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Abstract

A measurement of the CP asymmetry in B+ → K+µ+µ− decays is presented using
pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, recorded
by the LHCb experiment during 2011 at a centre-of-mass energy of 7 TeV. The
measurement is performed in seven bins of µ+µ− invariant mass squared in the
range 0.05 < q2 < 22.00 GeV2/c4, excluding the J/ψ and ψ(2S) resonance regions.
Production and detection asymmetries are corrected for using the B+ → J/ψK+

decay as a control mode. Averaged over all the bins, the CP asymmetry is found
to be ACP = 0.000± 0.033 (stat.)± 0.005 (syst.)± 0.007 (J/ψK+), where the third
uncertainty is due to the CP asymmetry of the control mode. This is consistent with
the Standard Model prediction.
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F. Dupertuis38, P. Durante37, R. Dzhelyadin34, A. Dziurda25, A. Dzyuba29, S. Easo48,
U. Egede52, V. Egorychev30, S. Eidelman33, D. van Eijk40, S. Eisenhardt49, U. Eitschberger9,
R. Ekelhof9, L. Eklund50,37, I. El Rifai5, Ch. Elsasser39, A. Falabella14,e, C. Färber11,
G. Fardell49, C. Farinelli40, S. Farry51, D. Ferguson49, V. Fernandez Albor36,
F. Ferreira Rodrigues1, M. Ferro-Luzzi37, S. Filippov32, M. Fiore16, C. Fitzpatrick37,
M. Fontana10, F. Fontanelli19,i, R. Forty37, O. Francisco2, M. Frank37, C. Frei37, M. Frosini17,f ,
S. Furcas20, E. Furfaro23,k, A. Gallas Torreira36, D. Galli14,c, M. Gandelman2, P. Gandini58,
Y. Gao3, J. Garofoli58, P. Garosi53, J. Garra Tico46, L. Garrido35, C. Gaspar37, R. Gauld54,
E. Gersabeck11, M. Gersabeck53, T. Gershon47,37, Ph. Ghez4, V. Gibson46, L. Giubega28,
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gUniversità di Urbino, Urbino, Italy
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mUniversità della Basilicata, Potenza, Italy
nLIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
oHanoi University of Science, Hanoi, Viet Nam
pInstitute of Physics and Technology, Moscow, Russia

vi
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The rare decay B+ → K+µ+µ− is a flavour-changing neutral current process mediated
by electroweak loop (penguin) and box diagrams. The absence of tree-level diagrams
for the decay results in a small value of the Standard Model (SM) prediction for the
branching fraction, which is supported by a measurement of (4.36± 0.23)× 10−7 [1].
Physics processes beyond the SM that may enter via the loop and box diagrams could
have large effects on observables of the decay. Examples include the decay rate, the µ+µ−

forward-backward asymmetry [1–3], and the CP asymmetry [2,4], as functions of the µ+µ−

invariant mass squared (q2).
The CP asymmetry is defined as

ACP =
Γ(B− → K−µ+µ−)− Γ(B+ → K+µ+µ−)

Γ(B− → K−µ+µ−) + Γ(B+ → K+µ+µ−)
, (1)

where Γ is the decay rate of the mode. This asymmetry is predicted to be of order 10−4

in the SM [5], but can be significantly enhanced in models beyond the SM [6]. Current
measurements including the dielectron mode, ACP (B → K+`+`−), from BaBar and Belle
give −0.03± 0.14 and 0.04± 0.10, respectively [2, 4], and are consistent with the SM.
The CP asymmetry has already been measured at LHCb in B0 → K∗0µ+µ− decays [7],
ACP = −0.072± 0.040. Assuming that contributions beyond the SM are independent of
the flavour of the spectator quark, ACP should be similar for both B+ → K+µ+µ− and
B0 → K∗0µ+µ− decays.

In this Letter, a measurement of ACP in B+ → K+µ+µ− decays is presented using
pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, recorded at a
centre-of-mass energy of 7 TeV at LHCb in 2011. The inclusion of charge conjugate modes
is implied throughout unless explicitly stated.

The LHCb detector [8] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector
includes a high-precision tracking system consisting of a silicon-strip vertex detector
surrounding the pp interaction region, a large-area silicon-strip detector located upstream
of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream. The combined tracking system provides
a momentum measurement with relative uncertainty that varies from 0.4% at 5 GeV/c
to 0.6% at 100 GeV/c, and impact parameter (IP) resolution of 20µm for tracks with
high transverse momentum (pT). Charged hadrons are identified using two ring-imaging
Cherenkov detectors [9]. Muons are identified by a system composed of alternating layers
of iron and multiwire proportional chambers [10].

