

1 (7.20)

contains explicit factors of w.

The three-loop result is,

R
(3)
6 (1, 1, w) = −3

2
Hw

6 +Hw
5,1 −

9

2
Hw

4,1,1 −Hw
3,2,1 + 3Hw

3,1,1,1 −
15

2
Hw

2,1,1,1,1

− 1

8
Hw

3 (Hw
3 + 2Hw

2,1)+
3

8
(Hw

2,1)
2+

1

2
Hw

2

(

Hw
4 +Hw

3,1−
1

6
(Hw

2 )2
)

+Hw
1

[

−3

2
Hw

5 − 1

2
Hw

3,2−3Hw
3,1,1 −

1

2
Hw

2,2,1+
9

2
Hw

2,1,1,1+
1

2
Hw

2 Hw
3 − 1

4
Hw

2 Hw
2,1

+
1

8
Hw

1

(

−5Hw
4 + 5Hw

3,1 − 9Hw
2,1,1 + (Hw

2 )2 −Hw
1 (Hw

3 −Hw
2,1)

)

]

− 1

2
ζ2

[

Hw
4 +Hw

3,1 + 3Hw
2,1,1 − (Hw

2 )2 +Hw
1

(

Hw
3 − 2Hw

2,1 +
1

2
Hw

1 Hw
2

)]

+ ζ4

[

−Hw
2 +

17

8
(Hw

1 )2
]

+
413

24
ζ6 + (ζ3)

2 .

(7.21)

It is easy to check that it is also not extra pure. We plot the function R
(3)
6 (1, 1, w) in

figure 5.

At small w, the two- and three-loop remainder functions diverge logarithmically,

R
(2)
6 (1, 1, w) =

1

2
ζ3 lnw − 15

16
ζ4 +O(w) ,

R
(3)
6 (1, 1, w) =

7

32
ζ4 ln2w −

(
5

2
ζ5 +

3

4
ζ2 ζ3

)

lnw +
77

12
ζ6 +

1

2
(ζ3)

2 +O(w) .
(7.22)

At large w, they also diverge logarithmically,

R
(2)
6 (1, 1, w)=− 1

96
ln4w − 3

8
ζ2 ln2w +

ζ3
2
lnw − 69

16
ζ4 +O

(
1

w

)

,

R
(3)
6 (1, 1, w)=

1

960
ln6w+

ζ2
12

ln4w− ζ3
8

ln3w+5 ζ4 ln2w−
(
13

4
ζ5+2 ζ2 ζ3

)

lnw

+
1197

32
ζ6 +

9

8
(ζ3)

2 +O
(
1

w

)

.

(7.23)

As discussed in the previous subsection, the lack of extra purity on the line (1, 1, w) is

related to the logarithmic divergence in this asymptotic direction.
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Figure 5. R
(3)
6 (1, 1, w) as a function of w.

7.3 The line (u, u, u)

The symmetrical diagonal line (u, u, u) has the nice feature that the remainder function

at strong coupling can be written analytically. Using AdS/CFT to map the problem to a

minimal area one, and applying integrability, Alday, Gaiotto and Maldacena obtained the

strong-coupling result [64],

R
(∞)
6 (u, u, u) = −π

6
+
φ2

3π
+

3

8

[

ln2 u+ 2Li2(1− u)
]

− π2

12
, (7.24)

where φ = 3 cos−1(1/
√
4u). The extra constant term −π2/12 is needed in order for

R
(∞)
6 (u, v, w) to vanish properly in the collinear limits [90].2

In perturbation theory, the function R
(L)
6 (u, v, w) is less simple to represent on the

line (u, u, u) than on the lines (u, u, 1) and (1, 1, w). It cannot be written solely in terms

of HPLs with argument (1 − u). At two loops, using eq. (2.14), the only obstruction is

the function Ω(2)(u, u, u),

R
(2)
6 (u, u, u) =

3

4

[

Ω(2)(u, u, u) + 4Hu
4 − 2Hu

3,1 − 2 (Hu
2 )

2 + 2Hu
1 (2Hu

3 −Hu
2,1)

− 1

4
(Hu

1 )
4 − ζ2

(

2Hu
2 + (Hu

1 )
2
)

+
8

3
ζ4

]

.

(7.25)

One way to proceed is to convert the first-order partial differential equations for all the

hexagon functions of (u, v, w) into ordinary differential equations in u for the same functions

2We thank Pedro Vieira for providing us with this constant.
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evaluated on the line (u, u, u). The differential equation for the three-loop remainder

function itself is,
dR

(3)
6 (u, u, u)

du
=

3

32

{

1− u

u
√
∆

[

−10H1(u, u, u) +
9

2
J1(u, u, u)− 4Φ̃6(u, u, u)

(

3Hu
2 +

3

2
(Hu

1 )
2 − 9ζ2

)]

+
8

u(1− u)

[

−3

2
Hu

1 Ω(2)(u, u, u) + 6Hu
5 − 4Hu

4,1 + 18Hu
3,1,1 + 4Hu

2,2,1 − 12Hu
2,1,1,1

+Hu
2 (Hu

2,1 − 3Hu
3 )−Hu

1

(

Hu
4 + 4Hu

3,1 − 9Hu
2,1,1 −

11

4
(Hu

2 )
2

)

+ (Hu
1 )

2 (Hu
2,1 − 5Hu

3 ) + (Hu
1 )

3 Hu
2 +

5

8
(Hu

1 )
5

+ ζ2
(

2Hu
3 + 2Hu

2,1 − 3Hu
1 H

u
2 − (Hu

1 )
3
)

− 5ζ4 H
u
1

]}

,

(7.26)

with similar differential equations for Ω(2)(u, u, u), H1(u, u, u) and J1(u, u, u). Interestingly,

the parity-even weight-five functions M1 and Qep do not enter eq. (7.26).

We can solve the differential equations by using series expansions around three points:

u = 0, u = 1, and u = ∞. If we take enough terms in each expansion (of order 30–40 terms

suffices), then the ranges of validity of the expansions will overlap. At u = 1, ∆ vanishes,

and so do all the parity-odd functions, so we divide them by
√
∆ before series expanding

in (u − 1). These expansions, and those of the parity-even functions, are regular, with

no logarithmic coefficients, as expected for a point in the interior of the positive octant.

(Indeed, we can perform an analogous three-dimensional series expansion of all hexagon

functions of (u, v, w) about (1, 1, 1); this is actually a convenient way to fix the beyond-

the-symbol terms in the coproducts, by using consistency of the mixed partial derivatives.)

At u = 0, the series expansions also contain powers of lnu in their coefficients.

At u = ∞, there are two types of terms in the generic series expansion: a series

expansion in 1/u with coefficients that are powers of lnu, and a series expansion in odd

powers of 1/
√
u with an overall factor of π3, and coefficients that can contain powers

of lnu. The square-root behavior can be traced back to the appearance of factors of
√

∆(u, u, u) = (1− u)
√
1− 4u in the differential equations, such as eq. (7.26).

The constants of integration are easy to determine at u = 1 (where most of the hexagon

function are defined to be zero). They can be determined numerically (and sometimes

analytically) at u = 0 and u = ∞, either by evaluating the multiple polylogarithmic

expressions, or by matching the series expansions with the one around u = 1.

At small u, the series expansions at two and three loops have the following form:

R
(2)
6 (u, u, u)=

3

4
ζ2 ln

2 u+
17

16
ζ4+

3

4
u
[

ln3 u+ln2 u+(5ζ2−2) lnu+3ζ2−6
]

+O(u2),

R
(3)
6 (u, u, u) = −63

8
ζ4 ln

2 u− 1691

192
ζ6 +

1

4
(ζ3)

2

+
3

16
u
[

ln5 u+ ln4 u− 4(3ζ2 + 1) ln3 u+ 4(ζ3 − 2ζ2 − 3) ln2 u

− 2(97ζ4−4ζ3−4ζ2−12) lnu−60ζ4−8ζ3+120
]

+O(u2),

(7.27)

while the strong-coupling result is,

R
(∞)
6 (u, u, u) =

(
3

8
− 3

4π

)

ln2 u+
π2

24
− π

6
+ u

[(
3

4
− 3

π

)

lnu− 3

4

]

+O(u2). (7.28)
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Figure 6. Comparison between R
(2)
6 , R

(3)
6 , and the strong-coupling result on the line (u, u, u).

Note that the leading term at three loops diverges logarithmically, but only as ln2 u. Alday,

Gaiotto and Maldacena [64] observed that this property holds at two loops and at strong

coupling, and predicted that it should hold to all orders.

