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1 Introduction

The LHC has discovered a Higgs-like boson with a mass of approximately 126 GeV, with
properties consistent with the standard model to within current experimental errors. The
Standard Model (SM) also provides a good description of all the LHC data to date, with
no evidence for beyond the SM (BSM) physics. The current experimental results can be
described by the Standard Model with a scalar doublet which spontaneously breaks the
gauge symmetry, and with BSM physics parameterized by higher dimension operators con-
structed out of SM fields suppressed by powers of a high-energy scale A. The leading
operators which affect the Higgs production and decay amplitudes arise at dimension six,
and so are suppressed by 1/A2%. Since no BSM states have been found so far, LHC results
already indicate that the scale A is higher than the scale v = 246 GeV of electroweak sym-
metry breaking. In a recent paper [1], we studied a subset of these dimension-six operators
which modify the h — vy and h — Z~ decay rates, and calculated the renormalization
group evolution of these operators, including operator mixing.

In this paper, we extend our previous RG analysis [1] to all dimension-six operators. We
also compute the full contribution of the 59 dimension-six operators to the running of the
usual dimension D < 4 operator coefficients of the SM Lagrangian. These SM parameters
have anomalous dimension contributions of order v?/A? (or equivalently, m?,/A?) from
coefficients in the dimension-six Lagrangian. These terms correct the SM amplitudes at
order qu /A%, which is the same order as the corrections from dimension-six operators.

The set of independent higher dimensional operators involving SM fields is given in
ref. [2], which showed that there are 59 independent dimension-six operators (assuming



the conservation of baryon number), and reduced the set of operators from those of the
earlier work ref. [3] by using the classical equations of motion to eliminate a few redundant
operators. The choice of operator basis is not unique, and we will use the basis of ref. [2],
summarized in table 1. The anomalous dimension matrix is a 59 x 59 matrix with 3481 en-
tries, not including flavor indices. Although some of the entries vanish due to the structure
of the one-loop diagrams, most elements are non-zero. The 59 operators can be grouped
into eight classes defined in the next section. Our previous calculation [1] computed the
8 X 8 submatrix ~y44 of the 59 x 59 matrix.

The full 59 x 59 matrix is lengthy, and we give partial results here. Ref. [1] found that
the A and Yukawa coupling terms were numerically more important than the gauge terms.
In this paper, we give the X , A2, Ay? one-loop contributions to the anomalous dimension,
which gives the full A dependence in the limit of vanishing gauge coupling. There are large
combinatorial factors ~ 100 in some of the terms.

There are terms in the anomalous dimension matrix of order 1. These arise from
diagrams involving external gauge fields, and are order 1 because gauge couplings are
absorbed into the gauge field-strengths in our counting scheme, defined in section 5. We
give one example of such a contribution at the end of section 5, which gives mixing between
“tree” and “loop” operators, discussed in refs. [4-7].

The outline of the paper is as follows: In section 2, we summarize the Lagrangian
we use, our notational conventions, and the SM equations of motion. A review of well-
known results on renormalization and the equations of motion is given in section 3. The
dimension-six contribution to the SM RGE is given in section 4. The structure of the 59 x59
anomalous dimension matrix, our power counting scheme, and the terms we present in this
paper are given in section 5. The dimension-six RGE equations are given in section 6.

Calculations are done in the MS scheme using dimensional regularization in d = 4 —
2¢ dimensions in background field gauge. The anomalous dimensions of gauge invariant
operators do not depend on a choice of gauge, and so are the same in the broken and
unbroken theory in the MS scheme.

2 The Lagrangian and equations of motion

2.1 The Lagrangian

The Lagrangian we use is given by £ = Lgy + £, the sum of the SM Lagrangian

1 1 1 —
Loy = — ZG;j‘yGAW — ZWJZ,WI‘“’ = BuwB" + (D,HYDIH)+ > iy

P=q,u,d,le
A (HTH - ;&)2 -~ [HTded g+ HYuY, q; + HUe Y, 1; + h.c} (2.1)
and the dimension-six Lagrangian, which is given schematically by
£ =3"CiQ;. (2.2)
i



