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1. INTRODUCTION

This year we celebrate the 50th anniversary of the discovery of Cherenkov radiation by
P.A. Cherenkov [1} in Moscow. This kind of radiation is basically a electromagnetic
shock-wave phenomenon, analagous in form to the more familiar shock-wave phenomena
in classical physics of front-wave emission from a boat in water and acoustic bang-wave
emission from a supevsonic aeroplane. In all three cases the shock wave can be described as
the result of const;uctiire interference of spherical (circular) waves emitted by an object (the
emitter e) travelling in a medium (m) along a straight path with a speed ve that exceeds the
wave-propagation velocity (group velocity) vm in the medium. The angle of emission & of
the shock wave with regard to the trajectory of the object is straightforwardly obtdined
using Huygens’ principle as illustrated in Fig. 1; :

# = arccos (vm/Ve). 00

For a charged particle travelling in a transparent dielectric medium of refractive index n we
may express the two velocities as

Ve = f3C 2)
vm = ¢/n, 3)

which ipserted in Eq. (1) yields
8 = arccos (1/8n) . @

This relation can also be derived from classical electrodynamics considering the angular
distribution of energy radiated from a current density (defined in this case by the moving
charged particle) in a homogeneous dielectric [2]. The radiation distribution is found to
have a sharp maximum at the polar angle arccos(1/8n}. The classical relation (1) can thus
be used also for relativistic velocities. Note, however, that since in the classical case ve can
be much larger than vm,  may approach 90° when v, is very large. Since in the relativistic
case 8 cannot be larger than unity 8 will not exceed the angle arccos (1/n). The Cherenkov
angle thus grows from ¢ = 0 at the threshold velocity § = 1/nuptoa maximum value § =
arccos (1/n) as 8 approaches unity. In Table 1 the refractive index for visible light and the
maximum Cherenkov angle are given for some familiar gases, liquids, and solids.

When dealing with relativistic elementary particles it is often more convenient to use
the Lorenz variable

v =E/m=1/1-g (5)

to specify the velocity of the particle rather than the relative velocity 8 (= v/c = p/E =
V1 — 1/+%). This is so because for a given particle of mass m at highly relativistic energy,
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Fig. ¥ Shock-wave formation by an object e that travels through a medium m emitting spherical waves. If v. >
vm a shock-wave is formed according to Huygens’ principle (right). If v. < v, no shock wave is formed
(left).



v is approximately proportional to the momentum p (y = E/m -—-mm = p/m for
p > m). The momentum can be determined from the curvature of the charged-particle
track in a magnetic field. Measuring both p and v, an approximate value of the mass of the
particle is thus simply obtained as the ratio between the two.

Table 1

Refractive index for visible light, maximal Cherenkov angle and number of Cherenkov photons emitted from a 10
cm long track in a few well-known gases, liquids, and solids.

n max Npn vis (10 cm)
)
Helium 1.000035 0.48 0.39
Alir 1.000283 1.36 3.14
Isobutane 1.00127 2.89 14.07
Freon 1.233 35.8 1899
Water 1.33 41.2 2412
Quartz i.46 46.7 2946
BGO 2.15 62.3 4349

Expressed in -y the previously discussed results take the form

@ = arccos [1/(n-v1 — 1/72)] (6)
Fory — o:
Bimax = arccos (1/n) N
Forf — 0:
“Ythreshold = 1/~1 = 1/1’12 (8)

According to classical electrodynamics, the power radiated in a given direction by an
electric current depends only on the component of the current that is perpendicular to the
direction of the observed radiation. Hence, if Cherenkov radiation occurs at a certain
angle  with regard to the direction of the charged-particle motion, then the component of
the current that contributes to the radiation is proportional to sin 6. As the power is
proportional to the square of the current the intensity of the Cherenkov light is proportional
to sin®* 9. The full electrodynamical expression for the number of emitted Cherenkov
photons is {2]

N, = (€?/Ac*) L sin’f- Aw, 9)



where L is the length of the particle track in the dielectric and Aw is the width of the
frequency band over which photons are detected. This relation also expresses the important
fact that Cherenkov radiation is evenly distributed in photon frequency. Expressing the

terms of Eq. (9) in convenient units we may write the number of detected photons in a given
Cherenkov detector as

Naeiectes = No- L{cm) - sin6, (10)

where
No = 370 cm™' eV™! | ehw) dfhiw). (11)

No is here a quality parameter of the counter, expressed in terms of an integral over photon
energyfiw (in eV) of the photon detector efficiency function e(fiw).

Using Eq. (10) to calculate the number of emitted Cherenkov photons in the visibie
photon energy range (setting ¢ = 1 in the wavelength region 4000-7500 A corresponding to
atiw range width of about 1.5 eV) for L. = 10 cm one obtains the numbers given in Table 1.