At large u, the two- and three-loop remainder functions behave as,

R
(2)
6 (u, u, u) = −5

8
ζ4 −

3π3

4u1/2
+

1

16u

[

2 ln3 u+ 15 ln2 u+ 6 (6ζ2 + 11) lnu+ 24ζ3 + 126ζ2 + 138
]

− π3

32u3/2
+O

(

1

u2

)

,

R
(3)
6 (u, u, u) = −29

48
ζ6 + ζ23 +

3π5

4u1/2

+
1

32u

[

− 3

10
ln5 u− 15

4
ln4 u− (22ζ2 + 33) ln3 u+ (12ζ3 − 159ζ2 − 207) ln2 u

− (747ζ4 − 48ζ3 + 690ζ2 + 846) lnu− 96ζ5 + 72ζ2ζ3 −
4263

2
ζ4

+ 96ζ3 − 1434ζ2 − 1710

]

+
π3

32u3/2
(−36 lnu+ 6ζ2 − 70) +O

(

1

u2

)

,

(7.29)

while the strong-coupling behavior is,

R
(∞)
6 (u, u, u) = −5π2

24
+

7π

12
− 3

2u1/2
+

3

4u

[

lnu+ 1 +
1

π

]

− 1

16u3/2
+O

(
1

u2

)

. (7.30)

In figure 6 we plot the two- and three-loop and strong-coupling remainder functions

on the line (u, u, u). In order to highlight the remarkably similar shapes of the three

functions for small and moderate values of u, we rescale R
(2)
6 by the constant factor (7.13),

so that it matches R
(3)
6 at u = 1. We perform a similar rescaling of the strong-coupling
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result, multiplying it by

R
(3)
6 (1, 1, 1)

R
(∞)
6 (1, 1, 1)

= −63.4116164 . . . , (7.31)

where R
(∞)
6 (1, 1, 1) = π/6 − π2/12. A necessary condition for the shapes to be so similar

is that the limiting behavior of the ratios as u→ 0 is almost the same as the ratios’ values

at u = 1. From eq. (7.27), the three-loop to two-loop ratio as u→ 0 is,

R
(3)
6 (u, u, u)

R
(2)
6 (u, u, u)

∼ −21

5
ζ2 = −6.908723 . . . , as u→ 0, (7.32)

which is within 1.5% of the ratio at (1, 1, 1), eq. (7.13). The three-loop to strong-coupling

ratio is,

R
(3)
6 (u, u, u)

R
(∞)
6 (u, u, u)

∼ − 21

1− 2/π
ζ4 = −62.548224 . . . , as u→ 0, (7.33)

which is again within 1.5% of the corresponding ratio (7.31) at u = 1.

The similarity of the perturbative and strong-coupling curves for small and moderate

u suggests that if a smooth extrapolation of the remainder function from weak to strong

coupling can be achieved, on the line (u, u, u) it will have a form that is almost independent

of u, for u < 1.

As mentioned in the introduction, the numerical similarity of two-loop and strong-

coupling remainder functions has been explored previously, starting with two-dimensional

kinematics at eight points [65, 66], and later for the general 2n-point case [69, 70]. The

rescaling of the remainder functions used to perform those comparisons is similar to

our rescaling in figure 6. For the six-point case studied in the present paper, ref. [72]

has compared the two-loop and strong-coupling rescaled remainder functions along a

curve which runs from (u, v, w) = (1/4, 1/4, 1/4) to (1, 0, 0), as well as analytically

in the expansion around (1/4, 1/4, 1/4) using conformal perturbation theory, and the

results are very similar. The curve runs from the ultraviolet to the infrared region of

the renormalization group flow associated with an integrable two-dimensional system.

It would be very interesting to perform this comparison with the three-loop remainder

function as well, but we will reserve this exercise for future work.

We return now to the line (u, u, u). Whereas all the curves in figure 6 are very similar

for u < 1, they diverge from each other at large u, although they each approach a constant

value as u → ∞. The three-to-two-loop ratio at very large u, from eq. (7.29), eventually

approaches −1.227 . . ., which is quite different from −7. The three-loop-to-strong-coupling

ratio approaches −3.713 . . ., which is very different from −63.4.

On the line (u, u, u), all three curves in figure 6 cross zero very close to u = 1/3. The

respective zero crossing points for L = 2, 3,∞ are:

u
(2)
0 = 0.33245163 . . . , u

(3)
0 = 0.3342763 . . . , u

(∞)
0 = 0.32737425 . . . . (7.34)

Might the zero crossings in perturbation theory somehow converge to the strong-coupling

value at large L? We will return to the issue of the sign of R
(L)
6 below.
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Another way to examine the progression of perturbation theory, and its possible ex-

trapolation to strong coupling, is to use the Wilson loop ratio adopted by BSV, which is

related to the remainder function by eq. (5.23). This relation holds for strong coupling as

well as weak coupling, since the cusp anomalous dimension is known exactly [89]. In the

near-collinear limit, considering the Wilson loop ratio has the advantage that the strong-

coupling OPE behaves sensibly. The remainder function differs from this ratio by the one-

loop function X(u, v, w), whose near-collinear limit does not resemble a strong-coupling

OPE at all. On the other hand, the Wilson loop ratio breaks all of the S3 permutation

symmetries of the remainder function. This is not an issue for the line (u, u, u), since none

of the S3 symmetries survive on this line. However, there is also the issue that X(u, u, u)

as determined from eq. (5.24) diverges logarithmically as u→ 1.

In figure 7 we plot the perturbative coefficients of ln[1 + Whex(a/2)], as well as the

strong-coupling value, restricting ourselves to the range 0 < u < 1 where X(u, u, u) remains

real. Now there is also a one-loop term, from multiplying X(u, u, u) by the cusp anomalous

dimension in eq. (5.23). We normalize the results in this case by dividing the coefficient at

a given loop order by the corresponding coefficient of the cusp anomalous dimension, and

similarly at strong coupling. Equivalently, from eq. (5.23), we plot

R
(L)
6 (u, u, u)

γ
(L)
K

+
1

8
X(u, u, u), (7.35)

for L = 1, 2, 3,∞.

The Wilson loop ratio diverges at both u = 0 and u = 1. The divergence at u = 1 comes

only from X and is controlled by the cusp anomalous dimension. This forces the curves

to converge in this region. The ln2 u divergence as u → 0 gets contributions from both X

and R6. The latter contributions are not proportional to the cusp anomalous dimensions,

causing all the curves to split apart at small u. Because X(u, u, u) crosses zero at u =

0.394 . . ., which is a bit different from the almost identical zero crossings in eq. (7.34) and in

figure 6, the addition of X in figure 7 splits the zero crossings apart a little. However, in the

bulk of the range, the perturbative coefficients do alternate in sign from one to three loops,

following the sign alternation of the cusp anomaly coefficients, and suggesting that a smooth

extrapolation from weak to strong coupling may be possible for this observable as well.

7.4 Planes of constant w

Having examined the remainder function on a few one-dimensional lines, we now turn to

its behavior on various two-dimensional surfaces. We will now restrict our analysis to the

unit cube, 0 ≤ u, v, w ≤ 1. To provide a general picture of how the remainder function

behaves throughout this region, we show in figure 8 the function evaluated on planes with

constant w, as a function of u and v. The plane w = 1 is in pink, w = 3
4 in purple, w = 1

2

in dark blue, and w = 1
4 in light blue. The function goes to zero for the collinear-EMRK

corner point (u, v, w) = (0, 0, 1) (the right corner of the top sheet). Except for this point,

R
(3)
6 (u, v, w) diverges as either u → 0 or v → 0. While the plot might suggest that the

function is monotonic in w within the unit cube, our analytic expression for the (1, 1, w)
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Figure 7. Comparison between the Wilson loop ratio at one to three loops, and the strong coupling

value, evaluated on the line (u, u, u).

line in section 7.2, and figure 5, shows that at the left corner, where u = v = 1, the function

does turn over closer to w = 0. (In fact, while it cannot be seen clearly from the plot, the

w = 1
4 surface actually intersects the w = 1

2 surface near this corner.)

7.5 The plane u + v − w = 1

Next we consider the plane u + v − w = 1. Its intersection with the unit cube is the

triangle bounded by the lines (1, v, v) and (w, 1, w), which are equivalent to the line

(u, u, 1) discussed in section 7.1, and by the collinear limit line (u, 1 − u, 0), on which the

remainder function vanishes.

In figure 9 we plot the ratio R
(3)
6 /R

(2)
6 on this triangle. The back edges can be identified

with the u < 1 portion of figure 4, although here they are plotted on a linear scale rather

than a logarithmic scale. The plot is symmetrical under u↔ v. In the bulk of the triangle,

the ratio does not stray far from −7. The only place it deviates is in the approach to the

collinear limit, the front edge of the triangle corresponding to T → 0 in the notation of

section 5. Both R
(2)
6 and R

(3)
6 vanish like T times powers of lnT as T → 0. However,

because the leading singularity behaves like (lnT )L−1 at L loops, R
(3)
6 contains an extra

power of lnT in its vanishing, and so the ratio diverges like lnT . Otherwise, the shapes of

the two functions agree remarkably well on this triangle.

7.6 The plane u + v + w = 1

The plane u+v+w = 1 intersects the unit cube along the three collinear lines. In figure 10

we give a contour plot of R
(3)
6 (u, v, w) on the equilateral triangle lying between these lines.
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Figure 8. The remainder function R
(3)
6 (u, v, w) on planes of constant w, plotted in u and v. The

top surface corresponds to w = 1, while lower surfaces correspond to w = 3
4 , w = 1

2 and w = 1
4 ,

respectively.