Samples of simulated events are used to determine the efficiency of selecting
B+ → K+µ+µ− signal events and to study certain backgrounds. In the simulation, pp
collisions are generated using Pythia 6.4 [11] with a specific LHCb configuration [12].
Decays of hadronic particles are described by EvtGen [13], in which final-state radiation
is generated using Photos [14]. The interaction of the generated particles with the
detector and its response are implemented using the Geant4 toolkit [15] as described in
Ref. [16]. The simulated samples are corrected to reproduce the data distributions of the
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B+ meson pT and vertex χ2, the track χ2 of the kaon, as well as the detector IP resolution,
particle identification and momentum resolution.

Candidate events are first required to pass a hardware trigger, which selects muons
with pT > 1.48 GeV/c [17]. In the subsequent software trigger, at least one of the final-state
particles is required to have pT > 1.0 GeV/c and IP > 100µm with respect to all primary
pp interaction vertices (PVs) in the event. Finally, the tracks of two or more of the
final-state particles are required to form a vertex that is displaced from the PVs.

An initial selection is applied to the B+ → K+µ+µ− candidates to enhance signal decays
and suppress combinatorial background. Candidate B+ mesons must satisfy requirements
on their direction and flight distance, to ensure consistency with originating from the
PV. The decay products must pass criteria regarding the χ2

IP, where χ2
IP is defined as the

difference in χ2 of a given PV reconstructed with and without the considered particle.
There is also a requirement on the vertex χ2 of the µ+µ− pair. All the tracks are required
to have pT > 250 MeV/c.

Additional background rejection is achieved by using a boosted decision tree (BDT) [18]
that implements the AdaBoost algorithm [19]. The BDT uses the pT and χ2

IP of the muons
and the B+ meson candidate, as well as the decay time, vertex χ2, and flight direction of
the B+ candidate and the χ2

IP of the kaon. Data, corresponding to an integrated luminosity
of 0.1 fb−1, are used to optimise this selection, leaving 0.9 fb−1 for the determination of
ACP .

Following the multivariate selection, candidate events pass several requirements to
remove specific sources of background. Particle identification (PID) criteria are applied to
kaon candidates to reduce the number of pions incorrectly identified as kaons. Candidates
with µ+µ− invariant mass in the ranges 2.95 < mµµ < 3.18 GeV/c2 and 3.59 < mµµ <
3.77 GeV/c2 are removed to reject backgrounds from tree level B+ → J/ψ (→ µ+µ−)K+ and
B+ → ψ(2S)(→ µ+µ−)K+ decays. Those in the first range are selected as B+ → J/ψK+

decays, which are used as a control sample. If mKµµ < 5.22 GeV/c2, the vetoes are
extended downwards by 0.25 and 0.19 GeV/c2, respectively, to remove the radiative tails of
the resonant decays. If 5.35 < mKµµ < 5.50 GeV/c2 the vetoes are extended upwards by
0.05 GeV/c2 to remove misreconstructed resonant candidates that appear at large mµµ and
mKµµ. Further vetoes are applied to remove B+ → J/ψK+ events in which the kaon and a
muon have been swapped, and contributions from decays involving charm mesons such as
B+ → D0(→ K+π−)π+ where both pions are misidentified as muons. After these selection
requirements have been applied, there are two sources of background that are difficult to
distinguish from the signal. These are B+ → K+π+π− and B+ → π+µ+µ− decays, which
both contribute at the level of 1% of the signal yield. These peaking backgrounds are
accounted for during the analysis.

In order to perform a measurement of ACP , the production and detection asymmetries
associated with the measurement must be considered. The raw measured asymmetry is,
to first order,

ARAW(B+ → K+µ+µ−) = ACP (B+ → K+µ+µ−) +AP +AD, (2)
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where the production and detection asymmetries are defined as

AP ≡ [R(B−)−R(B+)]/[R(B−) +R(B+)], (3)

AD ≡ [ε(K−)− ε(K+)]/[ε(K−) + ε(K+)], (4)

where R and ε represent the B meson production rate and kaon detection efficiency,
respectively. The detection asymmetry has two components: one due to the different
interactions of positive and negative kaons with the detector material, and a left-right
asymmetry due to particles of different charges being deflected to opposite sides of
the detector by the magnet. The component of the detection asymmetry from muon
reconstruction is small and neglected. Since the LHCb experiment reverses the magnetic
field, about half of the data used in the analysis is taken with each polarity. Therefore, an
average of the measurements with the two polarities is used to suppress significantly the
second effect. To account for both the detection and production asymmetries, the decay
B+ → J/ψK+ is used, which has the same final-state particles as B+ → K+µ+µ− and
very similar kinematic properties. The CP asymmetry in B+ → J/ψK+ decays has been
measured as (1± 7)× 10−3 [20, 21]. Neglecting the difference in the final-state kinematic
properties of the kaon, the production and detection asymmetries are the same for both
modes, and the value of the CP asymmetry can be obtained via