The aim of the present notes is to outline the resolution, the optics design criteria and
the expected particle-discrimination performance of a recently developed type of Cherenkov
detector conceived to measure the Cherenkov angle of charged particles produced at
high-energy particle colliders thus allowing for a determination of the mass, and thereby the
identity, of these particles. This type of detector will here be called RICH, as abbreviation
for Ring-Imaging Cherenkov counters. In a RICH counter the Cherenkov light emitted by
a traversing charged particle is imaged onto a position-sensitive single-UV photon detector
of time-projection-chamber (TPC) type, thereby allowing for an experimental deter-
mination, over a large solid angle, of the Cherenkov angles for several secondary particles
simultaneously [3}.

A RICH counter should have as high Cherenkov-angular resolution and as high
photon yield as possible, thereby maximizing the useful velocity range over which a mass
determination with satisfactory resolution can be made. The counter should furthermore be
adaptable to different geometrical configurations and have as small radial extension and as
low matter density as possible in order to keep the detector dimensions as small as possible
and to minimize secondary particle interactions. Below we will discuss the possibilities and
limitations of the RICH technique along these lines.

2. DETECTOR OPTICS AND CHERENKOV ANGLE RECONSTRUCTION

If the light emission per unit track-length from a charged particle travelling in a given
radiator medium [see Eq. (10)] is sufficiently large it may be possible to determine the
Cherenkov angle with satisfactory precision by measuring the light emitted from a thin layer
of radiator by simply projecting the light onto a photon-detector surface at some distance as
iltustrated in Fig. 2. This scheme is usually practicable when using dense radiators such as
liquids. The ultimate geometrical resolution in Cherenkov angle of this method is limited by
the finite value of the ratio of the radiator-layer width d to the lever-arm length £.
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Fig. 2 Determination of the Cherenkov angle by letting the light emitted from a thin liquid radiator layer be
projected onto a photon-detector surface (‘proximity focussing’ [7]).



If, on the other hand, the light emission per unit length of radiator medium is low, as it
1s in gases, the radiator length has to be maximized. In this case the light has to be focused
to retain a satisfactory geometric angular resolution. Cherenkov light is emitted at constant
polar angle around the particle trajectory. Therefore, if the trajectory is rectilinear the light
is paraliel in any given azimuthal plane, and if reflected by a concave spherical mirror the
light will focus to a point halfway between the mirror surface and its centre of curvature as
illustrated in Fig. 3. Note however that this focusing condition is only valid for small values
of 6. For larger angles the photon rays are no longer central and the focal point varies with
the location of the point of emission along the particle trajectory. Non-central photon rays
are also obtained even in the case of small § if the particle trajectory does not pass through
the centre of curvature of the mirror. The displacement of the focus for non-central photon
rays is illustrated by the so-called caustic curve shown in Fig. 4. The deviation of the light
from non-central incidence leads to geometrical aberrations in the system, limiting the
angular resolution.

‘The photon acceptance of a RICH counter is maximized if the photon detector covers
the light image for all azimuthal angles around the particle trajectory. If so, the image
obtained in the photon-detector plane is ring-shaped. The ring is, however, perfectly
circular only for particies incident along the optical axis of the detector —in all other cases
the image is more or less ellipsoid. For inclined particles in liquid radiators part of the
azimuthal acceptance may be lost due to total internal reflection of the Cherenkov light at
the inner surface of the liquid and the images are in such cases not even rings but open
paraboloids.

To facilitate the reconstruction of the Cherenkov angle the coordinates of the
trajectory of the radiating particle must also be measured. A light ray is traced from the
location of each detected photon back to the location of the midpoint of the particle
trajectory (in the case of a focusing counter after reflection in the mirror) and the
Cherenkov angle of the individual photon is calculated as the angle of the reconstructed ray
with the particle trajectory. In the case of a liquid radiator it is also of importance to take
into account the refraction of the light-ray in the downstream liguid boundary. Double
refraction in windows should also be included.

Note that in the case of a focusing counter parallel tracks will, to the first order of
approximation, give ring-images with coinciding centres. The position of a Cherenkov ring
in a focusing counter thus depends to first order only on the direction of the track and not
on its location.

The Cherenkov angle for the particle is calculated as the (possibly weighted) mean-
value of the angles reconstructed from the detected photons. The amount of background
photons from nearby tracks or other sources can be minimized by selecting only those
photons that have a reconstructed angle that falls within 2 or 3 standard deviations from the
observed peak value. Alternatively, knowing the momentum of the particle the location of
the images of the Cherenkov photons can be predicted assuming the radiating particle to
have the mass of either e, x, 7, X, or p. It is then possible to test which of these image
locations that best fits with the actually observed location of the photons (the number of
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Fig. 3 Determination of the Cherenkov angle by letting the light emitted in a gaseous radiator be focalized by a
spherical mirror onto a photon-detector surface.
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Fig. 4 The so-called caustic curve which shows how the position of the focus for paraliel light reflected by a
sperical mirror depends on the impact parameter of the Jight. The center of curvature of the mirror is
indicated with a cross. (The caustic can be straightforwardly observed in sunlight, e.g. inside a
wedding-ring placed on a flat surface or in a filled coffee cup).



photons falling within 2 or 3 standard deviations from each expected image can be
identified and a x* probability for each case evaluated).