1:X8 2: HS 3: H*D? 5:42H3 +h.c.
Qc | fAPCGHGIPG || Qu | (HTH) || Quo (HYH)O(HH) Qen | (HTH)(IperH)
Qs | fABCGGlraoH Qup | (H'D,H) (HID,H) | | Qua | (H'H)(gpu, H)
Qw | TEWIvwlrw Qan | (H'H)(@pd,H)
QW EIJKW}{UWVJPW;{I—L
4: X2H? 6:42XH + h.c. 7:¢2H2D
Que | HIHGAGA || Quw | (pote)rl HW], QtY (HY'D  H) (I,
Que | HYHGA GAw Qen Ly ey ) H By Q¥ (HT DL H) 711,
Quw | HHHWILWI || Qua | (@poTAu)HGA, Qe (HYi'D L H) eyt er)
Quiw | HEWLWH || Quy | (g u )l HWL, Q) (H'D  H) (@7 ar)
Qus | H'HBLB" || Qus | (90" u)H Buy QW (HY D LH) (g v qr)
Qui H'H B, B* Qac | (qpot*T4d,)H Gy, QHu (HTiﬁuH)(_p’y“uT)
Quws | HITTHWLB™ | | Quw | (@otvd,)r'HW], Qua (H'i'D  H)(dyytdy)
Quip | HiTTHWL, Br QaB (@po* dr)H Bpy QHua + hec i(H' Dy H) (vt dy)
8: (LL)(LL) 8: (RR)(RR) 8: (LL)(RR)
Qu (Tpyule) Tsy*1e) Qee (Epyuer)(Esy™er) Qre (Ipyulr) (Es7*er)
W (@war)@tar) Quu | (Tpypur) sy ur) Quu (vl ) (@sy*ur)
((1?1) (@pvutlar) (@1 ar) Qdd (dpypdr)(dsytde) Qia Tpyule) (dsy™dy)
QY | Gyvule) (@ ar) Qeu (Epyuer) (s ue) Qqe (@uar) (Es*er)
QD | Gyt 1) (@ T ) || Qea (Epyuer)(dsyPde) o (@pVugr) (s ur)
Q) (@pypur)(dsyHdy) S| @TAar) (@' TAur)
QW) | (@ TAur) ey TAd) | | QLY (@ uar) (dsy¥de)
QY | (@ T4a,)(dsy*TAdy)
8: (LR)(RL) + h.c. 8:(LR)(LR) + h.c.
Qedq | Bher)dsary) | | QU (@ur)ejr(@rde)
Q;?qd (@ T4 ur)ek (@ETAdy)
Ql(;;u (Bher)ejn (@hur)
QP | Bower)eju(@ o u)
Table 1. The 59 independent dimension-six operators built from Standard Model fields which

conserve baryon number, as given in ref. [2]. The operators are divided into eight classes: X3, HS,
etc. Operators with +h.c. in the table heading also have hermitian conjugates, as does the 2 H2D
operator Qg.q. The subscripts p, r, s,t are flavor indices, The notation is described in section 2.

H is an SU(2) scalar doublet with hypercharge yg = 1/2. With this normalization con-
2)\v?, with v ~ 246 GeV and the fermion mass

vention, the Higgs boson mass is m%{
= Yu,d,e 'U/\/§
The gauge covariant derivative is D, = d, + iggTAAﬁ + igot! W!{ + ig1yB,, where
T4 are the SU(3) generators, t/ = 77/2 are the SU(2) generators, and y is the U(1)
hypercharge generator. SU(2) indices j, k and I, J, K are in the fundamental and adjoint

matrices are My g



representations, respectively, and SU(3) indices A, B,C are in the adjoint representation.
H is defined by

H; = e HF (2.3)

where the SU(2) invariant tensor €;j, is defined by €12 = 1 and €, = —eg;, 5,k = 1,2.
Fermion fields ¢ and [ are left-handed fields, and u, d and e are right-handed fields.

We have suppressed flavor indices in eq. (2.1). All fermion fields have a flavor index
p = 1,2, 3 for the three generations, and the Yukawa matrices Y}, 4. are matrices in flavor
space. Explicitly,

HJUEYd qj = HJUEp [Yd]p"’ drj (2'4)

and similarly for the other terms. Flavor indices are denoted by p,r,s,t. We work in the
weak eigenstate basis, with u; = {ug, cr,tr}, d; = {dg, sg,br}, and

u c . d’L dy,
o= d/L ) q2 = /L ) q3 = b,L ) S/L =Vekm | sz |, (2.5)
L °L L v b
L L

where Voku is the quark mixing matrix.

The coefficients C; of the dimension-six Lagrangian have mass dimension —2. The sum
on i in eq. (2.2) is over the 59 operators in table 1. The only (notational) change from
ref. [2] is the replacement of ¢ by H for the Higgs field. Note that Q,x and Q gy, etc. are
different operators. We use the convention ﬁu,, = (1/2)€pvapF B with €yra3 = +1. The
operators are divided into eight classes, which are denoted by 1 : X3, 2 : H 3 : H4D?,
4:X2H? 5 :?H?, 6 : ?HX, 7 :¢?>H?D, and 8 : ¢* in terms of the field content and
number of covariant derivatives, with X denoting a gauge field strength tensor. We will
use this schematic notation for other operators that occur in our analysis. For example,
the penguin operator gT4y*q [D”, GW]A is a 1¥?X D operator.