The plot has the full S3 symmetry of the triangle under permutations of (u, v, w). Because

R
(3)
6 has to vanish on the boundary, one might expect that it should not get too large in

the interior. Indeed, its furthest deviation from zero is slightly under −0.07, at the center

of the triangle.

From the discussion in section 7.3 and figure 6, we know that along the line (u, u, u) the

two- and three-loop remainder functions almost always have the opposite sign. The only

place they have the same sign on this line is for a very short interval u ∈ [0.3325, 0.3343]

(see eq. (7.34)). This interval happens to contain the point (1/3, 1/3, 1/3), which is the

intersection of the line (u, u, u) with the plane in figure 10, right at the center of the triangle.

In fact, throughout the entire unit cube, the only region where R
(2)
6 and R

(3)
6 have the same

sign is a very thin pouch-like region surrounding this triangle. In other words, the zero

surfaces of R
(2)
6 and R

(3)
6 are close to the plane u + v + w = 1, just slightly on opposite

sides of it in the two cases. (We do not plot R
(2)
6 on the triangle here, but it is easy to

verify that it is also uniformly negative in the region of figure 10. Its furthest deviation

from zero is about −0.0093, again occurring at the center of the triangle.)
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Figure 9. The ratio R
(3)
6 (u, v, w)/R

(2)
6 (u, v, w) on the plane u+ v−w=1, as a function of u and v.

7.7 The plane u = v

In figure 11 we plot R
(3)
6 (u, v, w) on the plane u = v, as a function of u and w inside the

unit cube. This plane crosses the surface ∆ = 0 on the curve w = (1 − 2u)2, plotted as

the dashed parabola. Hence it allows us to observe that R
(3)
6 is perfectly continuous across

the ∆ = 0 surface. We can also see that the function diverges as w goes to zero, and as

u and v go to zero, everywhere except for the two places that this plane intersects the

collinear limits, namely the points (u, v, w) = (1/2, 1/2, 0) and (u, v, w) = (0, 0, 1). The

line of intersection of the u = v plane and the u+ v +w = 1 plane passes through both of

these points, and figure 11 shows that R
(3)
6 is very close to zero on this line.

Based on considerations related to the positive Grassmannian [61], it was recently

conjectured [91] that the three-loop remainder function should have a uniform sign in the

“positive region”, or what we call Region I: the portion of the unit cube where ∆ > 0 and

u + v + w < 1, which corresponds to positive external kinematics in terms of momentum

twistors. On the surface u = v, this region lies in front of the parabola shown in figure 11. It

was already checked [91] that the two-loop remainder function has a uniform (positive) sign

in Region I. Figure 11 illustrates that the uniform sign behavior (with a negative sign) is

indeed true at three loops on the plane u = v. We have checked many other points with u 6=
v in Region I, andR

(3)
6 was negative for every point we checked, so the conjecture looks solid.

Furthermore, a uniform sign behavior for R
(2)
6 and R

(3)
6 also holds in the other regions

of the unit cube with ∆ > 0, namely Regions II, III, and IV, which are all equivalent under

S3 transformations of the cross ratios. In these regions, the overall signs are reversed:

R
(2)
6 is uniformly negative and R

(3)
6 is uniformly positive. For the plane u = v, figure 11
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Figure 10. Contour plot of R
(3)
6 (u, v, w) on the plane u + v + w = 1 and inside the unit cube.

The corners are labeled with their (u, v, w) values. Color indicates depth; each color corresponds

to roughly a range of 0.01. The function must vanish at the edges, each of which corresponds to a

collinear limit. Its minimum is slightly under −0.07.

shows the uniform positive sign of R
(3)
6 in Region II, which lies behind the parabola in the

upper-left portion of the figure.

Based on the two- and three-loop data, sign flips in R
(L)
6 only seem to occur where

∆ < 0, and in fact very close to u+ v + w = 1.

7.8 The plane u + v = 1

In figure 12 we plot R
(3)
6 on the plane u + v = 1. This plane provides information

complementary to that on the plane u = v, since the two planes intersect at right angles.

Like the u = v plane, this plane shows smooth behavior over the ∆ = 0 surface, which

intersects the plane u + v = 1 in the parabola w = 4u(1 − u). It also shows that the

function vanishes smoothly in the w → 0 collinear limit.

8 Conclusions

In this paper, we successfully applied a bootstrap, or set of consistency conditions, in

order to determine the three-loop remainder function R
(3)
6 (u, v, w) directly from a few

assumed analytic properties. We bypassed altogether the problem of constructing and

– 71 –



J
H
E
P
1
2
(
2
0
1
3
)
0
4
9

Figure 11. Plot of R
(3)
6 (u, v, w) on the plane u = v, as a function of u and w. The region where

R
(3)
6 is positive is shown in pink, while the negative region is blue. The border between these two

regions almost coincides with the intersection with the u+ v + w = 1 plane, indicated with a solid

line. The dashed parabola shows the intersection with the ∆ = 0 surface; inside the parabola

∆ < 0, while in the top-left and bottom-left corners ∆ > 0.

integrating multi-loop integrands. This work represents the completion of a program

begun in ref. [33], in which the symbol S(R(3)
6 ) was determined via a Wilson loop OPE

and certain conditions on the final entries, up to two undetermined rational numbers that

were fixed soon thereafter [39].

In order to promote the symbol to a function, we first had to characterize the space

of globally well-defined functions of three variables with the correct analytic properties,

which we call hexagon functions. Hexagon functions are in one-to-one correspondence

with the integrable symbols whose entries are drawn from the nine letters {ui, 1− ui, yi},
with the first entry restricted to {ui}. We specified the hexagon functions at function

level, iteratively in the transcendental weight, by using their coproduct structure. In

this approach, integrability of the symbol is promoted to the function-level constraint

of consistency of mixed partial derivatives. Additional constraints prevent branch-cuts

from appearing except at physical locations (ui = 0,∞). These requirements fix the

beyond-the-symbol terms in the {n−1, 1} coproduct components of the hexagon functions,

and hence they fix the hexagon functions themselves (up to the arbitrary addition of

lower-weight functions multiplied by zeta values). We found explicit representations of

all the hexagon functions through weight five, and of R
(3)
6 itself at weight six, in terms of

multiple polylogarithms whose arguments involve simple combinations of the y variables.

We also used the coproduct structure to obtain systems of coupled first-order partial

differential equations, which could be integrated numerically at generic values of the cross

ratios, or solved analytically in various limiting kinematic regions.
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Figure 12. R
(3)
6 (u, v, w) on the plane u+ v = 1, as a function of u and w.

Using our understanding of the space of hexagon functions, we constructed an ansatz

for the function R
(3)
6 containing 11 rational numbers, free parameters multiplying lower-

transcendentality hexagon functions. The vanishing of R
(3)
6 in the collinear limits fixed all

but one of these parameters. The last parameter was fixed using the near-collinear limits,

in particular the T 1 lnT terms which we obtained from the OPE and integrability-based

predictions of Basso, Sever and Vieira [41]. (The T 1 ln0 T terms are also needed to fix the

last symbol-level parameter [41] independently of ref. [39].)

With all parameters fixed, we could unambiguously extract further terms in the near-

collinear limit. We find perfect agreement with Basso, Sever and Vieira’s results through

order T 2 [43]. We have also evaluated the remainder function in the multi-Regge limit.

This limit provides additional consistency checks, and allows us to fix three undetermined

parameters in an expression [55] for the NNLLA impact parameter Φ
(2)
Reg(ν, n) in the

BFKL-factorized form of the remainder function [51].

Finally, we found simpler analytic representations for R
(3)
6 along particular lines in the

three-dimensional (u, v, w) space; we plotted the function along these and other lines, and

on some two-dimensional surfaces within the unit cube 0 ≤ ui ≤ 1. Throughout much of the

unit cube, and sometimes much further out from the origin, we found the approximate nu-

merical relation R
(3)
6 ≈ −7R

(2)
6 . The relation has only been observed to break down badly

in regions where the functions vanish: the collinear limits, and very near the plane u+ v+

w = 1. On the diagonal line (u, u, u), we observed that the two-loop, three-loop, and strong-

coupling [64] remainder functions are almost indistinguishable in shape for 0 < u < 1.

We have verified numerically a conjecture [91] that the remainder function should

have a uniform sign in the “positive” region {u, v, w > 0;∆ > 0;u + v + w < 1}. It also
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appears to have an (opposite) uniform sign in the complementary region {u, v, w > 0;∆ >

0;u + v + w > 1}. The only zero-crossings we have found for either R
(2)
6 or R

(3)
6 in the

positive octant are very close to the plane u+ v + w = 1, in a region where ∆ is negative.

Our work opens up a number of avenues for further research. A straightforward

application is to the NMHV ratio function. Knowledge of the complete space of hexagon

functions through weight five allowed us to construct the six-point MHV remainder

function at three loops. The components of the three-loop six-point NMHV ratio function

are also expected [34] to be weight-six hexagon functions. Therefore they should be

constructible just as R
(3)
6 was, provided that enough physical information can be supplied

to fix all the free parameters.