Once the Cherenkov angle has been determined the mass of the radiating particle can
be calculated provided that also the momentum of the particle has been measured.
Contracting Egs. (4) and (5) we obtain '

.m:p\fnicosiﬂ— 1 (12)

As the mass ratios of e, 7, K, and p (but not u/7) are relatively large the mass
determination can be used to reliably identify any of these particles provided that the
standard error in mass is not more than say, for example, o/m = 15%. Since m is
propoertional to p, the momentum resolution required for satisfactory particle identification

is then of the same order, i.e. o,/p = 15%. The requirements on ¢4/ are discussed in
sections 3 and 4.

3. ANGULAR RESOLUTION AND DESIGN OF COUNTERS
WITH GASEQOUS RADIATOR

The values of the refractive index minus one (n — 1) and the Cherenkov angle (§) are
both small compared to unity for gaseous radiators. This is, on the other hand, not the case
for liquid and solid radiators (see Table 1). In the expressions involving the two quantities
mentioned it is therefore possible to make simplifying approximations when dealing with
gaseous radiators. Conversely these approximations cannot be used for liquid or sold
radiators,

In particular, Eqs. (7) and (8) can be simplified in the following way when 6 and
n — 1 aresmall.

Omax = $in Omax = V1 - €OS" fmax = V1 — 1/0% = v2(n = 1) (13)
Yiheeshod = 1/ — 1/n% = 1/4/(n® = 1) = 1/N2(m = 1). (14)

These approximations do not entail relative errors in fmax OT Yinreshoia €xceeding 2 x 1073
for gaseous radiations [(n — 1) < 2 x 10~ *]. We have thus obtained

8max = vz(l'l - 1) = ]/'Ythreshold- (15)

Let us define a normalized Cherenkov angle Onorm and a normalized Lorenz velocity
¥norm, FeSpectively, as

Onorm = G/Qmax = B/VZ(H - 1) (16)

Ynorm = ’}’/’Ythreshold =" vz(l’l — l) (17)



Inserting these quantities in Eq. (6) we obtain the following simplified expression [4];
Gnorm =1 - 1/'Ynorm~ (18)

The interesting feature of this expression is, besides its formal simplicity, that it is
invariant in the refractive index n. The values of n — 1 for different gases at NTP span
several orders of magnitude (see Table 1). The conclusions we will draw from Eq. (18) will
nonetheless be equally valid for all gases since the refractive index does not appear in the
formula. .

Figure 5 shows a plot of relation (18) illustrating how the Cherenkov angle grows very
rapidly from zero just above threshold velocity and how it approaches asymptotically its
maximum value from below. For values of vynem large relative to unity we see that Bnom
approaches its maximum value of 1 as

I Bnonﬁ =141~ 1/'}’21,10rm = l/(z"Y%orm); (19)

i.e. as half the inverse square of “ynom.

3.1 Angular resolution and particle discrimination

As already discussed in the Introduction, any photon deétector will have a certain range
4iw; — i, in photon energy over which it is sensitive (e.g. for the eyefiw; = 3.1 eV and’
fiw; = 1.65 eV). As, in general, the refractive index in a dielectric varies with hw this leads
to a spread in the observed Cherenkov angle which is not related to the velocity of the
radiating particle but to the energy of the particular Cherenkov-photon registered [see
formula (6)]. This spread in 6, related to the photon energy spread through the variation in
n, is called chromatic aberration. As the photon detectors we discuss here do not measure
the individual energy of each photon registered there is no way of correcting for this type of
aberration in a wide aperture counter. (As opposed to the case of small aperture counters,
for which chror‘naticity-cbrrecting lenses may be used to reduce the aberration). The angular
error in a RICH counter can, therefore, not be smaller than the angular spread caused by
chromatic aberration. . ,

The angular reselution of a RICH counter is only of critical interest at high values of v,

~where the relative variation in @ is small. In order to obtain the variation of & with n we may
therefore differentiate expression (15) with regard ton

36/9n = 3bmar/On = 3 [V2(n — 1))/3n = 1/¥2(n — 1) (20)
= (AG/)MO™ = 4. An/(n - 1), 21

from which we conclude that the relative spread in Cherenkov angle for a gaseous radiator
is equal to half the relative spread in refractive index.
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Let us now compare the chromatic spread in Cherenkov angle (21) with the deviation
1 — Bnorm of the Cherenkov angle from its saturated value (19). Clearly, above the ynom
value for which AGSFC™ > | — Guorm, it is no longer possible to derive a precise value for v
from a measurement of fnorm. This upper limit in 4norm defined here as ~vhorm , is obtained
from expressions (19) and (21) as

/(2 vaom) = o An/(n — 1) = ¥%% = V(0 — 1)/An = 1/v/Alnorm - (22)

Since the lower limit in velocity for measurement of yuorm by definition is at the threshold,
i.e. yMn = 1, the result (22) implies that the dynamical range in v, defined as L T
equal to the inverse square oot of the relative dispersion Angerm = An/(n — 1) in refractive
index.

