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The CP-violating asymmetry as
sl is studied using semileptonic decays of B0

s and B0
s mesons produced in

pp collisions at a centre-of-mass energy of 7 TeV at the LHC, exploiting a data sample corresponding
to an integrated luminosity of 1.0 fb−1. The reconstructed final states are D±

s μ∓, with the D±
s particle

decaying in the φπ± mode. The D±
s μ∓ yields are summed over B0

s and B0
s initial states, and integrated

with respect to decay time. Data-driven methods are used to measure efficiency ratios. We obtain as
sl =

(−0.06 ± 0.50 ± 0.36)%, where the first uncertainty is statistical and the second systematic.
© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction

The CP asymmetry in B0
s –B0

s mixing is a sensitive probe of new
physics. In the neutral B system (B0 or B0

s ), the mixing of the
flavour eigenstates (the neutral B and its antiparticle B) is gov-
erned by a 2 × 2 complex effective Hamiltonian matrix [1](

M11 − i
2 Γ11 M12 − i

2 Γ12

M∗
12 − i

2 Γ ∗
12 M22 − i

2 Γ22

)
, (1)

which operates on the neutral B and B flavour eigenstates. The
mass eigenstates have eigenvalues MH and ML. Other measurable
quantities are the mass difference �M , the width difference �Γ ,
and the semileptonic (or flavour-specific) asymmetry asl. These
quantities are related to the off-diagonal matrix elements and the
phase φ12 ≡ arg(−M12/Γ12) by

�M ≡ MH − ML = 2|M12|
(

1 − 1

8

|Γ12|2
|M12|2 sin2 φ12 + · · ·

)
,

�Γ ≡ ΓL − ΓH = 2|Γ12| cosφ12

(
1 + 1

8

|Γ12|2
|M12|2 sin2 φ12 + · · ·

)
,

asl ≡ Γ (B(t) → f ) − Γ (B(t) → f̄ )

Γ (B(t) → f ) + Γ (B(t) → f̄ )
� �Γ

�M
tanφ12, (2)

where B(t) is the state into which a produced B meson has
evolved after a proper time t measured in the meson rest frame,
and f indicates a flavour-specific final state. The term flavour-
specific means that the final state is only reachable by the decay
of the B meson, and consequently reachable by a meson originally

✩ This is an open-access article distributed under the terms of the Creative Com-
mons Attribution License, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author and source are credited.

produced as a B only through mixing. We use the semileptonic
flavour specific final state and thus refer to this quantity as asl.
Note that asl is decay time independent. Throughout the Letter,
mention of a specific channel implies the inclusion of the charge-
conjugate mode, except in reference to asymmetries.

The phase φ12 is very small in the Standard Model (SM), in
particular, for B0

s mixing, φs
12 is approximately 0.2◦ [2].1 New

physics can affect this phase [3,4] and therefore as
sl. The D0 Col-

laboration has reported evidence for a decay asymmetry Ab
sl =

(−0.787 ± 0.172 ± 0.093)% in a mixture of B0 and B0
s semileptonic

decays, where the first uncertainty is statistical and the second sys-
tematic [5]. This asymmetry is much larger in magnitude than the
SM predictions for semileptonic asymmetries in B0

s and B0 decays,
namely as

sl = (1.9 ± 0.3) × 10−5 and ad
sl = (−4.1 ± 0.6) × 10−4 [4].

More recently D0 published measurements of ad
sl = (0.68 ± 0.45 ±

0.14)% [6], and as
sl = (−1.12 ± 0.74 ± 0.17)% [7], consistent both

with the anomalous asymmetry Ab
sl and the SM predictions for

as
sl and ad

sl. If the measured value of Ab
sl is confirmed, this would

demonstrate the presence of physics beyond the SM in the quark
sector. The e+e− B-factory average asymmetry in B0 decays is
ad

sl = (0.02 ± 0.31)% [8], in good agreement with the SM. A mea-
surement of as

sl with comparable accuracy is important to establish
whether physics beyond the SM influences flavour oscillations in
the B0

s system.
When measuring a semileptonic asymmetry at a pp collider,

such as the LHC, particle–antiparticle production asymmetries, de-
noted as aP, as well as detector related asymmetries, may bias the
measured value of as

sl. We define aP in terms of the numbers of
produced b-hadrons, N(B), and anti-b-hadrons, N(B), as

1 This phase should not be confused with the CP violation phase measured in
B0

s → J/ψφ and B0
s → J/ψπ+π− decays, sometimes called φs [4].
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aP ≡ N(B) − N(B)

N(B) + N(B)
, (3)

where aP may in general be different for different species of
b-hadron.

