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An analysis of B+ → K 0
S π+ and B+ → K 0

S K + decays is performed with the LHCb experiment. The pp

collision data used correspond to integrated luminosities of 1 fb−1 and 2 fb−1 collected at centre-of-
mass energies of

√
s = 7 TeV and

√
s = 8 TeV, respectively. The ratio of branching fractions and the

direct CP asymmetries are measured to be B(B+ → K 0
S K +)/B(B+ → K 0

S π+) = 0.064 ± 0.009 (stat.) ±
0.004 (syst.), ACP(B+ → K 0

S π+) = −0.022 ± 0.025 (stat.) ± 0.010 (syst.) and ACP(B+ → K 0
S K +) =

−0.21 ± 0.14 (stat.) ± 0.01 (syst.). The data sample taken at
√

s = 7 TeV is used to search for
B+

c → K 0
S K + decays and results in the upper limit ( fc · B(B+

c → K 0
S K +))/( fu · B(B+ → K 0

S π+)) <

5.8 × 10−2 at 90% confidence level, where fc and fu denote the hadronisation fractions of a b̄ quark
into a B+

c or a B+ meson, respectively.
© 2013 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

Studies of charmless two-body B meson decays allow tests of
the Cabibbo–Kobayashi–Maskawa picture of CP violation [1,2] in
the Standard Model (SM). They include contributions from loop
amplitudes, and are therefore particularly sensitive to processes
beyond the SM [3–7]. However, due to the presence of poorly
known hadronic parameters, predictions of CP violating asymme-
tries and branching fractions are imprecise. This limitation may
be overcome by combining measurements from several charmless
two-body B meson decays and using flavour symmetries [3]. More
precise measurements of the branching fractions and CP violating
asymmetries will improve the determination of the size of SU(3)
breaking effects and the magnitudes of colour-suppressed and an-
nihilation amplitudes [8,9].

In B+ → K 0
S K + and B+ → K 0

S π+ decays,1 gluonic loop, colour-
suppressed electroweak loop and annihilation amplitudes con-
tribute. Measurements of their branching fractions and CP asym-
metries allow to check for the presence of sizeable contributions
from the latter two [6]. Further flavour symmetry checks can also
be performed by studying these decays [10]. First measurements
have been performed by the BaBar and Belle experiments [11,12].
The world averages are ACP(B+ → K 0

S π+) = −0.015 ± 0.019,
ACP(B+ → K 0

S K +) = 0.04 ± 0.14 and B(B+ → K 0
S K +)/B(B+ →

K 0
S π+) = 0.050 ± 0.008, where

✩ © CERN for the benefit of the LHCb Collaboration.
1 The inclusion of charge conjugated decay modes is implied throughout this Let-

ter unless otherwise stated.

ACP(B+ → K 0
S π+) ≡ Γ (B− → K 0

S π−) − Γ (B+ → K 0
S π+)

Γ (B− → K 0
S π−) + Γ (B+ → K 0

S π+)
(1)

and ACP(B+ → K 0
S K +) is defined in an analogous way.

Since the annihilation amplitudes are expected to be small in
the SM and are often accompanied by other topologies, they are
difficult to determine unambiguously. These can however be mea-
sured cleanly in B+

c → K 0
S K + decays, where other amplitudes do

not contribute. Standard Model predictions for the branching frac-
tions of pure annihilation B+

c decays range from 10−8 to 10−6

depending on the theoretical approach employed [13].
In this Letter, a measurement of the ratio of branching fractions

of B+ → K 0
S K + and B+ → K 0

S π+ decays with the LHCb detector
is reported along with a determination of their CP asymmetries.
The data sample corresponds to integrated luminosities of 1 and
2 fb−1, recorded during 2011 and 2012 at centre-of-mass energies
of 7 and 8 TeV, respectively. A search for the pure annihilation
decay B+

c → K 0
S K + based on the data collected at 7 TeV is also

presented. The B+ → K 0
S K + and B+

c → K 0
S K + signal regions, along

with the raw CP asymmetries, were not examined until the event
selection and the fit procedure were finalised.