According to expression (14)
¥ = 1/42@ - 1), | (23)

from which it follows that

SR o mar L omin L ST /An) - [1/N2m — 1)) = 14240 (24)

The upper (lower) limit in v is thus equal to the inverse square root of twice the absolute
dispersion (the residue) of the refractive index. :

We will now use these results to evaluate up to what total-energy E two particles of
mass m. and my can be separated on the basis of a measurement of # under the idealized
conditions that the chromatic dispersion is the only source of error in # and that the error in
the E measurement is negligible. We thus define that the particles as separated when their
corresponding Cherenkov angles differ by Ag"™.

Given

Ya = E/ma
o = E/my
mp < My

we obtain using Eqgs. (14) and (19)
Bnorm.a — Onom.o = 4 [Ma/EN2(n — 1)) — A [me/EV2(n — DI

This difference fnom.a — Onorm,b is equal to the relative angular chromatic dispersion of Eq.
(21) when

Yoo(m2 ~ m#/E*2(n — 1) = -An/(n —- 1) -

E?r{;’x = mmh\n = ymax Ma — m% . (25)

11
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This is the upper limit in particle total energy for discrimination between particles a and b.
Assuming my < m, the corresponding lower limit is simply obtained as the energy below
which none of the particles radiates .

E?nfng = My Yehreshold = Mp V2N — 1), (26)

In Table 2 we have listed the values of n — 1 and An for three noble gases, three
hydrocarbon gases, and five fluorocarbon (ffeon) gases (at NTP except CsF; and Ce¢Fi4
which are not gases at NTP). The photon energy range has been assumed to be in the
far ultraviolet region 6.5-7.5 eV (wavelength 1650-1900 A). For each gas ymin, Emin,
EXE, Ymax» ENax, Eha, An/(n — 1), the dynamical range ymax/ymin and the length
of radiator gas required to detect 15 photons in a counter of quality parameter Ng =
80 cm ~'. The range in v and E for each gas has also been illustrated in Fig,. 6.

As seen, the noble gases and the freons have about the same relative dispersion in n (of
the order of 3%), whereas the hydrocarbons are about three time more dispersive. If one
wants to reach high values in n, keeping An/(n — 1) low, the heavy freons are to be
preferred (note that CsF» and CsF 14 are liquids boiling at 30°C and 57°C respectively —the
values of the refractive indices given are valid for the gaseous phase at 1 atm just above the
boiling point).

3.2 Other sources of error and counter design

In addition to the chromatic dispersion there are, of course, other sources of error in
the measured Cherenkov angle. These other sources are, however, such that by a careful

design of the detector the chromatic error will remain the dominant error. We will study .

below how this Condition act_ﬁaliy dictates the design of a. RICH detector

3.2.1 Geometric aberration

As already noted, the focusing of parallel rays in a spherical mirror is exact only in the
case when the light ray passes through the centre of curvature of the mirror. As the
Cherenkov light makes an angle with the particle trajectory there will be some geometric
aberration in the focusing even if the particle trajectory passes through the centre of
curvature of the mirror (the particle track has zero impact parameter). If, in addition, the
particle track passes the centre of curvature of the mirror at some distance, i.e. at a
non-zero value of the impact parameter x = 8/R (where § = the distance and R = radius of
curvature of the mirror) the geometric aberration will increase. Evaluating the geometrical
aberration error as a function of x for Cherenkov light focused by a spherical mirror [5] one
obtains for the full width of the relative angular spread

(A8/Bhgeom = (0 — N V3D (VR @ - W) xDECD ..., 27

where @ means addition in quadrature. From Eq. (27) we may conclude that at
X = 0, (A8/8)geom = (n — 1) v/3 and that for large values of x (A8/8)geom increases like x*

13
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(the x* term dominates over the x term above x = 0.03 forn < 1.002). Figure 7 shows a'plot
of (A8/8)geom versus x for n = 1.002.

In order to satisfy the requirement that (A8/0)geom < (A8/8)chrom an upper limit on x
must be imposed. In the optical scheme originally proposed [6] for wide-aperture RICH
counters the centre of curvature of the mirror coincides with the point of emission of
particles (see Fig. 8, spherical RICH) and x is zero for all directions of particle emission (at
least in the case of zero magnetic field). For a RICH counter at a collider that should cover

the full solid angle this implies a spherical geometry with the radius of the detector sphere -

exactly half that of the mirror sphere. Such a geometry imposes severe restrictions on the
space available to other detectors in the experiment and on their geometry. In order to

obtain a more flexible layout the sphere may, however, be cut up into small spherical

sectors, called cupolas (see Fig. 8), which can be laid out in arrays that fit the geometry of
the overall experimental layout. The centre of curvature of a cupola mirror need not at all
coincide with the centre of emission of particles. It is sufficient that the aperture of each
cupola be limited such that the geometrical aberrations are small [7]. Choosing for the
discussion a radiator for which [An/(n — Dlcpom = 4% (ref. Table 2) the relative angular
resolution is (Eq. 21) (A8/8)chrom = 2%. For (A8/8)yeom 10 be smaller than (A6/0)ehrom -
Eq. (27) implies the requirement x < 0.14. ‘
The apertures of the cupola should thus in this case be such that the impact parameter x for
all tracks is smaller than 0.14. Figure 9 shows an early working drdwing of a

spherical-mirror cupola-array layout from the discussions that led to the conception of the

DELPHI RICH counters at LEP.