ACP (B+ → K+µ+µ−) = ARAW(B+ → K+µ+µ−)−ARAW(B+ → J/ψK+) +ACP (B+ → J/ψK+). (5)

Differences in the kinematic properties are accounted for by a systematic uncertainty.
In the data set, approximately 1330 B+ → K+µ+µ− and 218,000 B+ → J/ψK+ signal

decays are reconstructed. To measure any variation in ACP as a function of q2, which
improves the sensitivity of the measurement to physics beyond the SM, the B+ → K+µ+µ−

dataset is divided into the seven q2 bins used in Ref. [1]. The measurement is also made
in a bin of 1 < q2 < 6 GeV2/c4, which is of particular theoretical interest. To determine
the number of B+ decays in each bin, a simultaneous unbinned maximum likelihood fit is
performed to the invariant mass distributions of the B+ → K+µ+µ− and B+ → J/ψK+

candidates in the range 5.10 < mKµµ < 5.60 GeV/c2. The signal shape is parameterised by
a Cruijff function [22], and the combinatorial background is described by an exponential
function. All parameters of the signal and combinatorial background are allowed to
vary freely in the fit. Additionally, there is background from partially-reconstructed
decays such as B0 → K∗0(→ K+π−)µ+µ− or B0 → J/ψK∗0(→ K+π−) where the pion is
undetected. For the B+ → K+µ+µ− distribution, these decays are fitted by an ARGUS
function [23] convolved with a Gaussian function to account for detector resolution. For
the B+ → J/ψK+ decays the partially-reconstructed background is modelled by another
Cruijff function. The shapes of the peaking backgrounds, due to B+ → K+π+π− and
B+ → π+µ+µ− decays, are taken from fits to simulated events.

In each q2 bin, the B+ → J/ψK+ and B+ → K+µ+µ− data sets are divided according
to the charge of the B+ meson and magnet polarity, providing eight distinct subsets.
These are fitted simultaneously with the parameters of the signal Cruijff function common
for all eight subsets. For each subset, the only independent fitting parameters are the
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Figure 1: Invariant mass distributions of B+ → K+µ+µ− candidates for the full q2 range. The
results of the unbinned maximum likelihood fits are shown with blue, solid lines. Also shown
are the signal component (red, short-dashed), the combinatorial background (grey, long-dashed),
and the partially-reconstructed background (magenta, dot-dashed). The peaking backgrounds
B+ → K+π+π− (green, double-dot-dashed) and B+ → π+µ+µ− (teal, dotted) are also shown
under the signal peak. The four datasets are (a) B+ and (b) B− for one magnet polarity, and
(c) B+ and (d) B− for the other.

combined yield of the B+ and B− decays and the values of ARAW for the signal, control and
background modes for each magnet polarity. The fits to the invariant mass distributions
of the B+ → K+µ+µ− candidates in the full q2 range are shown in Fig. 1.

The value of ACP for each magnet polarity is determined from Eq. 5, and an average
with equal weights is taken to obtain a single value for the q2 bin. To obtain the final
value of ACP for the full dataset, an average is taken of the values in each q2 bin, weighted
according to the signal efficiency and the number of B+ → K+µ+µ− decays in the bin,

ACP =

∑7
i=1(NiAiCP )/εi∑7

i=1Ni/εi
, (6)

where Ni, εi, and AiCP are the signal yield, signal efficiency, and the fitted value of the CP
asymmetry in the ith q2 bin.

Several assumptions are made about the backgrounds. The partially-reconstructed
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Table 1: Systematic uncertainties on ACP from non-cancelling asymmetries arising from kinematic
differences between B+ → J/ψK+ and B+ → K+µ+µ− decays, and fit uncertainties arising
from the choice of signal shape, mass fit range and combinatorial background shape, and
from the treatment of the asymmetries in the B+ → π+µ+µ− and partially-reconstructed (PR)
backgrounds. The total is the sum in quadrature of each component.

Residual Signal Mass Comb. ACP in ACP in
q2 bin ( GeV2/c4) asymmetries shape range shape B+ → π+µ+µ− PR Total

0.05 < q2 < 2.00 0.005 0.005 0.002 0.002 0.004 0.002 0.008
2.00 < q2 < 4.30 0.004 0.001 0.005 0.009 0.005 0.001 0.012
4.30 < q2 < 8.68 0.001 0.001 0.001 0.001 0.005 0.002 0.005

10.09 < q2 < 12.86 0.003 0.005 0.023 0.003 0.003 0.001 0.024
14.18 < q2 < 16.00 0.006 0.001 0.004 0.003 < 0.001 0.001 0.008
16.00 < q2 < 18.00 0.005 0.007 0.017 < 0.001 < 0.001 0.001 0.019
18.00 < q2 < 22.00 0.008 0.001 0.014 < 0.001 0.001 0.001 0.016

Weighted average 0.001 < 0.001 0.003 0.001 0.003 < 0.001 0.005

1.00 < q2 < 6.00 0.002 < 0.001 0.009 0.002 0.004 0.002 0.010

background is assumed to exhibit no CP asymmetry. For B+ → π+µ+µ−, ACP is also
assumed to be zero [24]. For the B+ → K+π+π− decay, ACP in each q2 bin is taken
from a recent LHCb measurement [25]. The effect of these assumptions on the result is
investigated as a systematic uncertainty.