It is also straightforward in principle to push the remainder function to higher loops.

At four loops, the symbol of the remainder function was heavily constrained [55] by the

same information used at three loops [33], but of order 100 free parameters were left un-

determined. With the knowledge of the near-collinear limits provided by Basso, Sever and

Vieira [41, 43], those parameters can now all be fixed. Indeed, all the function-level ambigu-

ities can be fixed as well [44]. This progress will allow many of the numerical observations

made in this paper at three loops, to be explored at four loops in the near future. Going

beyond four loops may also be feasible, depending primarily on computational issues —

and provided that no inconsistencies arise related to failure of an underlying assumption.

It is remarkable that scattering amplitudes in planar N = 4 super-Yang-Mills —

polygonal (super) Wilson loops — are so heavily constrained by symmetries and other

analytic properties, that a full bootstrap at the integrated level is practical, at least in

perturbation theory. We have demonstrated this practicality explicitly for the six-point

MHV remainder function. The number of cross ratios increases linearly with the number

of points. More importantly, the number of letters in the symbol grows quite rapidly,

even at two loops [73], increasing the complexity of the problem. However, with enough

understanding of the relevant transcendental functions for more external legs [92, 93],

it may still be possible to implement a similar procedure in these cases as well. In the

longer term, the existence of near-collinear boundary conditions, for which there is now

a fully nonperturbative bootstrap based on the OPE and integrability [41], should inspire

the search for a fully nonperturbative formulation that also penetrates the interior of the

kinematical phase space for particle scattering.
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A Multiple polylogarithms and the coproduct

A.1 Multiple polylogarithms

Multiple polylogarithms are a general class of multi-variable iterated integrals, of which

logarithms, polylogarithms, harmonic polylogarithms, and various other iterated integrals

are special cases. They are defined recursively by G(z) = 1, and,

G(a1, . . . , an; z) =

∫ z

0

dt

t− a1
G(a2, . . . , an; t) , G(~0p; z) =

lnp z

p!
, (A.1)

where we have introduced the vector notation ~an = (a, . . . , a
︸ ︷︷ ︸

n

).

For special values of the weight vector (a1, . . . , an), multiple polylogarithms reduce to

simpler functions. For example, if a 6= 0,

G(~0p−1, a; z) = −Lip(z/a) , G(~0p,~aq; z) = (−1)qSp,q(z/a) , (A.2)

where Sp,q is the Nielsen polylogarithm. More generally, if ai ∈ {−1, 0, 1}, then

G(a1, . . . , an; z) = (−1)w1 Ha1,...,an(z) , (A.3)

where w1 is the number of ai equal to one.

Multiple polylogarithms are not all algebraically independent. One set of relations,

known as the shuffle relations, derive from the definition (A.1) in terms of iterated integrals,

G(w1; z)G(w2; z) =
∑

w∈w1Xw2

G(w; z) , (A.4)

where w1Xw2 is the set of mergers of the sequences w1 and w2 that preserve their

relative ordering. Radford’s theorem [79] allows one to solve all of the identities (A.4)

simultaneously in terms of a restricted subset of multiple polylogarithms {G(lw; z)},
where lw is a Lyndon word. The Lyndon words are those words w such that for every

decomposition into two words w = {u, v}, the left word is smaller (based on some ordering)

than the right, i.e. u < v.

One may choose whichever ordering is convenient; for our purposes, we choose an

ordering so that zero is smallest. In this case, no zeros appear on the right of a weight

vector, except in the special case of the logarithm, G(0; z) = ln z. Therefore, we may adopt

a Lyndon basis and assume without loss of generality that an 6= 0 in G(a1, . . . , an, z).

Referring to eq. (A.1), it is then possible to rescale all integration variables by a common

factor and obtain the following identity,

G(c a1, . . . , c an; c z) = G(a1, . . . , an; z) , an 6= 0, c 6= 0 . (A.5)

– 75 –



J
H
E
P
1
2
(
2
0
1
3
)
0
4
9

Specializing to the case c = 1/z, we see that the algebra of multiple polylogarithms is

spanned by ln z and G(a1, . . . , an; 1) where an 6= 0. This observation allows us to establish a

one-to-one correspondence between multiple polylogarithms and particular multiple nested

sums, provided those sums converge. In particular, if for |xi|< 1 we define,

Lim1,...,mk
(x1, . . . , xk) =

∑

n1<n2<···<nk

xn1
1 x

n2
2 · · ·xnk

k

nm1
1 nm2

2 · · ·nmk
k

, (A.6)

then,

Lim1,...,mk
(x1, . . . , xk) = (−1)kG

(

0, . . . , 0
︸ ︷︷ ︸

mk−1

,
1

xk
, . . . , 0, . . . , 0

︸ ︷︷ ︸

m1−1

,
1

x1 · · ·xk
; 1

)

. (A.7)

Equation (A.7) is easily established by expanding the measure dt/(t − ai) in eq. (A.1) in

a series and integrating. Furthermore, a convergent series expansion for G(a1, . . . , an; z)

exists if |z|≤ |ai| for all i; otherwise, the integral representation gives the proper analytic

continuation.

The relation to multiple sums endows the space of multiple polylogarithms with some

additional structure. In particular, the freedom to change summation variables in the

multiple sums allows one to establish stuffle or quasi-shuffle relations,

Li~m1
(~x)Li~m2

(~y) =
∑

~n

Li~n(~z) . (A.8)

The precise formula for ~n and ~z in terms of ~m1, ~m2, ~x, and ~y is rather cumbersome, but

can be written explicitly; see, e.g., ref. [94]. For small depth, however, the stuffle relations

are quite simple. For example,

Lia(x)Lib(y) = Lia,b(x, y) + Lib,a(y, x) + Lia+b(xy) . (A.9)

Beyond the shuffle and stuffle identities, there are additional relations between multiple

polylogarithms with transformed arguments and weight vectors. For example, one such

class of identities follows from Hölder convolution [94],

G(a1, . . . , an; 1) =

n∑

k=0

(−1)kG

(

1− ak, . . . , 1− a1; 1−
1

p

)

G

(

ak+1, . . . , an;
1

p

)

, (A.10)

which is valid for any nonzero p whenever a1 6= 1 and an 6= 0.

One way to study identities among multiple polylogarithms is via the symbol, which

is defined recursively as,

S(G(an−1, . . . , a1; an)) =

n−1∑

i=1

[

S(G(an−1, . . . , âi, . . . , a1; an))⊗ (ai − ai+1)

−S(G(an−1, . . . , âi, . . . , a1; an))⊗ (ai − ai−1)

]

, (A.11)

While the symbol has the nice property that all relations result from simple algebraic

manipulations, it has the drawback that its kernel contains all transcendental constants.

To obtain information about these constants, one needs some more powerful machinery.
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A.2 The Hopf algebra of multiple polylogarithms

When equipped with the shuffle product (A.4), the space of multiple polylogarithms forms

an algebra, graded by weight. In ref. [80], it was shown how to further equip the space

with a coproduct so that it forms a bialgebra, and, moreover, with an antipode so that

it forms a Hopf algebra. The weight of the multiple polylogarithms also defines a grading

on the Hopf algebra. In the following we will let A denote the Hopf algebra and An the

weight-n subspace, so that,

A =
∞⊕

n=0

An . (A.12)

The coproduct is defined most naturally on a slight variant of eq. (A.1),

I(a0; a1, . . . , an; an+1) =

∫ an+1

a0

dt

t− an
I(a0; a1, . . . , an−1; t) . (A.13)

The two definitions differ only in the ordering of indices and the choice of basepoint.

However, as shown in ref. [35], it is possible to reexpress any multiple polylogarithm with

a generic basepoint as a sum of terms with basepoint zero. This manipulation is trivial at

weight one, where we have,

I(a0; a1; a2) = I(0; a1; a2)− I(0; a1; a0) = G(a1; a2)−G(a1; a0) . (A.14)

To build up further such relations at higher weights, one must simply apply the lower-

weight identity to the integrand in eq. (A.13). In this way, it is easy to convert between

the two different notations for multiple polylogarithms.

The coproduct on multiple polylogarithms is given by [80],

∆(I(a0; a1, . . . , an; an+1)) =
∑

0<i1<···<ik=n

I(a0; ai1 , . . . , aik ; an+1)

⊗
[ k∏

p=0

I(aip ; aip+1, . . . , aip+1−1; aip+1)

]

. (A.15)

Strictly speaking, this definition is only valid when the ai are nonzero and distinct; other-

wise, one must introduce a regulator to avoid divergent integrals. We refer the reader to

refs. [35, 80] for these technical details.

It is straightforward to check a number of important properties of the coproduct. First,

it respects the grading of A in the following sense. If Gn ∈ An, then,

∆(Gn) =
∑

p+q=n

∆p,q(Gn) , (A.16)

where ∆p,q ∈ Ap ⊗Aq. Next, if we extend multiplication to tensor products so that it acts

on each component separately,

(a1 ⊗ a2) · (b1 ⊗ b2) = (a1 · b1)⊗ (a2 · b2) , (A.17)
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one can verify the compatibility of the product and the coproduct,

∆(a · b) = ∆(a) ·∆(b) . (A.18)

Finally, the coproduct is coassociative,

(id⊗∆)∆ = (∆⊗ id)∆ , (A.19)

meaning that one may iterate the coproduct in any order and always reach a unique result.