2. Detector, data sample and event selection

The LHCb detector [14] is a single-arm forward spectrometer
covering the pseudorapidity range 2 < η < 5, designed for the
study of particles containing b or c quarks. The detector includes
a high-precision tracking system consisting of a silicon-strip vertex
detector (VELO) surrounding the pp interaction region, a large-area
silicon-strip detector located upstream of a dipole magnet with a
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bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream. The magnetic
field polarity is regularly flipped to reduce the effect of detection
asymmetries. The pp collision data recorded with each of the two
magnetic field polarities correspond to approximately half of the
data sample. The combined tracking system provides a momentum
measurement with relative uncertainty that varies from 0.4% at
5 GeV/c to 0.6% at 100 GeV/c, and an impact parameter resolution
of 20 μm for tracks with high transverse momentum (pT). Charged
hadrons are identified using two ring-imaging Cherenkov detec-
tors [15]. Photon, electron and hadron candidates are identified by
a calorimeter system consisting of scintillating-pad and preshower
detectors, an electromagnetic calorimeter and a hadronic calorime-
ter. Muons are identified by a system composed of alternating
layers of iron and multiwire proportional chambers.

Simulated samples are used to determine efficiencies and the
probability density functions (PDFs) used in the fits. The pp col-
lisions are generated using Pythia 6.4 [16] with a specific LHCb-
configuration [17]. Decays of hadronic particles are described by
EvtGen [18], in which final state radiation is generated using Pho-

tos [19]. The interaction of the generated particles with the detec-
tor and its response are implemented using the Geant4 toolkit [20]
as described in Ref. [21].

The trigger [22] consists of a hardware stage, based on infor-
mation from the calorimeter and muon systems, followed by a
software stage, which performs a full event reconstruction. The
candidates used in this analysis are triggered at the hardware stage
either directly by one of the particles from the B candidate decay
depositing a transverse energy of at least 3.6 GeV in the calorime-
ters, or by other activity in the event (usually associated with
the decay products of the other b-hadron decay produced in the
pp → bb̄ X interaction). Inclusion of the latter category increases
the acceptance of signal decays by approximately a factor two.
The software trigger requires a two- or three-particle secondary
vertex with a high scalar sum of the pT of the particles and signif-
icant displacement from the primary pp interaction vertices (PVs).
A multivariate algorithm [23] is used for the identification of sec-
ondary vertices consistent with the decay of a b hadron.

Candidate B+ → K 0
S π+ and B+ → K 0

S K + decays are formed by
combining a K 0

S → π+π− candidate with a charged track that is
identified as a pion or kaon, respectively. Only tracks in a fidu-
cial volume with small detection asymmetries [24] are accepted
in the analysis. Pions used to reconstruct the K 0

S decays are re-
quired to have momentum p > 2 GeV/c, χ2

IP > 9, and track seg-
ments in the VELO and in the downstream tracking chambers.
The χ2

IP is defined as the difference in χ2 of a given PV recon-
structed with and without the considered particle. The K 0

S candi-
dates have p > 8 GeV/c, pT > 0.8 GeV/c, a good quality vertex fit,
a mass within ±15 MeV/c2 of the known value [25], and are well-
separated from all PVs in the event. It is also required that their
momentum vectors do not point back to any of the PVs in the
event.

Pion and kaon candidate identification is based on the infor-
mation provided by the RICH detectors [15], combined in the
difference in the logarithms of the likelihoods for the kaon and
pion hypotheses (DLLKπ ). A track is identified as a pion (kaon) if
DLLKπ � 3 (DLLKπ > 3), and p < 110 GeV/c, a momentum beyond
which there is little separation between pions and kaons. The ef-
ficiencies of these requirements are 95% and 82% for signal pions
and kaons, respectively. The misidentification probabilities of pi-
ons to kaons and kaons to pions are 5% and 18%. These figures are
determined using a large sample of D∗+ → D0(→ K −π+)π+ de-
cays reweighted by the kinematics of the simulated signal decays.
Tracks that are consistent with particles leaving hits in the muon

detectors are rejected. Pions and kaons are also required to have
pT > 1 GeV/c and χ2