In some cases it is preferable to use paraboloid mirrors, for example when the impact

parameter is large but the angular spread of the particle trajectories is small. This condition
is fulfilled, for example in the Barrel RICH of the DELPHI detector, where paraboloid

mirrors are used in the final design. Other shapes of the mirrors for example ellipsoid could
be optimal in certain cases.

3.2.2 Photon positioning errors

The position resolution Aryy in the image plane of the photon detector should be such
that (r = ring radius)

(AF/Dxy < (A0/6)chrom .- | (28)

Choosing, somewhat arbitrarily, as example § = 60 mrad and f = 1000 mm {i.e. r = 60
mm) this implies Ar < 1.2 mm if (A8/8)chrom = 2% . The photon detecior should thus, in
this case, have a position resolution of the order of 1 mm or better in order for the
chromatic error to dominate.

Ideally the lateral position of all photons should be measured exactly in the focal
surface. However, this is not possible in practice. A spread Az in longitudinal coordinate
(transverse to the focal plane) of the point at which the lateral coordinates x and y of the
photon track is measured will tend to increase the relative uncertainty in the measured

15
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Fig. | 8. The optics of the originally proposed spherical RICH counter [6] and that of a so-called ‘cupola’ RICH
counter [7].
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Fig. 9. Early working-drawing of a spherical-mirror cupola-array from the discussions that led to the
conception of the DELPHI RICH counters.
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Cherenkov angle. For this spread in § to be smaller than that caused by chromatic
aberration is required that Az < f-(A8/0)cnom in case of perpendicular incidence of the
light on the photon detector. However, if x # 0, the light will in general hit the photon
detector at an angle o, which in practical cases can be considerable. In such cases the image
aberration is systematic and can be corrected for provided that the depth coordinate z is

measured with sufficient accuracy [the accuracy required for z depends on «,
AZ < f' (AG chrom/aj.

3.2.3 Magnetic field and multiple Coulomb scattering

As already discussed, in order to use the measurement of the velocity vy to identify
particles, the momentum of the particle must also be known. This implies, in practice, that
a magnetic spectrometer must be used. If the Cherenkov counters have to be placed in the
magnetic field of the spectrometer the particle irack will be bent and the image distorted.
The effect on the image is illustrated in Fig. 10. The displacement A¢ in angle for a particle
of momentum p traversing a radiator of length d in a magnetic field with a component By
perpendicularly to the particle trajectory is

A6 = 0.3Brd/p. (29)

Averaging the angular smear around the ring reduces Af by a factor 2/=. As it is at high
momenta (where the difference in ring radius for different particles is small) that a high
resolution in # is needed Br can in practical cases be quite high (~ 1T) without significantly
deteriorating n/K and K/p separation. However, e/r separation may be significantly
affected since the = ring approaches the e ring in radius at comparatively much lower
momenta.

It should also be noted that the magnetic field in general will affect the operation of the
photon detector, possibly changing its position resolution.

Another reason for the particle trajectory not to follow a straight line is multiple
Coulomb scattering in the radiator. This effect is, however, in most practical cases of
negligible magnitude.

4. ANGULAR RESOLUTION AND DESIGN OF COUNTERS
WITH LIQUID RADIATORS

There are several qualitative differences between the case of liquid radiators and that of
gaseous radiators. As seen from Table 1, comparing a heavy gas (such as isobutane) with a
light liquid (such as freon), the density of emitted photons is more than two orders of
magnitude larger and the Cherenkov angle more than one order of magnitude larger in the
case of the liquid. These facts are, of course, just reflections of the large step in (n — 1) of

more than two orders of magnitude when going from gases to liquids. The consequences are
the following,



EFFECT OF MAGNETIC FIELD

Fig. 10 Illustration of how a Cherenkov ring is smeared if the radiating particle passes through a magnetic
field.
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i) In view of the high photon density a liguid radiator may be made thin (~ 1 cm), so that
¢ can be measured by simple projection without focusing mirrors [7], as already
discussed (see Fig. 2).

i) The large value of # implies that the small-angle approximation is no longer valid.

iil) The large value of the refractive index implies that refraction of Cherenkov light in the
downstream liquid surface has to be taken into account. In particu_lar, under certain
conditions the Cherenkov light is subject to total internal reflection.

vi) Finally, the relative range of (n — 1} is much smaller for liquids than for gases. In terms
of the ratio (max — 1)/(Nmin — 1) the range is about 45 for gases at NTP (see Table 1, -
Mmin = 1.000035, nyax = 1.00127) but only 1.8 for liquids (Nuis = 1.233, npax = 1.41;
for n > I'41 all Cherenkov light is totally internally reflected for particle trajectories
normal to'the downstream liquid boundary). This implies that it is not possibler to
change dramatically the lower velocity limit vymin for particle-discrimination of a
liquid-radiator counter by changing the liquid.