The coefficients C; are then divided into eight blocks, i = 1,...,8, with block 1 con-
taining four coefficients for the X3 operators, etc. The anomalous dimension matrix also
breaks up into blocks with v14 denoting the 4 x 8 submatrix in the X3 — X2H? sector, etc.
The notation in table 1 suppresses flavor indices. Two sample terms in eq. (2.2) including
flavor indices are

Ceu@eu + Cledquedq + h.c. (26)
prst " prst prst  prst

where the hermitian conjugate is added for non-self-conjugate operators. The coefficients
of the self-conjugate operators are hermitian tensors, so that

C*eu - *eu P (27)

prst rpts

and similarly for the other coefficients.



2.2 SM equations of motion

The SM equations of motion play an important role in the following analysis, so we sum-
marize them here. The SM equations of motion from eq. (2.1) are

D*Hy, — MW Hy, + 2X(HTH)Hy, + @ Y, uejp +dYyqu +e Yol =0, (2.8)
for the Higgs field,

iPg;=YiuH; +Y]dH;, ipd=Yyq H' iPu=Y,q H',
iDl; =Y, eH;, iDe=Y, ;H (2.9)

for the fermion fields, and
[Daa Ga,@]A = g3jé47 [Daa WOA,B]I = g?jé7 DaBa,B = gljﬂv (210)

for the gauge fields, where [D®, F,,g] is the covariant derivative in the adjoint representation.
The gauge currents are

h=u,d,q

g 1 1-

ib= 5@ e + Gl el + SHTiDLH,

. — 1 =

Jg = Z Vyivpd + §HTZD5H, (2.11)
PY=u,d,q,e,l

where y; are the U(1) hypercharges of the fermions, and

atiD 0 = idt(DsH) — i(DsHNH
Y DLH = il (DyH) — i(DgHY) H . (2.12)

3 Operator renormalization and the equations of motion

In this section, we review some well-known results about equations of motion (EOM) and
renormalization in field theory. One can make field redefinitions on the Lagrangian, which
is a change of variables in a path integral, and so does not affect S-matrix elements [8].!
Field redefinitions can be systematically used to eliminate redundant operators from the
Lagrangian. In our case, £ = Ly + £(%), so a small field redefinition of order 1/A? can be
used to shift £®) by operators proportional to the classical EOM from the SM Lagrangian.

For example, the dimension-six operator
Eyn = [HYH|[H'(D*H) + (D*H")H)| (3.1)
can be converted to

EHD = 2)\U2(HTH)2 - 4)\QH - ([YJ]TS QuH + [YdT]rs QdH + [Y'eT]rs QeH + hC) (32)

'Field redefinitions can affect Green’s functions, since the source terms get modified.



Figure 1. Penguin diagram contributing to s — d transitions.

Explicitly,
c c =~ 1
by the field redefinition
c
H— H+ P(HTH)H (3.4)

which is equivalent to using eq. (2.8) to convert Exn to Eyn. Thus, to first order in 1 /A%
we can eliminate dimension-six EOM operators. At higher orders in 1/A2, it is necessary
to systematically use field redefinitions to eliminate redundant operators [9-12].

The counterterms generated by one-loop graphs from £ need not be in the standard
basis chosen for the dimension-six operators. It is necessary to first compute the renormal-
ization counterterms, and then convert them to the standard basis using a field redefinition.
A famous example of this procedure is the renormalization of the effective Lagrangian for
weak decays [13, 14]. One can use an operator basis involving only four-quark operators,
such as

Oy =u~"Prs dvy,Pru (3.5)

for s — d transitions. However, the penguin graph figure 1 requires a counterterm propor-
tional to

Op = ETA"}/MPLS gs [DV,GVM]A . (3.6)

The standard procedure used is to convert this back to a four-quark operator using the
gauge field equation of motion eq. (2.10),

Op — dT4"Pp s Z g3 [q TAN P q +qT44* Pg ql (3.7)
q

so that one can study the anomalous dimension matrix in the basis of four-quark operators.