IP > 2.
The B candidates are required to have the scalar pT sum of

the K 0
S and the π+(or K +) candidates that exceeds 4 GeV/c, to

have χ2
IP < 10 and p > 25 GeV/c and to form a good-quality ver-

tex well separated from all the PVs in the event and displaced
from the associated PV by at least 1 mm. The daughter (K 0

S or
π+/K +) with the larger pT is required to have an impact param-
eter above 50 μm. The angle θdir between the B candidate’s line
of flight and its momentum is required to be less than 32 mrad.
Background for K 0

S candidates is further reduced by requiring the
K 0

S decay vertex to be significantly displaced from the recon-
structed B decay vertex along the beam direction (z-axis), with
Sz ≡ (zK 0

S
− zB)/

√
σ 2

z,K 0
S
+ σ 2

z,B > 2, where σ 2
z,K 0

S
and σ 2

z,B are the

uncertainties on the z positions of the K 0
S and B decay vertices

zK 0
S

and zB , respectively.

Boosted decision trees (BDT) [26] are trained using the
AdaBoost algorithm [27] to further separate signal from back-
ground. The discriminating variables used are the following: Sz;
the χ2

IP of the K 0
S and π+/K + candidates; pT, cos(θdir), χ2

VS of the
B candidates defined as the difference in χ2 of fits in which the
B+ decay vertex is constrained to coincide with the PV or not;
and the imbalance of pT, ApT ≡ (pT(B) − ∑

pT)/(pT(B) + ∑
pT)

where the scalar pT sum is for all the tracks not used to form
the B candidate and which lie in a cone around the B momen-
tum vector. This cone is defined by a circle of radius 1 unit in the
pseudorapidity-azimuthal angle plane, where the azimuthal angle
is measured in radians. Combinatorial background tends to be less
isolated with smaller pT imbalance than typical b-hadron decays.
The background training samples are taken from the upper B in-
variant mass sideband region in data (5450 < mB < 5800 MeV/c2),
while those of the signal are taken from simulated B+ → K 0

S π+
and B+ → K 0

S K + decays. Two discriminants are constructed to
avoid biasing the background level in the upper B mass sideband
while making maximal use of the available data for training the
BDT. The K 0

S π+ and K 0
S K + samples are merged to prepare the

two BDTs. They are trained using two independent equal-sized
subsamples, each corresponding to half of the whole data sam-
ple. Both BDT outputs are found to be in agreement with each
other in all aspects and each of them is applied to the other sam-
ple. For each event not used to train the BDTs, one of the two
BDT outputs is arbitrarily applied. In this way, both BDT discrimi-
nants are applied to equal-sized data samples and the number of
events used to train the BDTs is maximised without bias of the
sideband region and the simulated samples used for the efficiency
determination. The choice of the requirement on the BDT output
(Q) is performed independently for the K 0

S π± and K 0
S K ± samples

by evaluating the signal significance NS/
√

NS + NB, where NS (NB)
denotes the expected number of signal (background) candidates.
The predicted effective pollution from mis-identified B+ → K 0

S π+
decays in the B+ → K 0

S K + signal mass region is taken into account
in the calculation of NB. The expected signal significance is max-
imised by applying Q > 0.4 (0.8) for B+ → K 0

S π+(B+ → K 0
S K +)

decays.

3. Asymmetries and signal yields

The CP-summed B+ → K 0
S K + and B+ → K 0

S π+ yields are mea-
sured together with the raw charge asymmetries by means of a
simultaneous unbinned extended maximum likelihood fit to the
B± candidate mass distributions of the four possible final states
(B± → K 0

S π± and B± → K 0
S K ±). Five components contribute to

each of the mass distributions. The signal is described by the sum
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Fig. 1. Invariant mass distributions of selected (a) B− → K 0
S π− , (b) B+ → K 0

S π+ , (c) B− → K 0
S K − and (d) B+ → K 0

S K + candidates. Data are points with error bars, the
B+ → K 0

S π+(B+ → K 0
S K +) components are shown as red falling hatched (green rising hatched) curves, combinatorial background is grey dash-dotted, partially reconstructed

B0
s (B0/B+) backgrounds are dotted magenta (dashed orange). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this Letter.)
of a Gaussian distribution and a Crystal Ball function (CB) [28] with
identical peak positions determined in the fit. The CB component
models the radiative tail. The other parameters, which are deter-
mined from fits of simulated samples, are common for both decay
modes. The width of the CB function is, according to the simula-
tion, fixed to be 0.43 times that of the Gaussian distribution, which
is left free in the fit.