In this Letter we report the measurement of the asymmetry be-
tween D+

s Xμ−ν and D−
s Xμ+ν decays, with X representing pos-

sible associated hadrons. We use the D±
s → φπ± decay. For a

time-integrated measurement we have, to first order in as
sl

Ameas ≡ Γ [D−
s μ+] − Γ [D+

s μ−]
Γ [D−

s μ+] + Γ [D+
s μ−]

= as
sl

2
+

[
aP − as

sl

2

]∫ ∞
t=0 e−Γst cos(�Mst)ε(t)dt∫ ∞
t=0 e−Γst cosh(�Γst

2 )ε(t)dt
, (4)

where �Ms and Γs are the mass difference and average decay
width of the B0

s –B0
s meson system, respectively, and ε(t) is the

decay time acceptance function for B0
s mesons. Due to the large

value of �Ms , 17.768 ± 0.024 ps−1 [9], the oscillations are rapid
and the integral ratio in Eq. (4) is approximately 0.2%. Since the
production asymmetry within the detector acceptance is expected
to be at most a few percent [10–12], this reduces the effect of ap
to the level of a few 10−4 for B0

s decays. This is well beneath our
target uncertainty of the order of 10−3, and thus can be neglected,
therefore yielding Ameas = 0.5as

sl .
The measurement could be affected by a detection charge-

asymmetry, which may be induced by the event selection, tracking,
and muon selection criteria. The measured asymmetry can be writ-
ten as

Ameas = Ac
μ − Atrack − Abkg, (5)

where Ac
μ is given by

Ac
μ =

N(D−
s μ+) − N(D+

s μ−) × ε(μ+)

ε(μ−)

N(D−
s μ+) + N(D+

s μ−) × ε(μ+)

ε(μ−)

. (6)

N(D−
s μ+) and N(D+

s μ−) are the measured yields of Dsμ pairs,
ε(μ+) and ε(μ−) are efficiency corrections accounting for trigger
and muon identification effects, Atrack is the track-reconstruction
asymmetry of charged particles, and Abkg accounts for asymme-
tries induced by backgrounds.

2. The LHCb detector and trigger

We use a data sample corresponding to an integrated luminos-
ity of 1.0 fb−1 collected in 7 TeV pp collisions with the LHCb
detector [13]. This detector is a single-arm forward spectrome-
ter covering the pseudorapidity range 2 < η < 5, designed for the
study of particles containing b or c quarks. The detector includes
a high precision tracking system consisting of a silicon-strip ver-
tex detector surrounding the pp interaction region, a large-area
silicon-strip detector located upstream of a dipole magnet with a
bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift-tubes placed downstream. The combined
tracking system has momentum resolution �p/p that varies from
0.4% at 5 GeV to 0.6% at 100 GeV.2 Charged hadrons are identified
using two ring-imaging Cherenkov (RICH) detectors [14]. Photon,
electron and hadron candidates are identified by a calorimeter sys-
tem consisting of scintillating-pad and pre-shower detectors, an
electromagnetic calorimeter and a hadronic calorimeter. Muons are
identified by a system composed of alternating layers of iron and

2 We work in units with c = 1.

multiwire proportional chambers [15]. The LHCb coordinate system
is a right handed Cartesian system with the positive z-axis aligned
with the beam line and pointing away from the interaction point
and the positive x-axis following the ground of the experimental
area, and pointing towards the outside of the LHC ring.

The trigger system [16] consists of a hardware stage, based on
information from the calorimeter and muon systems, followed by
a software stage which applies a full event reconstruction. For the
Dsμ signal samples, the hardware trigger (L0) requires the de-
tection of a muon of either charge with transverse momentum
pT > 1.64 GeV. In the subsequent software trigger, a first selection
algorithm confirms the L0 candidate muon as a fully reconstructed
track, while the second level algorithm includes two possible se-
lections. One is based on the topology of the candidate muon and
one or two additional tracks, requiring them to be detached from
the primary interaction vertex. The second category is specifically
designed to detect inclusive φ → K +K − decays. We consider all
candidates that satisfy either selection algorithm. We also study
two mutually exclusive samples, one composed of candidates that
satisfy the second trigger category, and the other satisfying the
topological selection of events including a muon, but not the in-
clusive φ algorithm. Approximately 40% of the data were taken
with the magnetic field up, oriented along the positive y-axis in
the LHCb coordinate system, and the rest with the opposite down
polarity. We exploit the fact that certain detection asymmetries
cancel if data from different magnet polarities are combined.