This last property allows one to unambiguously define components of the coproduct

corresponding to all integer compositions of the weight. Consider Gn ∈ An and a

particular integer composition of n, {w1, . . . , wk}, such that wi > 0 and
∑k

i=1wi = n. The

component of the coproduct corresponding to this composition, ∆w1,...,wk
(Gn), is defined

as the unique element of the (k− 1)-fold iterated coproduct in the space Aw1 ⊗ · · · ⊗Awk
.

For our purposes it is sufficient to consider k = 2, although other components have been

useful in other contexts.

Consider the weight-n function f (n)(z1, . . . , zm) of m complex variables z1, . . . , zm with

symbol,

S(f (n)) =
∑

i1,...,in

ci1,...,inφi1 ⊗ · · · ⊗ φin . (A.20)

The monodromy of f (n) around the point zk = z0 is encoded by the first entry of the

symbol,

S(Mzk=z0f
(n)) =

∑

i1,...,in

Mzk=z0(lnφi1) ci1,...,in φi2 ⊗ · · · ⊗ φin , (A.21)

where Mzk=z0(lnφi1) is defined in eq. (6.15), and we have ignored higher powers of (2πi)

(see section 6). Similarly, derivatives act on the last entry of the symbol,

S
(

∂

∂zk
f (n)

)

=
∑

i1,...,in

ci1,...,in φi1 ⊗ · · · ⊗ φin−1

(
∂

∂zk
lnφn

)

. (A.22)

In the same way, the monodromy operator acts only on the first component of the coproduct

and the derivative operator only on the last component,

∆
(

Mzk=z0f
(n)

)

= (Mzk=z0 ⊗ id) ∆(f (n)) ,

∆

(
∂

∂zk
f (n)

)

=

(

id⊗ ∂

∂zk

)

∆(f (n)) .
(A.23)

One may trivially extend the definition of the coproduct to include odd ζ values,

∆(ζ2n+1) = 1⊗ ζ2n+1 + ζ2n+1 ⊗ 1 (A.24)

but including even ζ values and factors of π is more subtle. It was argued in ref. [30, 31, 35]

that it is consistent to define,

∆(ζ2n) = ζ2n ⊗ 1 and ∆(π) = π ⊗ 1 . (A.25)

Equation (A.25) implies that powers of π are absent from all factors of the coproduct

except for the first one. Finally, we remark that the symbol may be recovered from the

maximally-iterated coproduct if we drop all factors of π,

S ≡ ∆1,...,1 mod π . (A.26)
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B Complete basis of hexagon functions through weight five

We present the basis of hexagon functions through weight five by providing their {n−1, 1}
coproduct components. For a hexagon function F of weight n, we write,

∆n−1,1(F ) ≡
3∑

i=1

F ui ⊗ lnui + F 1−ui ⊗ ln(1− ui) + F yi ⊗ ln yi , (B.1)

where the nine functions {F ui , F 1−ui , F yi} are of weight n− 1 and completely specify the

{n− 1, 1} component of the coproduct. They also specify all of the first derivatives of F ,

∂F

∂u

∣
∣
∣
∣
v,w

=
F u

u
−F 1−u

1−u +
1−u−v−w

u
√
∆

F yu+
1−u−v+w
(1−u)

√
∆
F yv+

1−u+v−w
(1−u)

√
∆
F yw ,

√
∆ yu

∂F

∂yu

∣
∣
∣
∣
yv ,yw

=(1−u)(1−v−w)F u−u(1−v)F v−u(1−w)Fw−u(1−v−w)F 1−u

+ uv F 1−v + uw F 1−w +
√
∆F yu .

(B.2)

The other derivatives can be obtained from the cyclic images of eq. (B.2). These derivatives,

in turn, define integral representations for the function. Generically, we define the function

F by (see eq. (4.10)),

F (u, v, w) = F (1, 1, 1)−
√
∆

∫ u

1

dut
vt[u(1− w) + (w − u)ut]

∂F

∂ ln yv
(ut, vt, wt) , (B.3)

where,

vt = 1− (1− v)ut(1− ut)

u(1− w) + (w − u)ut
, wt =

(1− u)wut
u(1− w) + (w − u)ut

. (B.4)

We choose F (1, 1, 1) = 0 for all functions except for the special case Ω(2)(1, 1, 1) = −6ζ4.

Other integral representations of the function also exist, as discussed in section 4.1.

We remark that the hexagon functions Φ̃6, G, N and O are totally symmetric under

exchange of all three arguments; Ω(2) is symmetric under exchange of its first two argu-

ments; F1 is symmetric under exchange of its last two arguments; and H1, J1 and K1 are

symmetric under exchange of their first and third arguments.

B.1 Φ̃6

The only parity-odd hexagon function of weight three is Φ̃6. We may write the {2, 1}
component of its coproduct as,

∆2,1(Φ̃6) = Φ̃u
6 ⊗ lnu+ Φ̃v

6 ⊗ ln v + Φ̃w
6 ⊗ lnw

+ Φ̃1−u
6 ⊗ ln(1− u) + Φ̃1−v

6 ⊗ ln(1− v) + Φ̃1−w
6 ⊗ ln(1− w)

+ Φ̃yu
6 ⊗ ln yu + Φ̃yv

6 ⊗ ln yv + Φ̃yw
6 ⊗ ln yw ,

(B.5)

where

Φ̃u
6 = Φ̃v

6 = Φ̃w
6 = Φ̃1−u

6 = Φ̃1−v
6 = Φ̃1−w

6 = 0 . (B.6)
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Furthermore, Φ̃6 is totally symmetric, which implies,

Φ̃yv
6 = Φ̃yu

6 (v, w, u) , and Φ̃yw
6 = Φ̃yu

6 (w, u, v) . (B.7)

The one independent function, Φ̃yu
6 , may be identified with a finite, four-dimensional one-

loop hexagon integral, Ω(1), which is parity even and of weight two,

Φ̃yu
6 = −Ω(1)(v, w, u) = −Hu

2 −Hv
2 −Hw

2 − ln v lnw + 2 ζ2 . (B.8)

B.2 Ω(2)

Up to cyclic permutations, the only non-HPL parity-even hexagon function of weight three

is Ω(2). We may write the {3, 1} component of its coproduct as,

∆3,1

(

Ω(2)
)

= Ω(2),u ⊗ lnu+Ω(2),v ⊗ ln v +Ω(2),w ⊗ lnw

+Ω(2),1−u ⊗ ln(1− u) + Ω(2),1−v ⊗ ln(1− v) + Ω(2),1−w ⊗ ln(1− w)

+ Ω(2),yu ⊗ ln yu +Ω(2),yv ⊗ ln yv +Ω(2),yw ⊗ ln yw ,

(B.9)

where the vanishing components are

Ω(2),w = Ω(2),1−w = Ω(2),yw = 0, (B.10)

and the nonvanishing components obey,

Ω(2),v = −Ω(2),1−v = −Ω(2),1−u(u↔ v) = Ω(2),u(u↔ v) and Ω(2),yv = Ω(2),yu . (B.11)

The two independent functions are

Ω(2),yu = −1

2
Φ̃6 , (B.12)

and

Ω(2),u = Hu
3 +Hv

2,1 −Hw
2,1 −

1

2
ln(uw/v)(Hu

2 +Hw
2 − 2 ζ2) +

1

2
ln(uv/w)Hv

2

+
1

2
lnu ln v ln(v/w) .

(B.13)

B.3 F1

Up to cyclic permutations, the only parity-odd function of weight four is F1. We may write

the {4, 1} component of its coproduct as,

∆3,1 (F1) = F u
1 ⊗ lnu+ F v

1 ⊗ ln v + Fw
1 ⊗ lnw

+ F 1−u
1 ⊗ ln(1− u) + F 1−v

1 ⊗ ln(1− v) + F 1−w
1 ⊗ ln(1− w)

+ F yu
1 ⊗ ln yu + F yv

1 ⊗ ln yv + F yw
1 ⊗ ln yw ,

(B.14)

where

F yw
1 = F yv

1 (v ↔ w) and F u
1 = F v

1 = Fw
1 = F 1−v

1 = F 1−w
1 = 0 . (B.15)
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Of the three independent functions, one is parity odd, F 1−u
1 = Φ̃6, and two are parity even,

F yu
1 = −2Hu

3 + 2 ζ3 (B.16)

and

F yv
1 = −2Hu

3 − 2Hw
2,1 + lnw

(

Hu
2 −Hv

2 −Hw
2 + 2 ζ2

)

+ 2 ζ3 . (B.17)

In ref. [34] the pure function entering the parity-odd part of the six-point NMHV ratio

function was determined to be

Ṽ =
1

8
(ṼX + f̃) , (B.18)

where ṼX + f̃ satisfied an integral of the form (4.10) with

∂(ṼX + f̃)

∂ ln yv
= Z̃(u, v, w)

= 2

[

Hu
3 −Hu

2,1 − lnu

(

Hu
2 +Hv

2 − 2ζ2 −
1

2
ln2w

)]

− (u↔ w) .