With reference to Fig. 2, defining as in the case of gaseous radiators a normalized
radius Ruorm = R/Rmax and a normalized velocity ynomm = ¥/ "Yinreshold, W€ Obtain the
relation between Ruorm and ynorm by contraction of the following expressions

Riorm = tan ¢/tan ¢max

¢ = arcsin {n sin #) (Snell’s law) (30}
8 = arccos [1/(n-m] (6)
¥ = Ynom /N1 = 1/n2 (8)
Yoo = 1

leading to

tan {arcsin (n sin [arccos [1/(n X V1 - (1 - 1/0%)/v20m)])]

Rn =
o tan (arcsin {n sin [arccos (1/n)]}) (31)
to be compared with the expression obtained for gascous radiators
I'norm = enorm =] - I/Ym')rm . (18)

In the limit n — 1t Eq. (31) reduces to Eq. (I8). Clearly, Eq. (31) does not have the formal
simplicity of Eq. (18) and, more importantly, Eq. (31) is not invariant in n as is Eq. (18).
‘Therefore, conclusions drawn from Eq. (31) will be different for different liguids (different
values of n). The scale-breaking in n is illustrated in Fig. 11, where Ruomm has been plotted
VErsus ynorm for different values of n between 1.20 and 1.40. When n — 1 the curves tend to
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Fig. 11 Plot of Eq. {31) showing the relation between the normalized Cherenkov-ring radius Rnom and the

normalized velocity yuorm for normal incidence of particles in a proximity focussing liquid-radiator
RICH-counter for different values of the refractive index n.
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the limiting curve, here labelled n = 1.0017, which, as already stated [relation (18) invariant
in n] is valid for all gases. The dashed curve has been calculated for n = 1.40 not including
the effects of refraction [relation (30)]. The significant difference between this curve and
that including refraction for n = 1.40 shows the dominant importance of the refraction as n
approaches the limiting value n = v/2, above which total reflection occurs.

In Fig. 12 Ruorm has again been plotted, this time as a function of v (= Ynorm - Yihreshola)-
It is apparent from this figure that the available range in threshold velocities is quite limited;
Yihreshold = 1.41 (n = 1.41) to 1.67 {(n = 1.25). However, the curve for n = 1.40 seems to
stretch over quite a large dynamical range, having a very low threshold and approaching
Rnorm = 1 at about the same rate as the curve for n = 1.02. From these considerations alone
one would conclude that a liquid with a refractive index just below n = 1.41 would
represent an optimal choice. However, as discussed in the following section, chromatic
dispersion in the refraction invalidates such a conclusion.

4.1 Angalar resolution and particle discrimination

As for a gaseous-radiator counter the ultimate limit in angular resclution is set by the
chromatic dispersion of the refractive index. To study the effects of this dispersion for
liquid radiators we cannot use the simple Eq. (21), primarily because this formula does not
include the additional angular spread introduced through chromatic dispersion in the
refraction in the downstream liquid surface and also because of the fact that the small-angle
approximation used to derive this formula is no longer valid.

An overriding condition when choosing a radiator is that it be transparent to the
photons to be detected. As the TPC-type photon detectors developed so far use
tetrakis-(dimethylamine)-ethylene (TMAE) as the photo-ionizing component, only photons
of an energy above the photo-ionization threshold of this substance which is 5.4 eV
(wavelengths below 230 nm) can be detected. If purified fused quartz is used as window
material only light of energy below the transparency threshold of this material, 7.5 eV
(165 nm), can be detected. As a consequence, we require a good radiator to have a high
transparency over most of the interval 5.4-7.5 eV, This condition is fulfilled for the noble
gases and the lighter hydrocarbons and fluorocarbons listed in Table 2. However, we have
already mentioned that the hydrocarbons have a larger chromatic dispersion in this
photon-energy range as compared to the nobel gases and the fluorocarbons. We could thus
obtain satisfactory radiator liquids by liquefying noble gases or fluorocarbons. There are
obvious practical advantages of not having to work at low temperature. This in turn implies
that the use of liquefied noble gases should be avoided and focuses the choice on the heavy
fluorocarbons which are in liquid phase at room temperature. In Table 3 we have listed a
series of fluorocarbons with their refractive indecies at 7 eV and the absolute and relative
variation in n over the range 6.5-7.5 ¢V (below 6.5 eV the quantum efficiency of TMAE is
quite low). Of these only CsF,; and C¢F 4 are liquid at room temperature.