3. Selection requirements

Additional selection criteria exploiting the kinematic properties
of semileptonic b-hadron decays [17–19] are used. In order to min-
imize backgrounds associated with misidentified muons, additional
selection criteria on muons are that the momentum, p, be between
6 and 100 GeV, that the pseudorapidity, η, be between 2 and 5,
and that they are inconsistent with being produced at any primary
vertex. Tracks are considered as kaon candidates if they are iden-
tified by the RICH system, have pT > 0.3 GeV and p > 2 GeV. The
impact parameter (IP), defined as the minimum distance of ap-
proach of the track with respect to the primary vertex, is used to
select tracks coming from charm decays. We require that the χ2,
formed by using the hypothesis that each track’s IP is equal to 0,
which measures whether a track is consistent with coming from
the PV, is greater than 9. To be reconstructed as a φ meson can-
didate, a K +K − pair must have invariant mass within ±20 MeV
of the φ meson mass. Candidate φ mesons are combined with
charged pions to make Ds meson candidates. The sum of the pT
of K + , K − and π± candidates must be larger than 2.1 GeV. The
vertex fit χ2 divided by the number of degrees of freedom (ndf)
must be less than 6, and the flight distance χ2, formed by us-
ing the hypothesis that the D+

s flight distance is equal to 0, must
be greater than 100. The B0

s candidate, formed from the Ds and
the muon, must have vertex fit χ2/ndf < 6, be downstream of the
primary vertex, have 2 < η < 5 and have invariant mass between
3.1 and 5.1 GeV. Finally, we include some angular selection criteria
that require that the Bs candidate have a momentum aligned with
the measured fight direction. The cosine of the angle between the
Dsμ momentum direction and the vector from the primary vertex
to the Dsμ origin must be larger than 0.999. The cosine of the an-
gle between the Ds momentum and the vector from the primary
vertex to the Ds decay vertex must be larger than 0.99.

4. Analysis method

Signal yields are determined by fitting the K +K −π+ invariant
mass distributions shown in Fig. 1. We fit both the signal D+

s and
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Fig. 1. Invariant mass distributions for: (a) K + K −π+ and (b) K + K −π− candidates for magnet up, (c) K + K −π+ and (d) K + K −π− candidates for magnet down with K + K −
invariant mass within ±20 MeV of the φ meson mass. The D+

s [yellow (grey) shaded area] and D+ [red (dark) shaded area] signal shapes are described in the text. The
χ2/ndf for these fits are 1.28, 1.25, 1.53, and 1.27 respectively, the corresponding p-values are 7%, 8%, 4%, 7%.
Table 1
Yields for D+

s μ− and D−
s μ+ events separately for magnet up and down data. These

yields contain very small contributions from prompt Ds and b-hadron backgrounds.

Magnet up Magnet down

D−
s μ+ 38 742 ± 218 53 768 ± 264

D+
s μ− 38 055 ± 223 54 252 ± 259

D+ peaks with double Gaussian functions with common means.
The D+ channel is used only as a component of the fit to the
mass spectrum. The average mass resolution is about 7.1 MeV. The
background is modelled with a second-order Chebychev polyno-
mial. The signal yields from the fits are listed in Table 1.

The detection asymmetry is largely induced by the dipole mag-
net, which bends particles of different charge in different detector
halves. The magnet polarity is reversed periodically, thus allow-
ing the measurement and understanding of the size of this effect.
We analyze data taken with different magnet polarities separately,
deriving charge asymmetry corrections for the two data sets in-
dependently. Finally, we average the two values in order to can-
cel charge any residual effects. We use two calibration samples
containing muons to measure the relative trigger efficiencies of
D+

s μ−/D−
s μ+ events, and the relative μ−/μ+ identification ef-

ficiencies. The first sample contains b → J/ψ(→ μ+μ−)X decays
triggered independently of the J/ψ meson, and where the J/ψ is
selected by requiring two particles of opposite charge have an in-
variant mass consistent with the J/ψ mass. This sample is called
the kinematically-selected (KS) sample. The second sample is col-
lected by triggering on one muon from a J/ψ decay that is de-
tached from the primary vertex. It is called muon selected (MS) as
it relies on the presence of a well identified muon.