In general, let F; be the dimension-six EOM operators generated by field redefinitions
on the SM Lagragian, so that F; = 0 by the classical SM equations of motion. Then the
general dimension-six Lagrangian is

59
LY =3"CiQi+> D.E, (3.8)
=1 r
including redundant EOM operators. The RGE has the form
d | Q; —Yji —asi | | Q;
il — 3.9
g | E, [ 0 —by | | E. (3:9)

The lower left block of this matrix vanishes, since the EOM operators are renormalized
among themselves [8]. The operators E, do not contribute to S-matrix elements, so their
p derivative cannot contain @); which have non-zero S-matrix elements. Eq. (3.9) implies
that the anomalous dimension matrix for the coefficients has the form

_ | O
Q4 brs

The E; operators in eq. (3.8) can be dropped for S-matrix element calculations, i.e. we

4

C;
D,

Cj

b (3.10)

only need the values of C;. From eq. (3.10), we see that in this case, the RGE reduces to

d
701 = ’YijCj s (3.11)

with no reference to the EOM operators.
It is important to remember that this conclusion does not mean that EOM operators
do not enter the calculation. The penguin operator counterterm eq. (3.6) is written as

Op =dT*4"Pys Y g5 [qT'V"PLq+qT"y"Prq) + E,
q
E=dT*y"Pys gs[D", Gyl —dT*4"Prs Y g3 [aT*4"PLq+qT*y"Prq] (3.12)
q

where £ = 0 is an EOM operator, which can be dropped. The remaining four-quark
contribution enters the RGE for the four-quark operators.

There is an important consequence of the above analysis, which has led to some confu-
sion in the literature. One cannot identify the structure of the anomalous dimension matrix
simply from one-particle irreducible one-loop diagrams when the EOM are used to reduce
operators to a standard basis. For example, the penguin operator is a 12X D operator, but
leads to a * counterterm after using the equations of motion. This is because the EOM
can generate new operators and mixing for which no irreducible graphs exist. This subtlety
does not affect the y44 anomalous dimension given in ref. [1].

In some cases, authors have used a redundant basis of operators, i.e. an overcomplete
set of operators in which some operators can be eliminated using the equations of motion.
An example of such a procedure is to include both the penguin operator eq. (3.6) and



the various four-quark operators it generates, such as those on the r.h.s. of eq. (3.10).
Schematically, assume that the theory has operators O1 23, the EOM is Oy = O3, and that
the RGE after eliminating the redundant operator Os is

d | O (0]
s L _ Mmoo L (3.13)
du | 0O, T2 Vo2 O
The RGE including the redundant operator Os has the form
q O1 M1 Y21 tar —an Oy
M@ Oy | == | m2 722tax —az Oz | - (3.14)
03 0 as —as 03

with a1 23 arbitrary. In this case, the anomalous dimension matrix is not uniquely deter-
mined, since one can always add linear combinations of EOM operators to the RGE by
making field redefinitions. The parameters a; depend on the gauge and renormalization
scheme, since different choices can differ implicitly by field redefinitions. Note that even
the 2 x 2 submatrix in the O 2 sector is not unique.

4 Running of SM terms due to £®

The SM coefficients have contributions from £ proportional to v2, or equivalently, m%[.
The existence of such terms is not surprising. In the usual analysis of K° e mixing due
to AS = 2 weak interactions, the AS = 2 Lagrangian

LA5=2) _ o, dy"Pp s EWPL s (4.1)

has terms in the RGE of the form [14]

,uCiCQ x mg C’g (4.2)
where Cy are the coefficients of the AS = 1 four-quark operators such as eq. (3.5), and m,
is a quark mass. Mass terms in the EFT can compensate for powers of 1/Myy, since particle
masses can appear in the numerator of divergent terms when dimensional regularization
is used. In the case of SM running from £ the only dimensionful parameter in the SM
that can appear in the numerator is the Higgs vacuum expectation value v, or equivalently,
the Higgs mass m%{ =202
We list here the full one-loop contributions to the SM RGE from £6). These terms
are in addition to the usual SM anomalous dimensions.
d N m%

10 , 3 9 2.2
—A=—T1L 12 32\ + — 12— 2
'udu 16712[ C’H—i-( 32\ + 392> CHD+< A 292 +697Y% | Cup