Due to imperfect particle identification, B+ → K 0
S π+(B+ →

K 0
S K +) decays can be misidentified as K 0

S K +(K 0
S π+) candidates.

The corresponding PDFs are empirically modelled with the sum of
two CB functions. For the B+ → K 0

S π+(B+ → K 0
S K +) decay, the

misidentification shape has a significant high (low) mass tail. The
parameters of the two CB functions are determined from the sim-
ulation, and then fixed in fits to data.

Partially reconstructed decays, coming mainly from B0 and B+
(labelled B in this section), and B0

s meson decays to open charm
and to a lesser extent from three-body charmless B and B0

s decays,
are modelled with two PDFs. These PDFs are identical in the four
possible final states. They are modelled by a step function with
a threshold mass equal to mB − mπ (mB0

s
− mπ ) [25] for B(B0

s )

decays, convolved with a Gaussian distribution of width 20 MeV/c2

to account for detector resolution effects. Backgrounds from Λ0
b

decays are found to be negligible. The combinatorial background is
assumed to have a flat distribution in all categories.

The signal and background yields are varied in the fit, apart
from those of the cross-feed contributions, which are constrained
using known ratios of selection efficiencies from the simulation
and particle identification and misidentification probabilities. The
ratio of B+ → K 0

S K +(B+ → K 0
S π+) events reconstructed and se-

lected as K 0
S π+(K 0

S K +) with respect to K 0
S K +(K 0

S π+) are 0.245 ±
0.018 (0.0418 ± 0.0067), where the uncertainties are dominated
by the finite size of the simulated samples. These numbers ap-
pear in Gaussian terms inserted in the fit likelihood function. The
charge asymmetries of the backgrounds vary independently in the

fit, apart from those of the cross-feed contributions, which are
identical to those of the properly reconstructed signal decay.

Fig. 1 shows the four invariant mass distributions along with
the projections of the fit. The measured width of the Gaussian
distribution used in the signal PDF is found to be approximately
20% larger than in the simulation, and is included as a system-
atic uncertainty. The CP-summed B+ → K 0

S π+ and B+ → K 0
S K +

signal yields are found to be N(B+ → K 0
S π+) = 1804 ± 47 and

N(B+ → K 0
S K +) = 90 ± 13, with raw CP asymmetries Araw(B+ →

K 0
S π+) = −0.032 ± 0.025 and Araw(B+ → K 0

S K +) = −0.23 ± 0.14.
All background asymmetries are found to be consistent with zero
within two standard deviations. By dividing the sample in terms of
data taking periods and magnet polarity, no discrepancies of more
than two statistical standard deviations are found in the raw CP
asymmetries.

4. Corrections and systematic uncertainties

The ratio of branching fractions is determined as

B(B+ → K 0
S K +)

B(B+ → K 0
S π+)

= N(B+ → K 0
S K +)

N(B+ → K 0
S π+)

· rsel · rPID, (2)

where the ratio of selection efficiencies is factorised into two terms
representing the particle identification,

rPID ≡ εPID(B+ → K 0
S π+)

εPID(B+ → K 0
S K +)

, (3)

and the rest of the selection,

rsel ≡ εsel(B+ → K 0
S π+)

εsel(B+ → K 0
S K +)

· (4)

The raw CP asymmetries of the B+ → K 0
S π+ and B+ → K 0

S K +
decays are corrected for detection and production asymmetries
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Adet+prod, as well as for a small contribution due to CP violation
in the neutral kaon system (AK 0

S
). The latter is assumed to be the

same for both B+ → K 0
S π+ and B+ → K 0

S K + decays. At first order,
the B+ → K 0

S π+CP asymmetry can be written as

ACP(B+ → K 0
S π+) ≈ Araw

(
B+ → K 0

S π+)

−Adet+prod
(

B+ → K 0
S π+)

+AK 0
S

and similarly for B+ → K 0
S K + , up to a sign flip in front of AK 0

S
.