In order to measure the relative π+ and π− detection efficien-
cies, we use the ratio of partially reconstructed and fully recon-
structed D∗+ → π+D0, D0 → K −π+π+(π−) decays. The former
sample is gathered without explicitly reconstructing the π− par-
ticle, and then the efficiency of finding this track in the event is
measured. The same procedure is applied to the charge conjugate
mode, so the relative π+ to π− efficiency is measured. A detailed
description is given in Ref. [20].

Finally, a sample of D+(→ K −π+π+)μ− candidates is ob-
tained using similar triggers to the Dsμ sample. This sample is

used to assess charge asymmetries induced by the software trig-
ger.

The efficiency ratio εμ+/εμ− in Eq. (6) accounts for losses due
to the muon identification efficiency algorithm and the trigger re-
quirements. We measure εμ+/εμ− using the KS and MS calibration
samples. There are about 0.6 million KS J/ψ candidates selected in
total, and about 1.2 million MS J/ψ candidates. As the calibration
muon spectra are slightly softer than that of the signal, we subdi-
vide the signal and calibration samples into subsamples defined
by the kinematic properties of the candidate muon. We define
five muon momentum bins: 6–20 GeV, 20–30 GeV, 30–40 GeV,
40–50 GeV, and 50–100 GeV. We further subdivide the signal and
calibration samples with two binning schemes. In the first, each μ
momentum bin is split into 10 rectangular regions in qpx and p y ,
where q represents the muon charge and px and p y are the Carte-
sian components of the muon momentum in the directions per-
pendicular to the beam axis. The second grid uses 8 regions of
muon pT and azimuthal angle φ to reduce the sensitivity to dif-
ferences in φ acceptance between signal and calibration samples.
In this case the first and third bins in φ are flipped for negative
charges, to symmetrize the acceptance in a consistent manner with
the qpx and p y binning. Signal and calibration yields are deter-
mined separately in each of the intervals both for magnet up and
down data. Fig. 2 shows the μ+μ− invariant mass distribution for
the KS J/ψ events in magnet up data.

The relative efficiencies for triggering and identifying muons
in five different momentum bins are shown in Fig. 3 for magnet
up and magnet down data using the KS calibration sample. They
are consistent with being independent of momentum. The small
difference of approximately 1% between the two samples can be
attributed to the alignment of the muon stations, which affects
predominantly the hardware muon trigger.

The D+
s μ− final state benefits from several cancellations of

potential instrumental asymmetries that can arise due to the dif-
ferent interaction cross-sections in the detector material or to dif-
ferences between tracking reconstructions of negative and positive
particles. The μ and π charged tracks have very similar recon-
struction efficiencies. Using the partially-reconstructed D∗+ cali-
bration sample, we found that the π+ versus π− relative tracking
efficiencies are independent of momentum and transverse momen-
tum [20]. This, along with the fact that π+ and π− interaction
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Fig. 2. Invariant μ+μ− mass distributions of the kinematically-selected J/ψ can-
didates in magnet up data, where the red (open) circles represent entries where
the muon candidate, kinematically selected, is rejected and the black (filled) circles
those where it is accepted by the muon identification algorithm. The dashed lines
represent the combinatorial background.

Fig. 3. Relative muon efficiency as a function of muon momentum determined using
the kinematically-selected J/ψ sample.

cross-sections on isoscalar targets are equal, and that the detec-
tor is almost isoscalar, implies that the difference between π+
and π− tracking efficiencies depend only upon the magnetic field
orientation and the detector acceptance. Thus the charge asymme-
try ratios measured for pions are applicable to muons as well. In
the φπ+μ− final states, the pion and muon have opposite signs,
and thus the charge asymmetry in the track reconstruction ef-
ficiency induced by imperfect πμ cancellation, Aπμ

track, is small.
Using the efficiency ratios επ+/επ− measured with the D∗+ cal-
ibration sample, we obtain Aπμ

track = (+0.01 ± 0.13)%. A small resid-
ual sensitivity to the charge asymmetry in K track reconstruction
is present due to a slight momentum mismatch between the two
kaons from φ decays arising from the interference with the S-wave
component. It is determined to be AK K

track = (+0.012 ± 0.004)%.