Various sources of systematic uncertainty are considered. The analysis relies on the
assumption that the B+ → K+µ+µ− and B+ → J/ψK+ decays have the same final-state
kinematic distributions, so that the relation in Eq. 5 is exact. To estimate the bias
associated with this assumption, the kinematic distributions of B+ → J/ψK+ decays are
reweighted to match those of B+ → K+µ+µ−, and the value of ARAW is recalculated. The
variables used are the momentum, pT and pseudorapidity of the B+ and K+ mesons, as
well as the B+ decay time and the position of the kaon in the detector. The difference
between the two values of ARAW for each variable is taken as the systematic uncertainty.
The total systematic uncertainty associated to the different kinematic behaviour of the two
decays in each q2 bin is calculated by adding each individual contribution in quadrature.

The choice of fit model also introduces systematic uncertainties. The fit is repeated using
a different signal model, replacing the Cruijff function with the sum of two Crystal Ball
functions [26] that have the same mean and tail parameters, but different Gaussian widths.
The difference in the value of ACP using these two fits is assigned as the uncertainty. The
fit is also repeated using a reduced mass range of 5.17 < mKµµ < 5.60 GeV/c2 to investigate
the effect of excluding the partially-reconstructed background. The difference in results
obtained by modelling the combinatorial background using a second-order polynomial,
rather than an exponential function, produces a small systematic uncertainty.

Uncertainties also arise from the assumptions made about the asymmetries in
background events. Phenomena beyond the SM could cause the CP asymmetry
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Table 2: Values of ACP and the signal yields in the seven q2 bins, the weighted average, and
their associated uncertainties.

Stat. Syst.
q2 bin ( GeV2/c4) B+ → K+µ+µ− yield ACP (B+ → K+µ+µ−) uncertainty uncertainty

0.05 < q2 < 2.00 164± 14 −0.152 0.085 0.008
2.00 < q2 < 4.30 167± 14 −0.008 0.094 0.012
4.30 < q2 < 8.68 339± 21 0.070 0.067 0.005

10.09 < q2 < 12.86 221± 17 0.060 0.081 0.024
14.18 < q2 < 16.00 145± 13 −0.079 0.091 0.008
16.00 < q2 < 18.00 145± 13 0.100 0.093 0.019
18.00 < q2 < 22.00 120± 13 −0.070 0.111 0.016

Weighted average 0.000 0.033 0.005

1.00 < q2 < 6.00 362± 21 −0.019 0.061 0.010

in B+ → π+µ+µ− decays to be large [24], and so the analysis is performed again
for values of ACP (B+ → π+µ+µ−) = ±0.5, with the larger of the two deviations in
ACP (B+ → K+µ+µ−) taken as the systematic uncertainty. As the partially-reconstructed
background can arise from B0 → K∗0µ+µ− decays, the value of ACP for this source
background is taken to be −0.072 [7], the value from the LHCb measurement, neglect-
ing any further CP violation in angular distributions. The difference in the fit result
compared to the zero ACP hypothesis is taken as the systematic uncertainty. Variations
in ACP (B+ → K+π+π−) have a negligible effect on the final result. A summary of the
systematic uncertainties is shown in Table 1. The value of ACP calculated by performing
the fits on the data set integrated over q2 is consistent with that from the weighted average
of the q2 bins.

The results for ACP in each q2 bin and the weighted average are displayed in Table 2,
as well as in Fig. 2. The value of the raw asymmetry in B+ → J/ψK+ determined from
the fit is −0.016± 0.002. The CP asymmetry in B+ → K+µ+µ− decays is measured to be

ACP = 0.000± 0.033 (stat.)± 0.005 (syst.)± 0.007 (J/ψK+),

where the third uncertainty is due to the uncertainty on the known value of
ACP (B+ → J/ψK+). This compares with the current world average of −0.05± 0.13 [20],
and previous measurements including the dielectron final-state [2, 4]. This result is consis-
tent with the SM, as well as the B0 → K∗0µ+µ− decay mode, and improves the precision
of the current world average for the dimuon mode by a factor of four. With the recent
observation of resonant structure in the low-recoil region above the ψ(2S) resonance [27],
care should be taken when interpreting the result in this region. Interesting effects due to
physics beyond the SM are possible through interference with this resonant structure, and
could be investigated in a future update of the measurement of ACP .
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