Selection efficiencies are determined from simulated samples
generated at a centre-of-mass energy of 8 TeV. The ratio of se-
lection efficiencies is found to be rsel = 1.111 ± 0.019, where the
uncertainty is from the limited sample sizes. To first order, effects
from imperfect simulation should cancel in the ratio of efficien-
cies. In order to assign a systematic uncertainty for a potential
deviation of the ratio of efficiencies in 7 TeV data with respect
to 8 TeV, the B+ → K 0

S π+ and B+ → K 0
S K + simulated events are

reweighted by a linear function of the B-meson momentum such
that the average B momentum is 13% lower, corresponding to the
ratio of beam energies. The 0.7% relative difference between the
nominal and reweighted efficiency ratio is assigned as a system-
atic uncertainty. The distribution of the BDT output for simulated
B+ → K 0

S π+ events is found to be consistent with the observed
distribution of signal candidates in the data using the sPlot tech-
nique [29], where the discriminating variable is taken to be the
B invariant mass. The total systematic uncertainty related to the
selection is 1.8%.

The determination of the trigger efficiencies is subject to varia-
tions in the data-taking conditions and, in particular, to the ageing
of the calorimeter system. These effects are mitigated by regular
changes in the gain of the calorimeter system. A large sample of
D∗+ → D0(→ K −π+)π+ decays is used to measure the trigger
efficiency in bins of pT for pions and kaons from signal decays.
These trigger efficiencies are averaged using the pT distributions
obtained from simulation. The hardware stage trigger efficiencies
obtained by this procedure are in agreement with those obtained
in the simulation within 1.1%, which is assigned as systematic un-
certainty on the ratio of branching fractions. The same procedure
is also applied to B+ and B− decays separately, and results in 0.5%
systematic uncertainty on the determination of the CP asymme-
tries.

Particle identification efficiencies are determined using a large
sample of D∗+ → D0(→ K −π+)π+ decays. The kaons and pions
from this calibration sample are reweighted in 18 bins of momen-
tum and 4 bins of pseudorapidity, according to the distribution of
signal kaons and pions from simulated B+ → K 0

S K + and B+ →
K 0

S π+ decays. The ratio of efficiencies is rPID = 1.154 ± 0.025,
where the uncertainty is given by the limited size of the simulated
samples. The systematic uncertainty associated with the binning
scheme is determined by computing the deviation of the average
efficiency calculated using the nominal binning from that obtained
with a single bin in each kinematic variable. A variation of 0.7%
(1.3%) is observed for pions (kaons). A systematic uncertainty of
0.5% is assigned due to variations of the efficiencies, determined
by comparing results obtained with the 2011 and 2012 calibration
samples. All these contributions are added in quadrature to obtain
2.7% relative systematic uncertainty on the particle identification
efficiencies. Charge asymmetries due to the PID requirements are
found to be negligible.

Uncertainties due to the modelling of the reconstructed in-
variant mass distributions are assigned by generating and fitting
pseudo-experiments. Parameters of the signal and cross-feed dis-

tributions are varied according to results of independent fits to the
B+ → K 0

S K + and B+ → K 0
S π+ simulated samples. The relative un-

certainty on the ratio of yields from mis-modelling of the signal
(cross-feed) is 2.4% (2.7%) mostly affecting the small B+ → K 0

S K +
yield. The width of the Gaussian resolution function used to model
the partially reconstructed backgrounds is increased by 20%, while
the other fixed parameters of the partially reconstructed and com-
binatorial backgrounds are left free in the fit, in turn, to obtain a
relative uncertainty of 3.3%. The total contribution of the fit model
to the systematic uncertainty is 4.9%. Their contribution to the
systematic uncertainties on the CP asymmetries is found to be neg-
ligible.