From Table 3 we see that the value of An/(n — 1) is about 3% for the fluorocarbons.
Using Eq. (31) we may now explicitly calculate the relative spread in radius (AR/R)enrom fOT
different values of n, assuming a relative full width dispersion in n of An/(n — 1) = 3%.
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Table 3

For each of the five listed radiator liquids are given the refractive index at 7 eV photon energy (177 nm} and its
absolute and relative full-width chromatic dispersion in the range 6.5-7.5 eV. For each radiator the temperature

at which the measurement was made is indicated in parenthesis (only the last two are liquids ar room
remperature). :

Radiator n Aflenrom An/{n — 1)
liquid 7eV 6.5-7.5eV

CFs4 (—136°0C) 1.226 0.0047 2.1%
CoFs (— 82°0C) 1.248 0.0075 3.0%
CaFio (- 10°C) 1.266 0.0102 3.8%
CsFiz (+20°C). 1.262 0.0080 3.1%
CeF 12 (+20°C) 1.277 0.0093 3.4%
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The corresponding curve is shown in Fig. 13. As expected [see formula (21)] (AR/R)ctrom
tends to (2)-An/(n — 1) = 1.5% when n goes to 1. Repeating the calculation without
refraction included in the expression for Ruorm, (AR/R)chrom is equal to 1.5% at all values of
n (dashed line in Fig. 13). However, when refraction is included, (AR/R)chrom increases with
n and grows rapidly to very large values when n approaches the value v2. The actual loci in
Fig. 13 for the fluorocarbons in Table 3 have been marked with crosses. For comparison the
foci of liquefied noble gases have also been indicated (He, Ne, and Ar). For the two
fluorocarbons in Table 3 that are liquids at room temperature (AR/R)chrom = 4-5%, which
is a large increase from the value of 1.6-1.7% [= (A An/(n -~ 13] these media have in
gaseous phase. The reason for this increase is to be found in the additional refractive
dispersion occurring in the downstream liquid surface.

Let us now evaluate in the same way as in the case of gaseous radiators over what
y-range a measurement of the velocity can be made by comparing the deviation (1 - Rnoem)
with the relative chromatic spread ARnom,chrom. In Fig. 14 the ratio of these two quantities
(I ~ Ruomm }/ARnorm,chrom has been plotted as a function of v for a series of different values
of n. Throughout, the value assumed for An/(n — 1) is 3% as approximately valid for the
fluorocarbons.

From Fig. 14 it is apparent that the v-value at which (I ~ Ruaorm) is equal to
AR qorm, chrom decreases monotonically with increasing n. From this we may conclude that the
large dynamical range in the variation of Rpgemq with v for values of n just below n = V2 (see
Fig. 12) is counteracted by the strong increase in relative chromatic dispersion (AR/R)ehrom
when approaching n = /2 (shown in Fig. 13). The net result is that if the goal is to measure
the velocity to the highest possible value of ~, one should choose the radiator liguid that has
the lowest possible value of n (as seen in Fig. 14). Of the liguids in Table 3 CsF); boils at




(AR/R)eprom fOF (An/n-1) = 3%

x
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Ne
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Refractive index n

Fig. 13 The relative full-width of chromatic dispersion in Cherenkov-ring radius R in a liquid radiator RICH
counter for particle of normal incidence as function of the refractive index, assuming a constant refative
full-width dispersion in the refractive index of 4n/(n ~ 1) = 3%. The crosses show the locii for various
radiator liquids in the graph. The dashed line shows the dispersion in R if there were to be no refraction
in the counter.
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different values of the refractive index n.
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30°C and CgFi4 at 56°C. We will choose CsFy; as an example to evaluate the upper and
lower limits in energy for particle discrimination. From Table 3 we have for CsF 2

n = 1.262

wreshold = 1.64
relation (8) } Tihreshold

An/(n — 1) = 3.1%

Figure 14 } Viax = 7.2

which implies the following momentum ranges for the three stable, charged hadrons

T 180 GeV/¢c to 1000 MeV/c
K 640 GeV/c to 3500 MeV/c
p 1220 GeV/c to 6700MeV/c.

The velocity range for CsF 2 is shown together with the velocity ranges for the gaseous
radiators (from Fig. 6) in Fig. 15. Assuming that CsFi; is the lightest available
UV-transparent liquid at room temperature with low relative chromatic dispersion, then the
upper y limit cannot be increased by choosing other radiator liquids (however, if a
cryogenic and/or pressurized liquid-radiator container can be used, this is certainly not
true). The lower limit in v (i.€. yaweshota) can be lowered to v = 1.41, as indicated in Fig. 15,
by using a liquid (or solid) with a refractive index just below n = 1.41 but only at the price
of significantly decreasing the upper limit vymax.