(B.19)

This integral can be expressed in terms of F1 and Φ̃6 as,

ṼX + f̃ = −F1(u, v, w) + F1(w, u, v) + ln(u/w) Φ̃6(u, v, w) . (B.20)

B.4 G

The {4, 1} component of the coproduct of the parity-odd weight five function G can be

written as,

∆4,1 (G) = Gu ⊗ lnu+Gv ⊗ ln v +Gw ⊗ lnw

+G1−u ⊗ ln(1− u) +G1−v ⊗ ln(1− v) +G1−w ⊗ ln(1− w)

+Gyu ⊗ ln yu +Gyv ⊗ ln yv +Gyw ⊗ ln yw ,

(B.21)

where

Gu = Gv = Gw = G1−u = G1−v = G1−w = 0 . (B.22)

Furthermore, G is totally symmetric. In particular,

Gyv(u, v, w) = Gyu(v, w, u) , and Gyw(u, v, w) = Gyu(w, u, v) . (B.23)

Therefore, it suffices to specify the single independent function, Gyu ,

Gyu =−2 (Hu
3,1+H

v
3,1+H

w
3,1−lnwHv

2,1−ln v Hw
2,1)+

1

2

(

Hu
2 +H

v
2+H

w
2 +ln v lnw

)2

− 1

2
ln2 v ln2w − 4 ζ4 .

(B.24)
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B.5 H1

The function H1(u, v, w) is parity-odd and has weight five. We may write the {4, 1} com-

ponent of its coproduct as,

∆4,1 (H1(u, v, w)) = Ĥu
1 ⊗ lnu+ Ĥv

1 ⊗ ln v + Ĥw
1 ⊗ lnw

+ Ĥ1−u
1 ⊗ ln(1−u)+Ĥ1−v

1 ⊗ ln(1−v)+Ĥ1−w
1 ⊗ ln(1−w)

+ Ĥyu
1 ⊗ ln yu + Ĥyv

1 ⊗ ln yv + Ĥyw
1 ⊗ ln yw ,

(B.25)

where we put a hat on Ĥu
1 , etc., to avoid confusion with the HPLs with argument 1 − u.

The independent functions are Ĥu
1 , Ĥ

yu
1 , and Ĥyv

1 ,

Ĥu
1 = −1

4

(

F1(u, v, w)− lnu Φ̃6

)

− (u↔ w) ,

Ĥyu
1 =

[
1

2
(Ω(2)(v, w, u) + Ω(2)(w, u, v)) +

1

2
(Hu

4 +Hv
4 )−

1

2
(Hu

3,1 −Hv
3,1)

− 3

2
(Hu

2,1,1 +Hv
2,1,1)−

(

lnu+
1

2
ln(w/v)

)

Hu
3 − 1

2
ln v Hv

3 − 1

2
ln(w/v)Hu

2,1

− 1

2
ln v Hv

2,1 −
1

4
((Hu

2 )
2 + (Hv

2 )
2) +

1

4

(

ln2 u− ln2(w/v)
)

Hu
2

− 1

8
ln2 u ln2(w/v)− ζ2

(

Hu
2 +

1

2
ln2 u

)

+ 3ζ4

]

+ (u↔ w) ,

Ĥyv
1 = Ω(2)(w, u, v) .

(B.26)

Of the remaining functions, two vanish, Ĥv
1 = Ĥ1−v

1 = 0, and the others are simply related,

Ĥ1−u
1 = Ĥw

1 = −Ĥ1−w
1 = −Ĥu

1 , and Ĥyw
1 = Ĥyu

1 . (B.27)

B.6 J1

We may write the {4, 1} component of the coproduct of the parity-odd weight-five function

J1(u, v, w) as,

∆4,1 (J1(u, v, w)) = Ju
1 ⊗ lnu+ Jv

1 ⊗ ln v + Jw
1 ⊗ lnw

+ J1−u
1 ⊗ ln(1− u) + J1−v

1 ⊗ ln(1− v) + J1−w
1 ⊗ ln(1− w)

+ Jyu
1 ⊗ ln yu + Jyv

1 ⊗ ln yv + Jyw
1 ⊗ ln yw ,

(B.28)

where the independent functions are Ju
1 , J

yu
1 , and Jyv

1 ,
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Ju
1 =

[

− F1(u, v, w) + lnu Φ̃6

]

− (u ↔ w) ,

Jyu
1 =

[

− Ω(2)(w, u, v)− 6Hu
4 + 2Hu

3,1 − 2Hv
3,1 + 2Hu

2,1,1 + 2 (2 lnu− ln(w/v))Hu
3 +

1

2
(Hv

2 )
2

+ 2 ln(w/v)Hu
2,1 − lnu ( lnu− 2 ln(w/v))Hu

2 − 1

2
ln2(u/w)Hv

2 − 1

3
ln v ln3 u

+
1

4
ln2 u ln2 w + ζ2

(

8Hu
2 + 2Hv

2 + ln2(u/w) + 4 lnu ln v
)

− 14 ζ4 + (u ↔ w)

]

− ln(u/w)

(

4Hv
2,1 + 2 ln v Hv

2 − 1

3
ln v ln2(u/w)

)

,

Jyv
1 =

[

− 4
(

Hu
4 −Hu

3,1 +Hv
3,1 +Hu

2,1,1 − lnu (Hu
3 −Hu

2,1)
)

− 2 ln2 uHu
2

+
(

Hv
2 − 2 lnu ln(u/w)

)

Hv
2 − 1

3
lnu lnw

(

ln2(u/w) +
1

2
lnu lnw

)

+ 8 ζ2

(

Hu
2 +

1

2
ln2 u

)

− 8 ζ4

]

+ (u ↔ w) .

(B.29)

Of the remaining functions, two vanish, Jv
1 = J1−v

1 = 0, and the others are simply related,

J1−u
1 = Jw

1 = −J1−w
1 = −Ju

1 , and Jyw
1 = Jyu

1 (u↔ w). (B.30)

B.7 K1

The final parity-odd function of weight five is K1(u, v, w). We may write the {4, 1} com-

ponent of its coproduct as,

∆4,1 (K1(u, v, w)) = Ku
1 ⊗ lnu+Kv

1 ⊗ ln v +Kw
1 ⊗ lnw

+K1−u
1 ⊗ ln(1− u) +K1−v

1 ⊗ ln(1− v) +K1−w
1 ⊗ ln(1− w)

+Kyu
1 ⊗ ln yu +Kyv

1 ⊗ ln yv +Kyw
1 ⊗ ln yw ,

(B.31)

where the independent functions are Ku
1 , K

yu
1 , and Kyv

1 ,
Ku

1 = −F1(w, u, v) + lnw Φ̃6 ,

Kyu
1 = −2 (Hu

3,1 +Hv
3,1 +Hw

3,1)− 2 ln(v/w)Hu
3 + 2 lnuHw

3 + 2 ln v Hw
2,1 + 2 ln(uw)Hv

2,1

+
1

2
(Hu

2 +Hv
2 +Hw

2 − 2 ζ2)
2 + ( lnu ln(v/w) + ln v lnw)(Hu

2 +Hv
2 − 2ζ2)

− ( lnu ln(vw)− ln v lnw)Hw
2 − lnu ln v ln2 w − 2 ζ3 ln(uw/v) + ζ4 ,

Kyv
1 =

[

− 4Hu
3,1 − 2 ln(u/w)Hu

3 + 2 ln(uw)Hu
2,1 + ln2 uHu

2

+ 2

(

Hu
2 +

1

2
ln2 u

)(

Hv
2 − 1

2
ln2 w − 2ζ2

)

+ 3ζ4

]

+ (u ↔ w) .

(B.32)

Of the remaining functions, two vanish, Kv
1 = K1−v

1 = 0, and the others are simply related,

K1−u
1 = −Ku

1 , Kw
1 = −K1−w

1 = Ku
1 (u↔ w) and Kyw

1 = Kyu
1 (u↔ w) . (B.33)

B.8 M1

The {4, 1} component of the coproduct of the parity-even weight-five function M1 can be

written as,

∆4,1 (M1) =Mu
1 ⊗ lnu+Mv

1 ⊗ ln v +Mw
1 ⊗ lnw

+M1−u
1 ⊗ ln(1− u) +M1−v

1 ⊗ ln(1− v) +M1−w
1 ⊗ ln(1− w)

+Myu
1 ⊗ ln yu +Myv

1 ⊗ ln yv +Myw
1 ⊗ ln yw ,

(B.34)
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where,

M1−v
1 = −Mw

1 , and Mu
1 =Mv

1 =M1−w
1 =Myu

1 =Myv
1 = 0 . (B.35)

The three independent functions consist of one parity-odd function,

Myw
1 = −F1(u, v, w), (B.36)

and two parity-even functions,

M1−u
1 =

[

− Ω(2)(u, v, w)+2 ln v
(

Hu
3 +H

u
2,1

)

+2 lnuHv
2,1−

(

Hu
2 −

1

2
ln2 u

)(

Hv
2+

1

2
ln2 v

)

+ lnu ln v
(

Hu
2 +Hv

2 +Hw
2 − 2ζ2

)

+ 2ζ3 lnw − (v ↔ w)

]

+Ω(2)(v, w, u) + 2Hw
4

+ 2Hw
3,1 − 6Hw

2,1,1 − 2 lnw
(

Hw
3 +Hw

2,1

)

−
(

Hv
2 +

1

2
ln2 v

)(

Hw
2 +

1

2
ln2w

)

− (Hw
2 )

2 +
(

ln2(v/w)− 4 ζ2

)

Hu
2 + 2 ζ3 lnu+ 6 ζ4 , (B.37)

and,

Mw
1 = −2

(

Hu
3,1 −Hv

3,1 −Hw
3,1 + ln(uv/w) (Hu

3 − ζ3) + lnwHv
2,1 + ln v Hw

2,1

)

− 1

2

(

Hu
2 −Hv

2 −Hw
2 − ln v lnw + 2ζ2

)2
+

1

2
ln2 v ln2w + 5ζ4 .