The efficiency ratios used in determining AK K
track are based on

επ+/επ− with a correction derived from the comparison between
the Cabibbo-favoured decays D+ → K −π+π− and D+

s → K 0
S π+ ,

accounting for additional charge asymmetry induced by K inter-
actions in the detector. Therefore, the total tracking asymmetry is
Atrack = (+0.02 ± 0.13)%.

5. Backgrounds

Backgrounds include prompt charm production, fake muons as-
sociated with real D+

s particles produced in b-hadron decays, and
B → D Ds decays where the D hadron decays semileptonically.
Here B denotes any meson or baryon containing a b (or b) quark,
and similarly, D denotes any hadron containing a c (or c) quark.
The prompt background is highly suppressed by the requirement
of a well identified muon forming a vertex with the D+

s candidate.
The prompt yield is separated from false Ds backgrounds using
a binned two-dimensional fit to the mass and ln(IP/mm) of the
φπ+ candidates. The method is described in detail in Ref. [19].
Fig. 4 shows the fit results for the magnet-down D+

s μ− candidate
sample. From the asymmetry in the prompt yield normalized to
the overall signal yield in the five momentum bins, we obtain an
asymmetry due to prompt background equal to (+0.14 ± 0.07)%
for magnet up data, (−0.05 ± 0.05)% for magnet down data, with
an average value of (+0.04 ± 0.04)%.

Samples of D+
s π− X and D+

s K − X events, where X represents
undetected particles from the same decay, are used to infer the
numbers of D+

s -hadron combinations from B decays that could
be mistaken for D+

s μ− events if the hadron is misidentified as a
muon. Kaons and pions are identified using the RICH. These num-
bers, combined with knowledge of the probability that kaons or
pions are mistaken for muons, provide a measurement of the fake
hadron background. These misidentification probabilities are also
calculated in the five momentum bins using D∗+ → π+D0 decays,
with D0 decaying into the K −π+ final state. The net effect on
the asymmetry is below 10−4 and thus the D+

s -hadron background
can be ignored.

We also consider the background induced by D+
s μ− events de-

riving from b → cc̄s decays where the D+
s hadron originates from

the virtual W + boson and the muon originates from the charmed-
hadron semileptonic decay. These backgrounds are suppressed
since the D hadron travels away from the B vertex prior to its
semileptonic decay. As these decays are of opposite sign to the sig-
nal, they cause a background asymmetry that is proportional to the
production asymmetry of the background sources. The B0 produc-
tion asymmetry has been measured in LHCb to be (−0.1 ± 1.0)%
[11], and the B+ production asymmetry to be (+0.3 ± 0.9)% by
comparing B+ → J/ψ K + and B− → J/ψ K − decays [21]. A small
Fig. 4. (a) Spectrum of the logarithm of the IP calculated with respect to the primary vertex for D+
s candidates in combination with muons; the insert shows a magnified

view of the region where the prompt D+
s contribution peaks. The blue dashed line is the component coming from B hadron decays, the black dashed line the false D+

s
background, the red line the prompt background, (b) the invariant mass distributions for D+

s → φπ candidates. These distributions are for the magnet down sample. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)
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Table 2
Muon efficiency ratio corrected asymmetry Ac

μ . The errors account for the statistical uncertainties in the B0
s signal yields.

Ac
μ [%] KS muon correction MS muon correction Average

Magnet px p y pTφ px p y pTφ

Up +0.38 ± 0.38 +0.30 ± 0.38 +0.64 ± 0.37 +0.63 ± 0.37 +0.49 ± 0.38
Down −0.17 ± 0.32 −0.25 ± 0.32 −0.60 ± 0.32 −0.62 ± 0.32 −0.41 ± 0.32
Avg. +0.11 ± 0.25 +0.02 ± 0.25 +0.02 ± 0.24 +0.01 ± 0.24 +0.04 ± 0.25
Fig. 5. Asymmetries corrected for relative muon efficiencies, Ac
μ , examined in the

five muon momentum intervals for (a) magnet up data, (b) magnet down data
and (c) average, using the KS muon calibration method. Then (d) magnet up data,
(e) magnet down data and (f) average, using the MS muon calibration method in
the two different binning scheme.