+2m1 + 2n2 + 12¢3¢r2Crw + 12¢%y%Crp + 69192y Crw

4 o 3 4 5
I NI ggzvcc;;} ,
3 tt 3 tt



d mf
p—my =—2L [—4Cyo + 2Cyp] ,

du 1672
d M e 1 1) (3)
M@[YU}TS 16 3C, H CHI:I[ u]rs + *CHD [Yu]rs - [Yu]rtcqu + 3[Yu]rtC];[q
+ CralYulis = CriyalYalis = 200" Vlup = 26r5C 0 Vil
rt sptr sptr
1
B Cl(eq)u[ ] + N. C(uzzd[ ] Qchuz]d[ ] + CF 3C¢§u2]d[ d]tp:| ’
ptsr srpt prst prst
d miy 1) 3)
M@[Yd}rs 167 1a- 9 3CdH CHD [Yd]rs + CHD[Yd]rs [Yd]rtci(q +3[Yd]rtci]q
— CralYalts = ValtsCipua — 20 alip — 203C 5 [Yalip
rt tr sptr sptr
1)* * 1 1 «
+ Cleaq[Yely + NeClor[Yuliy 2q§u>qd[ b+ 20F30§u2]d[ ]tp} ,
ptrs ptsr sptr
u Ly [30* CHolYolrs + ~Cup[Yalys + [YaluCY + 3¥2],,0
dM elrs 167‘(‘ H— elrs 5 elrs elr Hl elr ﬁl
— CuelYelts — 2C%, [Yelip + NeCigy[Yalpt — NeCloli[Y, ]?p} ;o (43)
rt sptr srpt srpt

dgs m¥ dgo m¥ dg mi;
dﬂ 167 293 HG » 'udu 16’/’1’292 HW ’udﬂ 1671'291 HB
d 4m? d 4m? d 4m?
03 = ——LC,~, p—=0y = ——HC p—~0 = ——=HC =, (4.4)
d g§ HG du g% HW du g% HB
where
1 1 1
m = =N.Cyn [Yd]sr + *NcCuH[Yu]sr + =Cer [Y;a]sr + h.c.,
2 rs 2 s 2 s
= 2N CIYIV, )0 — 2NCO YTVl or + NeCrua[YaYi]
cYHqgltu tulsr c“YHqltd d]sr cCHud|LtdLqy]sr
rSs rs rs
+ NeCpalYaY{lre — 205 Y1 Ye)or (4.5)
rSs rs

N, = 3 is the number of colors, cp3 = 4/3, and cq2 = 2. The 0 terms are normalized so
that L = (992/32772)ﬁlf‘yFA M for each gauge group.?

The form of eq. (4.4) depends on the choice of basis for £, since EOM have been
used to eliminate redundant operators. One can see from eq. (3.2) that the EOM contain
both dimension-four operators (HTH)?, and dimension-six operators such as Qp, so the
dimension-four terms depend on the basis choice for the dimension-six terms.

Eq. (4.4) affects SM amplitudes at order m% /A2, and is just as important as the
evolution of £, For A ~ 1TeV, the terms in eq. (4.4) are more important than two-
loop contributions to the SM running. The stability of the Higgs scalar potential is very

2Transformations of 01,2,3 under flavor transformations, and the basis invariant definition of 0 angles in
the electroweak theory is discussed in ref. [15].



sensitive to the precise value of A, so the £ contribution will affect the relation between
my and the scalar self-coupling. Eq. (4.4) also plays a role in the evolution of Yukawa
couplings. Retaining only the top-quark Yukawa coupling,

0 0 0 0 0 0 00 0
Y= |0 0 0|, Yy—= |0 0 0|, Y= |0 0 0|, (4.6)
0 0 0 0 0 0 0 0

<

t

gives from eq. (4.4),

d m2 * * * * * " .
e 0 = 1585 3G~ WAl gt NeCLlYoliy b 5 Cog Yl gemaClpalYily

d d al¥ult
167 ST tr pqégr 2 %q;)gr 2 %?)?r b
d My [ W1y 1
fi~—[YVe]ys = [30 NCY* v,z | (4.7)
dpt 6w TG T e

In the SM, udY;/du o« Y; so these higher dimension terms can be more important than
the SM running, depending on the flavor structure of £(®).

5 Structure of the anomalous dimension matrix

The SM at energies above the electroweak scale is a weakly coupled gauge theory, and SM
gauge boson interactions are proportional to the gauge boson coupling g. For this reason,
it is useful to use rescaled operators @Z with coefficients @, including an explicit factor of
the gauge coupling for each field strength tensor X, instead of the basis @); in table 1. Thus
QG = g3Qg, etc. One can trivially convert between the two conventions. If QZ = (;Q;,
then the rescaled coefficients and anomalous dimensions are

Ci= ¢y, Yij = ¢ G - (5.1)

We first discuss the structure of the one-loop anomalous dimension matrix, where all
gauge couplings are treated as order g and all Yukawa couplings as order y. The 2 H3 and
2 X H operators have a single chirality flip. It is convenient to absorb a numerical factor
of order y into these operators for the purposes of the present discussion,® and a factor
of g into X. In our actual calculations, we will revert to the unrescaled original operator
basis @Q;.