(B.38)

B.9 N

The {4, 1} component of the coproduct of the parity-even weight-five function N can be

written as,

∆4,1 (N) = Nu ⊗ lnu+Nv ⊗ ln v +Nw ⊗ lnw

+N1−u ⊗ ln(1− u) +N1−v ⊗ ln(1− v) +N1−w ⊗ ln(1− w)

+Nyu ⊗ ln yu +Nyv ⊗ ln yv +Nyw ⊗ ln yw ,

(B.39)

where,

N1−u = −Nu , N1−v = −Nv , N1−w = −Nw , and Nyu = Nyv = Nyw = 0 .

(B.40)

Furthermore, N is totally symmetric. In particular,

Nv(u, v, w) = Nu(v, w, u) , and Nw(u, v, w) = Nu(w, u, v) . (B.41)

Therefore, it suffices to specify the single independent function, Nu,

Nu =

[

Ω(2)(v, w, u) + 2Hv
4 + 2Hv

3,1 − 6Hv
2,1,1 − 2 ln v

(

Hv
3 +Hv

2,1

)

− (Hv
2 )

2

−
(

Hv
2 +

1

2
ln2 v

)(

Hw
2 +

1

2
ln2w

)

+ 6 ζ4

]

+ (v ↔ w) .

(B.42)
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B.10 O

The {4, 1} component of the coproduct of the parity-even weight-five function O can be

written as,

∆4,1 (O) = Ou ⊗ lnu+Ov ⊗ ln v +Ow ⊗ lnw

+O1−u ⊗ ln(1− u) +O1−v ⊗ ln(1− v) +O1−w ⊗ ln(1− w)

+Oyu ⊗ ln yu +Oyv ⊗ ln yv +Oyw ⊗ ln yw ,

(B.43)

where

Ou = Ov = Ow = Oyu = Oyv = Oyw = 0 . (B.44)

Furthermore, O is totally symmetric. In particular,

O1−v(u, v, w) = O1−u(v, w, u) , and O1−w(u, v, w) = O1−u(w, u, v) . (B.45)

Therefore, it suffices to specify the single independent function, O1−u,

O1−u =

[

− Ω(2)(u, v, w) + 2Hv
3,1 + (3 lnu− 2 lnw)Hv

2,1 + 2 ln v Hu
2,1 −

1

2
(Hv

2 )
2

+ lnu ln v (Hu
2 +Hv

2 ) + ln(u/v) lnwHv
2 +

1

2
ln2 v Hu

2 − 1

2
ln2wHv

2

+
1

4
ln2 u ln2 v + (v ↔ w)

]

+Ω(2)(v, w, u)− 2Hv
2 H

w
2 − ln v lnwHu

2

− 1

4
ln2 v ln2w + 2 ζ2

(

Hv
2 +Hw

2 − lnu ln(vw) + ln v lnw
)

− 6 ζ4 .

(B.46)

B.11 Qep

The {4, 1} component of the coproduct of the parity-even weight-five function Qep can be

written as,

∆4,1 (Qep) = Qu
ep ⊗ lnu+Qv

ep ⊗ ln v +Qw
ep ⊗ lnw

+Q1−u
ep ⊗ ln(1− u) +Q1−v

ep ⊗ ln(1− v) +Q1−w
ep ⊗ ln(1− w)

+Qyu
ep ⊗ ln yu +Qyv

ep ⊗ ln yv +Qyw
ep ⊗ ln yw ,

(B.47)

where,

Q1−v
ep = −Qv

ep , Q1−w
ep = −Qw

ep , Qyw
ep = Qyv

ep and Qu
ep = Q1−u

ep = Qyu
ep = 0 . (B.48)

The three independent functions consist of one parity-odd function, Qyv
ep, which is fairly

simple,

Qyv
ep =

1

64

[

F1(u, v, w) + F1(v, w, u)− 2F1(w, u, v) + (lnu− 3 ln v)Φ̃6

]

,
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and two parity-even functions, Qv
ep and Qw

ep, which are complicated by the presence of a

large number of HPLs,

Qv
ep =

1

32
Ω(2)(u, v, w) +

1

16
Ω(2)(v, w, u) +

1

32
Hu

4 +
3

32
Hv

4 +
1

16
Hw

4 − 3

32
Hu

3,1

− 3

32
Hu

2,1,1 −
9

64
Hv

2,1,1 −
3

16
Hw

2,1,1 +
1

32
lnuHv

3 − 1

16
lnuHw

3 − 3

32
lnuHv

2,1

+
1

16
lnuHw

2,1 +
1

32
ln v Hu

3 − 3

32
ln v Hv

3 − 7

32
ln v Hu

2,1 +
1

16
ln v Hw

2,1 −
1

32
lnwHu

3

− 1

32
lnwHv

3 +
3

32
lnwHu

2,1 +
3

32
lnwHv

2,1 −
1

16
lnwHw

2,1 +
1

32
(Hu

2 )
2 − 3

128
(Hv

2 )
2

− 1

64
Hv

2 H
w
2 +

1

64
(Hw

2 )
2 +

1

64
ln2 uHu

2 +
1

64
ln2 uHw

2 − 3

32
lnu ln v Hu

2

− 3

32
lnu ln v Hv

2 − 1

32
lnu ln v Hw

2 +
1

32
lnu lnwHu

2 +
1

32
lnu lnwHw

2

− 1

16
ln2 v Hu

2 +
3

128
ln2 v Hv

2 − 1

128
ln2 v Hw

2 +
1

16
ln v lnwHu

2 +
3

32
ln v lnwHv

2

+
1

32
ln v lnwHw

2 − 1

128
ln2wHv

2 − 1

128
ln2 u ln2 v +

1

64
ln2 u ln v lnw

− 3

64
lnu ln2 v lnw +

5

256
ln2 v ln2w − ζ2

(
1

8
Hu

2 +
11

128
Hv

2 +
1

16
Hw

2 +
1

32
ln2 u

− 3

16
lnu ln v +

1

16
lnu lnw − 3

128
ln2 v +

3

16
ln v lnw

)

+
7

32
ζ3 ln v ,

Qw
ep = − 1

32
Ω(2)(v, w, u) +

1

32
Ω(2)(w, u, v) +

1

32
Hu

4 − 1

32
Hv

4 +
3

32
Hu

3,1 −
3

32
Hv

3,1 −
3

32
Hu

2,1,1

+
3

32
Hv

2,1,1 +
1

32
lnuHv

3 − 1

16
lnuHw

3 − 1

32
lnuHv

2,1 −
1

32
ln v Hu

3 +
1

16
ln v Hw

3

− 3

32
ln v Hu

2,1 +
1

8
ln v Hv

2,1 +
1

32
lnwHu

3 − 1

64
lnwHv

3 − 1

32
lnwHu

2,1 +
3

64
lnwHv

2,1

− 1

64
(Hu

2 )
2 +

1

64
(Hv

2 )
2 +

1

16
Hv

2 H
w
2 +

1

64
ln2 uHu

2 +
1

64
ln2 uHv

2 − 1

16
lnu ln v Hu

2

− 1

16
lnu ln v Hv

2 − 1

32
lnu lnwHv

2 +
3

64
ln2 v Hu

2 +
3

64
ln2 v Hv

2 +
1

32
ln2 v Hw

2

− 1

32
ln v lnwHu

2 +
3

64
ln v lnwHv

2 − 1

64
ln2wHu

2 +
1

64
ln2wHv

2 +
1

64
ln2 u ln v lnw

− 1

128
ln2 u ln2w − 3

64
lnu ln2 v lnw +

3

128
ln3 v lnw +

1

128
ln2 v ln2w

+ ζ2

(
1

16
Hu

2 − 1

16
Hv

2 − 1

16
Hw

2 − 1

32
ln2 u+

1

8
lnu ln v − 3

32
ln2 v

)

− 1

16
ζ3 lnw .