Detection and production asymmetries are measured using ap-
proximately one million B± → J/ψ K ± decays collected in 2011
and 2012. Using a kinematic and topological selection similar to
that employed in this analysis, a high purity sample is obtained.
The raw CP asymmetry is measured to be A(B± → J/ψ K ±) =
(−1.4 ± 0.1)% within 20 MeV/c2 of the B+ meson mass. The same
result is obtained by fitting the reconstructed invariant mass with
a similar model to that used for the B+ → K 0

S π+ and B+ → K 0
S K +

fits. This asymmetry is consistent between bins of momentum
and pseudorapidity within 0.5%, which is assigned as the corre-
sponding uncertainty. The CP asymmetry in B± → J/ψ K ± decays
is ACP(B± → J/ψ K ±) = (+0.5 ± 0.3)%, where the value is the
weighted average of the values from Refs. [25] and [30]. This leads
to a correction of Adet+prod(B+ → K 0

S K +) = (−1.9 ± 0.6)%. The
combined production and detection asymmetry for B+ → K 0

S π+
decays is expressed as Adet+prod(B+ → K 0

S π+) = Adet+prod(B+ →
K 0

S K +) + AKπ , where the kaon-pion detection asymmetry is
AKπ ≈ AK − Aπ = (1.0 ± 0.5)% [31]. The assigned uncertainty
takes into account a potential dependence of the difference of
asymmetries as a function of the kinematics of the tracks. The
total correction to ACP(B+ → K 0

S π+) is Adet+prod(B+ → K 0
S π+) =

(−0.9 ± 0.8)%.
Potential effects from CP violation in the neutral kaon system,

either directly via CP violation in the neutral kaon system [32]
or via regeneration of a K 0

S component through interactions of a
K 0

L state with material in the detector [33], are also considered.
The former is estimated [34] by fitting the background subtracted
[29] decay time distribution of the observed B+ → K 0

S π+ decays
and contributes 0.1% to the observed asymmetry. The systematic
uncertainty on this small effect is chosen to have the same magni-
tude as the correction itself. The latter has been studied [35] and
is small for decays in the LHCb acceptance and thus no correc-
tion is applied. The systematic uncertainty assigned for this as-
sumption is estimated by using the method outlined in Ref. [33].
Since the K 0

S decays reconstructed in this analysis are concen-
trated at low lifetimes, the two effects are of similar sizes and have
the same sign. Thus an additional systematic uncertainty equal to
the size of the correction applied for CP violation in the neutral
kaon system and 100% correlated with it, is assigned. It results in
AK 0

S
= (0.1±0.2)%. A summary of the sources of systematic uncer-

tainty and corrections to the CP asymmetries are given in Table 1.
Total systematic uncertainties are calculated as the sum in quadra-
ture of the individual contributions.

5. Search for B+
c → K 0

S K + decays

An exploratory search for B+
c → K 0

S K + decays is performed
with the data sample collected in 2011, corresponding to an in-
tegrated luminosity of 1 fb−1. The same selection as for the B+ →
K 0

S K + decays is used, only adding a proton veto DLLpK < 10 to
the K + daughter, which is more than 99% efficient. This is im-
plemented to reduce a significant background from baryons in the
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Fig. 2. (Left) Invariant mass distribution of selected B+
c → K 0

S K + candidates. Data are points with error bars and the curve represents the fitted function. (Right) The number
of events and the corresponding value of rB+

c
. The central value (dotted line) and the upper and lower 90% statistical confidence region bands are obtained using the Feldman

and Cousins approach [36] (dashed lines). The solid lines includes systematic uncertainties. The gray outline of the box shows the obtained upper limit of rB+
c

for the
observed number of 2.8 events.
Table 1
Corrections (above double line) and systematic uncertainties (below double line).
The relative uncertainties on the ratio of branching fractions are given in the first
column. The absolute corrections and related uncertainties on the CP asymmetries
are given in the next two columns. The last column gathers the relative systematic
uncertainties contributing to rB+

c
. All values are given as percentages.