The anomalous dimension matrix (for the coefficients) in the rescaled basis Q; has the
form shown in table 2, where we have given the explicit operator rescaling. The lower
table shows the entries given by direct computation of graphs, and the upper table shows
entries that are possible by computing a graph and then converting it to the standard basis
using EOM. The zero entries are those for which there is no one-loop divergent graph. The
possible orders in g, A and y are shown for the other entries. In some cases, the allowed
graphs have vanishing divergence, such as Fig 2(a), so not all of the possible terms in the
array are non-zero. Formally including factors of 3 into the the 12H? and 12X H terms
makes the matrix a function only of even powers of y. The anomalous dimension matrix

$We do not include any factors of y in the (LR)(LR) and (LR)(RL) v* operators.

~10 -



g3X3 H6 H4D2 gQXQHQ y¢2H3 gyib?XH ¢2H2D ,¢4
1 2 3 4 5 6 7 8
@#X3 1] 0 0 0 1 0 0 0 0
HS 2 g6)\ 0 gg)\, A2 )\g4 )\y2 0 )\gQ, )\y2 0
H4D2 3 96 0 g2 g4 0 g2y2 92 0
?X2H? 4| 0 0 0 0 0 0 0 0
y0?H3 5] ¢85 0 2 Ay: gt Tl PN T IO W TP W T
gy?’XH 6| ¢* 0 0 0 0 e 1 1
W2H?D 7| ¢ 0 ¢ g* 0 T A T A T
¢4 8 gﬁ 0 0 0 0 g2y2 927 y2 92’ y2
g3X3 HG H4D2 92X2H2 deQHS gyi/ﬂXH @Z)2H2D ,¢4
1 2 3 4 5 6 7 8
@#X3 1| 42 0 0 1 0 0 0 0
HG 2 0 )\792 94’ 92>\7 )\2 967 94)\ y4 0 y4 0
H'D> 3| 0 0 g% A g y? 0 y? 0
@X2H? 4| ¢4 0 1 g%\ 0 y? 1 0
w2 H? 50 0 0 g2 /IO W Vo W L Vo LD VO VLR T
gl XH 6| ¢* 0 0 g2 1 9>y’ 1 1
W2H?D 7| 00 y? g* y? T AP N T T
¢4 8 0 0 0 0 0 g2y2 y2 92, y2

Table 2. The form of the one-loop anomalous dimension matrix for the coefficients of dimension
six operators in the rescaled basis. The rows and columns are labelled by the eight operator classes.
The lower table gives entries for which there is a direct contribution from a one-particle irreducible
one-loop graph. The upper table gives entries which are generated indirectly by using EOM, and
for which there need not be a direct contributing graph. There are also y? contributions to all
diagonal entries except 11 from wavefunction renormalization. In some cases, the graphs vanish or
produce an EOM operator that is shifted to other terms, and the entry is zero.

for coefficients of rescaled operators contains terms of order unity. For example, the graph
in figure 2(b) gives an order 1 contribution to the g>X3 — ¢2X2?H? entry. In terms of the
original operators, the graph has one gauge coupling at the Standard Model vertex, and
is order g. On rescaling, the X2H? operator at the £ vertex gets a factor of ¢2, and
the X3 operator given by the external lines absorbs a factor of ¢3, so the graph becomes
order g x g2/¢g3 = 1. Similarly graph figure 2(c), which is order g in terms of the original
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Figure 2. (a) A H% —4?H?D anomalous dimension graph which vanishes. (b) A g3X3 — g?X2H?>
anomalous dimension graph of order 1. (c) A g?X2?H? — g3X? anomalous dimension graph of order
g*. The solid square is a vertex from £ and the dots are vertices from Lg.

operators (g2 from the standard model vertex and g from the £6) vertex), is order g* in
terms of the rescaled operators.

All the entries in the one-loop anomalous dimension matrix contain the usual 1/(1672)
factor of a perturbative one-loop graph. However, there are entries of order 1, g2, v2, g%, y*,
etc. so that it appears that the anomalous dimension matrix does not have the usual form,
a product of powers of g2/(1672), A\/(1672) and y?/(1672), with no extraneous factors of
1672, To understand what is going on, it is instructive to consider the rescaled operators
normalized using naive dimensional analysis [16]. The general Lagrangian term is

a H b H C D d X e
pear () (Y () (Y (o 652)
wa) ) \a ) \a) (&
with A ~ 47 f. The H and yH terms have the same scaling if y ~ 4xw. If y < 4m, then
one gets the usual suppression of chirality flip terms in weak coupling, analogous to the

suppression of gauge interactions in weak coupling discussed in ref. [16]. The eight operator
classes give

f233 A? 6 L a2 L 5o
FgXa FHa FHDa ngHv

1 2173 1 2 Lo o Loy

ﬁywH, EyquXHv F¢HD’ ﬁ¢ (5.3)

times coefficients of order one for £(6).