(B.49)

B.12 Relation involving M1 and Qep

There is one linear relation between the six permutations of M1 and the six permutations

of Qep. This linear relation involves the totally antisymmetric linear combination of the

S3 permutations of both M1 and Qep. It can be written as,
[(

M1(u, v, w)−
64

3
Qep(u, v, w)+2 lnuΩ(2)(u, v, w)+Erat(u, v)

)

− (u↔ v)

]

+cyclic = 0 ,

(B.50)
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where Erat(u, v) is constructed purely from ordinary HPLs,

Erat(u, v)=

(

Hv
2+

1

2
ln2 v

)(
5

3
(Hu

3 +H
u
2,1)+

1

3
lnuHu

2 −
1

2
ln3 u

)

−4Hv
2

(

2Hu
2,1+lnuHu

2

)

− 2 ln v

(

Hu
4 +5Hu

3,1−3Hu
2,1,1−

1

2
(Hu

2 )
2+lnu (Hu

3 −Hu
2,1)+4ζ2H

u
2

)

. (B.51)

Because of this relation, the images of M1 and Qep under the S3 symmetry group together

provide only 11, not 12, of the 13 non-HPL basis functions for H+
5 . The totally symmetric

functions N and O provide the remaining two basis elements.

C Coproduct of Rep

We may write the {5, 1} component of the coproduct of the parity-even weight-six function

Rep as,

∆5,1 (Rep) = Ru
ep ⊗ lnu+Rv

ep ⊗ ln v +Rw
ep ⊗ lnw

+R1−u
ep ⊗ ln(1− u) +R1−v

ep ⊗ ln(1− v) +R1−w
ep ⊗ ln(1− w)

+Ryu
ep ⊗ ln yu +Ryv

ep ⊗ ln yv +Ryw
ep ⊗ ln yw ,

(C.1)

where,

Rv
ep=−R1−v

ep =−R1−u
ep (u↔v)=Ru

ep(u↔v) , Ryv
ep=R

yu
ep , and Rw

ep=R
1−w
ep =Ryw

ep =0 .

(C.2)

The two independent functions may be written as,

Ryu
ep =

1

32

{

−H1(u, v, w)− 3H1(v, w, u)−H1(w, u, v) +
3

4
(J1(u, v, w) + J1(v, w, u) + J1(w, u, v))

+
[

−4 (Hu
2 +Hv

2 )− ln2 u− ln2 v + ln2 w + 2
(

lnu ln v − (lnu+ ln v) lnw
)

+ 22 ζ2
]

Φ̃6

}

,

(C.3)

and,

Ru
ep = −1

3

(

2 (Qep(u, v, w)−Qep(u,w, v) +Qep(v, w, u)) +Qep(v, u, w)− 3Qep(w, v, u)
)

+
1

32

[

M1(u, v, w)−M1(v, u, w) +
(

5 (lnu− ln v) + 4 lnw
)

Ω(2)(u, v, w)

− (3 lnu+ ln v − 2 lnw)Ω(2)(v, w, u)− (lnu+ 3 ln v − 4 lnw) Ω(2)(w, u, v)
]

+Ru
ep, rat ,

(C.4)

where,

Ru
ep, rat =

1

32

{

24Hu
5 − 14 (Hu

4,1 −Hv
4,1)− 16Hw

4,1 +
5

2
Hu

3,2 +
11

2
Hv

3,2 − 8Hw
3,2 + 42Hu

3,1,1

+ 24Hv
3,1,1 + 6Hw

3,1,1 +
13

2
Hu

2,2,1 +
15

2
Hv

2,2,1 + 2Hw
2,2,1 − 36Hu

2,1,1,1 − 36Hv
2,1,1,1 + 24Hw

2,1,1,1

+

(

15

2
Hv

2,1 − 5Hu
3 +

1

2
Hu

2,1 −
1

3
Hw

3 − 1

2
Hv

3 − 31

3
Hw

2,1

)

Hu
2 +

(

−5

3
Hw

3 +
7

2
Hv

2,1 −
5

3
Hw

2,1

− 3Hv
3 + 4Hu

2,1 − 14Hu
3

)

Hv
2 +

(

− 7

6
Hu

3 − 7

3
Hv

2,1 + 4Hw
3 +

5

3
Hv

3 +
17

6
Hu

2,1

)

Hw
2

+

(

−14Hu
4 + 16Hv

4 + 19Hu
3,1 − 2 (Hv

3,1 +Hw
3,1)−

57

2
Hu

2,1,1 − 24 (Hv
2,1,1 −Hw

2,1,1) +
1

4
(Hu

2 )
2

− 5

2
(Hv

2 )
2 +

3

2
(Hw

2 )2 + 6Hu
2 Hv

2 − 17

6
Hu

2 Hw
2 − 4Hv

2 Hw
2

)

lnu+

(

−10Hu
4 − 8 (Hw

4 +Hv
4 )

(C.5)
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− 4Hu
3,1 + 3Hv

3,1 + 2Hw
3,1 + 6Hu

2,1,1 −
3

2
Hv

2,1,1 +
11

2
(Hu

2 )
2 +

19

4
(Hv

2 )
2 +

1

2
(Hw

2 )2 +
17

2
Hu

2 Hv
2

+ 4Hu
2 Hw

2 +
7

3
Hv

2 Hw
2

)

ln v +

(

10 (Hu
4 +Hw

4 ) + 8Hv
4 + 6Hu

3,1 − 8Hv
3,1 + 2Hw

3,1

− 6 (Hu
2,1,1 +Hw

2,1,1)− 6 (Hu
2 )

2 − 5 (Hv
2 )

2 − 2 (Hw
2 )2 − 8Hu

2 Hv
2 − 17

3
Hu

2 Hw
2 − 1

3
Hv

2 Hw
2

)

lnw

+

(

1

2
Hu

3 +
3

4
Hv

3 +
5

6
Hw

3 − 6Hu
2,1 −

21

4
Hv

2,1 +
35

6
Hw

2,1

)

ln2 u+

(

−7Hu
3 +

13

2
Hv

3 +
1

6
Hw

3

+ 4Hu
2,1 + 2Hv

2,1 −
11

6
Hw

2,1

)

ln2 v +

(

− 7

12
Hu

3 +
11

6
Hv

3 − 7Hw
3 +

17

12
Hu

2,1 −
1

6
Hv

2,1

)

ln2 w

+
(

6Hu
3 − 14Hv

3 − 2Hw
3 + 4Hv

2,1 − 2Hw
2,1

)

lnu ln v +
(

−6Hu
3 + 2Hw

3 − 2Hv
3 + 2Hw

2,1

)

lnu lnw

+
(

−10Hv
3 + 6Hw

3 − 2Hu
2,1 + 4Hv

2,1 − 2Hw
2,1

)

ln v lnw +

(

1

4
Hu

2 − 5

2
Hv

2 +
3

4
Hw

2

)

ln3 u

+

(

7

4
Hu

2 − 1

4
Hv

2 +Hw
2

)

ln3v +

(

1

2
Hu

2 +
1

2
Hv

2 + 2Hw
2

)

ln3w +

(

−1

2
Hw

2 −Hu
2 +

3

4
Hv

2

)

ln2u ln v

+

(

9

2
Hu

2 + 6Hv
2 − 3

2
Hw

2

)

lnu ln2 v +

(

−5

6
Hw

2 +Hu
2 −Hv

2

)

ln2 u lnw

+

(

−11

12
Hu

2 − 1

2
Hv

2 −Hw
2

)

lnu ln2 w +

(

−1

6
Hw

2 + 2Hv
2

)

ln2 v lnw

+

(

−5

2
Hu

2 − 3Hw
2 − 4

3
Hv

2

)

ln v ln2 w − 2 (Hu
2 +Hv

2 −Hw
2 ) lnu ln v lnw

+
3

8
ln3 u ln2 w − 3

4
ln2 u ln3 w + ln2 u ln2 v lnw − 7

4
ln2 u ln v ln2 w − 7

4
lnu ln2 v ln2 w

+ 2 lnu ln v ln3 w − 5

4
ln3 u ln2 v +

7

8
ln2 u ln3 v +

1

2
ln3 v ln2 w − 3

4
ln2 v ln3 w

+ ζ2

[

33

4
Hu

3 − 9

4
Hv

3 + 2Hw
3 +Hu

2,1 − 17Hv
2,1 + 24Hw

2,1 +

(

14Hw
2 +

7

4
Hu

2 − 10Hv
2

)

lnu

+

(

−6Hw
2 − 18Hu

2 − 47

4
Hv

2

)

ln v +
(

8Hv
2 + 6Hw

2 + 20Hu
2

)

lnw − 1

4
ln3 u+

1

4
ln3 v

− 4 ln3 w + 2 ln2 u ln v − 12 lnu ln2 v − 2 lnw ln2 u+ 2 lnu ln2 w − 4 ln2 v lnw

+ 6 ln v ln2 w + 12 lnu ln v lnw

]

+ ζ3

[

7Hu
2 − 5Hv

2 − 2Hw
2 +

3

2
ln2 u− 1

2
ln2 v − ln2 w

]

+ ζ4
[

14 lnu+ 50 ln v − 44 lnw
]

}

.

(C.6)
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