Source B ratio ACP B+ → K 0
S π+ ACP B+ → K 0

S K + B+
c

Adet+prod – −0.9 −1.9 –
AK 0

S
– 0.1 0.1 –

Selection 1.8 – – 6.1
Trigger 1.1 0.5 0.5 1.1
Particle identification 2.7 – – 3.6
Fit model 4.9 – – 2.0
Adet+prod – 0.8 0.6 –
AK 0

S
– 0.2 0.2 –

Total syst. uncertainty 6.0 1.0 0.8 7.4

invariant mass region considered for this search. The ratios of se-
lection and particle identification efficiencies are rsel = 0.306 ±
0.012 and rPID = 0.819 ± 0.027, where the uncertainties are from
the limited size of the simulated samples. The related systematic
uncertainties are estimated in a similar way as for the measure-
ment of B(B+ → K 0

S K +)/B(B+ → K 0
S π+). The B+ → K 0

S π+ yield
is also evaluated with the 2011 data only. The B+

c signal yield is
determined by fitting a single Gaussian distribution with the mean
fixed to the B+

c mass [25] and the width fixed to 1.2 times the
value obtained from simulation to take into account the worse
resolution in data. The combinatorial background is assumed to
be flat. The invariant mass distribution and the superimposed fit
are presented in Fig. 2 (left). Pseudo-experiments are used to eval-
uate the biases in the fit procedure and the systematic uncer-
tainties are evaluated by assuming that the combinatorial back-
ground has an exponential slope. A similar procedure is used to
take into account an uncertainty related to the assumed width of
the signal distribution. The 20% correction applied to match the
observed resolution in data, is assumed to estimate this uncer-
tainty.

The Feldman and Cousins approach [36] is used to build 90%
confidence region bands that relate the true value of rB+

c
= ( fc ·

B(B+
c → K 0

S K +))/( fu · B(B+ → K 0
S π+)) to the measured number

of signal events, and where fc and fu are the hadronisation frac-
tion of a b into a B+

c and a B+ meson, respectively. All of the
systematic uncertainties are included in the construction of the
confidence region bands by inflating the width of the Gaussian
functions used to build the ranking variable of the Feldman and
Cousins procedure. The result is shown in Fig. 2 (right) and gives
the upper limit

rB+
c

≡ fc

fu
· B(B+

c → K 0
S K +)

B(B+ → K 0
S π+)

< 5.8 × 10−2 at 90% confidence level.

This is the first upper limit on a B+
c meson decay into two light

quarks.

6. Results and summary

The decays B+ → K 0
S K + and B+ → K 0

S π+ have been studied
using a data sample corresponding to an integrated luminosity of
3 fb−1, collected in 2011 and 2012 by the LHCb detector and the
ratio of branching fractions and CP asymmetries are found to be

B(B+ → K 0
S K +)

B(B+ → K 0
S π+)

= 0.064 ± 0.009 (stat.) ± 0.004 (syst.),

ACP(B+ → K 0
S π+) = −0.022 ± 0.025 (stat.) ± 0.010 (syst.),

and

ACP(B+ → K 0
S K +) = −0.21 ± 0.14 (stat.) ± 0.01 (syst.).

These results are compatible with previous determinations
[11,12]. The measurements of ACP(B+ → K 0

S K +) and B(B+ →
K 0

S K +)/B(B+ → K 0
S π+) are the best single determinations to date.

A search for B+
c → K 0

S K + decays is also performed with a data
sample corresponding to an integrated luminosity of 1 fb−1. The
upper limit

fc

fu
· B(B+

c → K 0
S K +)

B(B+ → K 0
S π+)

< 5.8 × 10−2 at 90% confidence level

is obtained. Assuming fc � 0.001 [13], fu = 0.33 [25,37,38], and
B(B+ → K 0π+) = (23.97 ± 0.53 (stat.) ± 0.71 (syst.)) × 10−6 [12],
an upper limit B(B+

c → K̄ 0 K +) < 4.6 × 10−4 at 90% confidence
level is obtained. This is about two to four orders of magnitude
higher than theoretical predictions, which range from 10−8 to
10−6 [13]. With the large data samples already collected by the
LHCb experiment, other two-body B+

c decay modes to light quarks
such as B+

c → K̄ ∗0 K + and B+
c → φK + may be searched for.
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