Let @z be the £ operators normalized as in eq. (5.3), so that their coefficients @
are dimensionless, and expected to be order unity by naive dimensional analysis. Then one
sees that the contribution of graph figure 2(b,c), can be written in three equivalent ways,

d Ap d Ae 5

—C) = C —Cy = C
)ud’u 1 1672 g Uy, 'ud/.L 4 1672 g 1,

d ~ Ay ~ d ~ Ae 4
'ud,u 1 1672 4, Hd/.L 4 1672 g 1,

d A d 2\ 4

—C1=4,C —Cy=A. | == | (1, 5.4
Mdu 1 b L4, Mdﬂ 4 (167r2> 1 (5.4)

- 12 —



where Ay . are constants. One can see from the last row that, with the normalization
eq. (5.3), the anomalous dimension for @ depends on products of powers of \/(1672)2,
g%/(167%), and y?/(1672%) as expected. It is straightforward to verify this for the entire
matrix. Terms such as 14 are order unity and effectively zeroth order, 744 is of one-loop
size, 41 of two-loop size, 731 of three-loop size, and 91 of four-loop size, etc., even though
all of them are given by one-loop diagrams in the EFT.

It is worth emphasizing that, while the the use of eq. (5.3) for the normalization
makes it easier to understand the importance of various terms, it does not affect the actual
calculation. One can convert from one normalization to another using the trivial rescaling
in eq. (5.1). When we refer to anomalous dimension entries as order g2, etc. we will use the
rescaled form in table 2 in either the C; or C; normalization, which differ only by factors
of 47r. The explicit RGE are given for the original unrescaled coefficients Cj.

The effects of £ are suppressed by 1 /A%, and vanish as A — oo, so the RGE does
not need to be integrated over a large range of ¢ = Inu. The integration can be done
in perturbation theory by expanding in powers of the anomalous dimension matrix .
Dropping S-function running of the couplings for simplicity,

1
C(t) = 1+t’y+§t2’y-'y+... C(0). (5.5)

Different powers of v can contribute at the same order, because of the structure of table 2.
For example, a one-loop contribution of order \/(1672) is generated by the product of the
order A term in y33 and the order 1 term in 43 at second order in «. To get the coefficients
of all 59 operators accurate to one-loop order (i.e. including all ¢?/(1672), A\/(167?) and
y?/(1672) corrections) requires keeping terms to third order in ~.

The operator X2H? contributes to h — vy and h — ~Z, which are one-loop amplitudes
in the Standard Model. In ref. [1], we restricted our attention to the X?H? operators, and
computed the 8 x 8 y44 submatrix of the 59 x 59 anomalous dimension matrix. The largest
effects were due to the AH* and Yukawa couplings, rather than the gauge couplings.

In this paper, we give the results for terms in the one-loop anomalous dimension matrix
that depend only on A, and are independent of the gauge couplings, i.e. the terms of order
A, A2, and \y? in table 2. The remaining terms will be discussed in subsequent publications.
Note that the results in section 4 keep the full g, A,y dependence at one-loop, and do not
drop any terms.

There are terms in 7 of order 1. These arise from graphs such as figure 3 involving
gauge fields. The graph is order gy because it has one gauge, and one Yukawa vertex, but
becomes order 1 in our rescaled basis. We will discuss these terms in a subsequent paper.
Here we give an example of one such term, vgg, the mixing of four-fermion operators with
magnetic moment operators,

d 1 3)
M@C;? = ].671'2 [4glNC (yu + yq)Cifg;i [Yu]ts +...
d 1 (3)
—Cow = —2g9N,.C Y, ...
Hap oV =~ 16a2 [ 92t Hiequ lis | +
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Figure 3. Diagram contributing to the 92X H — ¢* anomalous dimension ~gg given in eq. (5.7).
The solid square is a ¥* vertex from £ and the dots are gauge and Yukawa vertices from Lgy.

d 1 (3)

—C,p = 4 +vy;)C Y, + ...

d 1 (3)

—Cuw = —292C3) [Yels| +-- -, 5.6
Hap Oy = Topz | ~202Cregu el (59)

where ... denotes contributions from other operators, and y; are the U(1) hypercharges.
Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators.