subset of this background is from Λ0
b decays, whose production

asymmetry is not well known, aP = (−1.0 ± 4.0)%, but is con-
sistent with zero [22]. The B0 final states include D0 and D+
hadrons, in proportions determined according to the D∗+/D+ ra-
tio in the measured exclusive final states. In addition, we consider
backgrounds coming from B0, B+ → D−

s Kμ+ decays, that provide
a background asymmetry with opposite sign. We estimate this
background asymmetry to be (+0.01 ± 0.04)%. The systematic un-
certainty includes the limited knowledge of the inclusive branching
fraction of the b-hadrons, uncertainties in the b-hadron produc-
tion ratios, and in the charm semileptonic branching fractions, but
is dominated by the uncertainty in the production asymmetry. By
combining these estimates, we obtain Abkg = (+0.05 ± 0.05)%.

6. Results

We perform weighted averages of the corrected asymmetries
Ac

μ observed in each pTφ and px p y subsample, using muon iden-
tification corrections both in the KS and MS sample (see Fig. 5). In
order to cancel remaining detection asymmetry effects, the most
appropriate way to combine magnet up and magnet down data is
with an arithmetic average [20]. We then perform an arithmetic
average of the four values of Ac

μ obtained with the two binning
schemes chosen and with the two muon correction methods, as-
suming the results to be fully statistically correlated, and obtain

Table 3
Sources of systematic uncertainty on Ameas.

Source σ(Ameas) [%]

Signal modelling and muon correction 0.07
Statistical uncertainty on the efficiency ratios 0.08
Background asymmetry 0.05
Asymmetry in track reconstruction 0.13
Field-up and field-down run conditions 0.01
Software trigger bias (topological trigger) 0.05

Total 0.18

Ac
μ = (+0.04±0.25)%. The results are shown in Table 2. Finally, we

correct for tracking efficiency asymmetries and background asym-
metries, and obtain

Ameas = (−0.03 ± 0.25 ± 0.18)%,

where the first uncertainty reflects statistical fluctuations in the
signal yield and the second reflects the systematic uncertainties.
This gives

as
sl = (−0.06 ± 0.50 ± 0.36)%.

We consider several sources of systematic uncertainties on
Ameas that are summarized in Table 3. By examining the variations
on the average Ac

μ obtained with different procedures, we assign a
0.07% uncertainty, reflecting three almost equal components: the
fitting procedure, the kinematic binning and a residual system-
atic uncertainty related to the muon efficiency ratio calculation.
We study the effect of the fitting procedure by comparing results
obtained with different models for signal and background shapes.
In addition, we consider the effects of the statistical uncertain-
ties of the efficiency ratios, assigning 0.08%, which is obtained by
propagating the uncertainties in the average Ac

μ . The uncertainties
affecting the background estimates are discussed in Section 5. Pos-
sible changes in detector acceptance during magnet up and mag-
net down data taking periods are estimated to contribute 0.01%.
The software trigger systematic uncertainty is mainly due to the
topological trigger algorithm and is estimated to be 0.05%. These
uncertainties are considered uncorrelated and added in quadrature
to obtain the total systematic uncertainty.

7. Conclusions

We measure the asymmetry as
sl, which is twice the measured

asymmetry between D−
s μ+ and D+

s μ− yields, to be

as
sl = (−0.06 ± 0.50 ± 0.36)%.

Fig. 6 shows this measurement, the D0 measured asymmetries
in dimuon decays in 1.96 TeV pp collisions of Ab

sl = (−0.787 ±
0.172 ± 0.093)% [5], ad

sl = (0.68 ± 0.45 ± 0.14)% [6], and as
sl =

(−1.12 ± 0.74 ± 0.17)% [7], and the most recent average from
B-factories [8], namely ad

sl = (0.02 ± 0.31)%. Our result for as
sl is

currently the most precise measurement made and is consistent
with the SM.
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Fig. 6. Measurements of semileptonic decay asymmetries. The bands correspond
to the central values ±1 standard deviation uncertainties, defined as the sum in
quadrature of the statistical and systematic errors. The solid dot indicates the SM
prediction.
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