Eq. (5.6) cannot be cancelled by other terms, since there are no redundant operators in

(3)

the basis we use. The operator @),/ can be Fierzed into scalar form (« is a color index),

lequ
@) _ (7 (kv — _A(TT —ka QT ka
Qlequ - (ZPO-MVGT)GJIC(QSO- ut) = 4(lpe7")€]k(qs Uat) 8(lpuozt)€jk(qs er)
1 . ke
= —4Q\1), — 8(Buar)ejn(q:er) (5.7)

and can be generated by the tree-level exchange of (3,2,7/6) scalars, i.e. those with the
quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy
(1,2,1/2) scalars with H-field quantum numbers can generate any combination of Ql(;gu

and Ql(jgu.
6 X, A2, A\y? contributions to the £(® anomalous dimension matrix

The computation of the A\, A2, \y?> anomalous dimensions has some subtleties. An example
is the graph in figure 4 which generates, in addition to the Qyo and Qgp operators,
the EOM operator Enyn of eq. (3.1). Eq. (3.2) eliminates Exn in terms of our standard
basis of operators, so figure 4 contributes to the running of the HS coefficient Cy, as well
as the ©?H3 coefficients Cyp, Cyy and C.p, and to the running of the dimension four
SM coefficients in eq. (4.4). Figure 4 is an example of how terms get shuffled around
by the EOM. Figure 4 has only external H fields, but contributes to the running of the
Y2 H? operators.

The equations presented below are not the complete RGE, but only the X, A%, \y?
terms. The remaining terms are lengthy, and will be given a subsequent publication. The
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Figure 4. Graph contributing to the H*D? — H*D? anomalous dimension and to EOM operators.

The solid square is a H*D? vertex from £(®) and the dot is the A(HTH)? vertex from Lgy.

evolution of the HS coefficient is

d 1
SOy =
Faa™" = 162

8A 8A

108 \Cyy — 160 )2 C 48 N2 C — —
[ H HO + HD] + 62 —+ 167212

(6.1)

where 719 are given in eq. (4.5). The diagonal Cy — Cy term 108)\/(1672) has a large
numerical coefficient, and is independent of the normalization chosen for the H® operator,
i.e. whether we use (HTH)? or (HTH)3/(3!)2, etc. The large number 108 arises from the

combinatorics of the Wick contractions. For mpy ~ 126 GeV, 108 \/(1672) ~ 0.1.

The evolution of the X2H?2 coefficients is

dd Crg = 11627:\ Cra M(;LCHG = %;\2 Cha
ud(LCHW = %ﬂé Crw , ui%w = %;\2 HW >
G —Crwp = 122 NiCHWB = % Chivg

and is part of the complete ~y44 calculation given previously in ref. [1].
The H*D? terms are

d 24\ d 12X
N@CHEI 6 —— Cno, M@CHD 167 —— Cup,

and the 2 H? terms are

d A
HapCu = T

(8)

=4[Vl Cro + 2[Ya]; CHD_8C(qz)L[ Yult, — 8crsClyu [Yuli, —4cW Iy,

rpts rpts

8
+HANCO Yy + 2080 [Yaley + 2¢p3C0) [Valip | |
rspt psrt psrt
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24 Cyrr = 4C1y [Yally + 12}y [Vuljy + 41¥aliy Crp = 41Vl Ciga

(6.2)
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d A
pgCan = 152 {240 gt AChq Yally + 12C5g Val}, = AYal, Cyga = AIVLJG: Cipga
s rt S S

—4[Yd1;cHD+2[Yd1;OHD—sc%; [Yali, — 8¢psC) [Yals, + ACK 4 [Yelpt

'rpts T'ptS ptsr
+4NC(§u21d[ wltp +20§u21d[ wltp +26F3C(u)qd[ ]tp:|7
ptrs rtps rtps
s Con = 0o 24 Carr +4CH) [Ve]5, +12C5) [Vlfy — 4V, Core — 4 1¥,]5,Corc
dp M T 16m2 T iy et . -
+20Y]5, O~ 8C 1o [Yelfy + ANCeay Vil — ANCiy, [Vl } (6.4)
rpts rspt rspt

There are no other one-loop A, A? and A\y? terms.

7 Conclusions

We have given the structure of the 59 x 59 anomalous dimension matrix for dimension-six
operators in the Standard Model, and presented all the terms of order A\, A? and A\y? that
can arise at one loop. We have also given one example of tree-loop mixing among the
dimension-six operators. The remaining one-loop terms will be discussed in a subsequent
publication. In addition, we have given the full contribution of £(® to the RGE of the usual
dimension-four terms and the dimension-two term H'H in the Standard Model Lagrangian.

Note added: while this paper was being readied for publication, ref. [17] appeared, which
also discusses the anomalous dimension of £, Ref. [17] gives the full \,y, g dependence
of a subset of the anomalous dimension matrix. A different operator basis including 5
redundant operators is used, as well as a “tree-loop” analysis, so it is difficult to make a
quick comparison of the common terms between the two calculations, but an initial look
shows good agreement.
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