Let us finally note that using the heaviest gaseous radiator an absolute threshold as low
as 2.4 GeV/c is obtainable for = mesons {using, for example, CsF;; in gaseous phase—see
Table 2). Above 2.4 GeV/c it is thus possible to separate «'s and K’s using a
gaseous-radiator counter alone. Adding, in series, a liquid-radiator counter would allow
w/K separation up to 3.5 GeV/c. There is thus an overlap between the two counters which
assures continuous /K separation at momenta from the « momentum threshold in the
liquid (180 MeV/¢) up to the upper K momentum limit in the gas (47 GeV/c—see Table 2).
For X/p separation, on the other hand, the K threshold in the gas is about 8.3 GeV/c,
whereas the maximum momentum for protons to be measured in the liquid-radiator counter
is 6.7 GeV/c. For the case of K/p separation a combined liquid and gaseous-radiator
counter will thus have a region of reduced performance around 7-8 GeV/c. The ‘hole’
in K/p separation would be reduced if one can find a liquid radiator of even lower n and
An/(n — 1) or a gaseous radiator of even higher n than has been discussed here.

4.2 Other sources of error and counter design

As for the gaseous-radiator RICH, the design of a liquid-radiator RICH is dictated by
the ambition to reduce the other sources of error in the mesured Cherenkov angle to such an
extent that the irreducible chromatic dispersion remains the dominant error source.
Choosing CsFi; as radiator liquid we have (AR/R)chrom = 4%0.
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Fig. 15 This graph shows the same velocity-measurement ranges for gaseous radiators as displayed in Fig. 6 and
in addition the range corresponding to a liquid-radiator RICH counter with CsF,» as radiator (n =
1.262). The dashed line shows the small extension that is possibie towards lower velocities by going to

heavier liguids (up ton = 1.41).
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4.2.1 Geometric errors

The finite width of the liquid radiator layer implies a finite width ARgeom 0f the ring, as
llustrated in Fig. 2. The expressions for R and AR,eom are [using Eq. (30)}

R = Dtan ¢ = D tan [arcsin (n sin 8)] (32)

Note that refraction increases R but does not influence AR;eom
(AR/R)geom = (d/D) (tan 8 /tan [arcsin (n sin 0)]) . (34)

The effect of refraction is thus to reduce the relative geometric error in R. The reduction
factor is shown as a function of n in Fig. 16. At n = 1.262 (CsF12) we have (AR/R)geom =

0.65-(d/D). Requiring (AR/R)geom < (AR/R)cnrom = 4% we obtain d/D < 0.04/0.65 =
1/16.

Assuming some;ivhat arbitrarily a Ng value of 60 cm ™" one obtains for n = 1.26, using
expressions (10) and (7),

*Ndetected,max = 60 sin [arccos (1/1.26)] = 22 phbtons/cm

Assuming that of the order of 22 photons are required to determine # (considering that
some photons may be lost due to total internal reflection for inclined tracks) we could settle
for d = 1 cm and would as a consequence require D > 16 cm. A lever arm of D = 20-
25 cm thus seems to be a reasonable first choice.

Any further considerations with respect to geometric errors must include the fact that
non-perpendicular tracks will have ellipsoidal and paraboloidal images. In 2 medium with n
= 1.26 total internal reflection occurs for light hitting an inside surface of the medium at an
angle larger than arcsin (1/n) = 52.5°. Since the maximum Cherenkov angle forn = 1.26
i 8 = arccos (1/n) = 37.5°, part of the Cherenkov light is lost (leading to a paraboloidal
image) when the particle trajectory is inclined by more than 15° with regard to the
downstream liquid surface. This fact is illustrated in Fig. 17.

If the particle trajectory is known, an independent estimate of the Cherenkov angle can
be obtained from each individual photon in an image. Since, in general, for each value of
the azimuthal emission angle around the particle trajectory the chromatic and geometric
errors are different the errors should be evaluated for each photon separately and then be
used to calculate a weighted mean value and error for the Cherenkov angle. Figure 18§,
taken from the DELPHI proposed [8], illustrates for a specific case the behaviour of the
geometric and chromatic errors as function of the azimuthal angle around the track.

4.2.2 Photon-positioning errors
As in the discussion on the geometric error and the requirements on the distances d and
D, a precise calculation of the requiremenis on the spatial resolution of a photon detector
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Fig. 16 The reduction factor multiplying 4/D in Eq. (34) as function of refractive index n showing how the’
relative geometric resolution in Cherenkov ring radius R in a Jiquid-radiator RICH counter improves
when going to higher values of n.
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cannot be made without specifying the individual case in detail. We will, therefore, limit the
discussion here to some simple considerations to illustrate the first approach to the subject.

Assuming D = 20cmand ¢ = 50° (n = 1.26, normal incidence) gives a ring radius of '

24 cm. The requlrement that {AR/R)xy < (AR/R)chrom = 4% would 1mp1y that ARKy <
1 cm. However, inclined partlclc trajectories will require AR,y to be smaller to match the
higher resolution in certain azimuthal ranges around such tracks.

As to the measurement of the depth coordinate in the image plane (2} its accuracy ‘

should be of the same order as in the xy-plane since the angles we deal with are of the order
of 45°.

4.2.3 Magnetic field and multiple Coulomb scattering .

As already discussed, a liquid-radiator counter has a much shorter radiator and much
larger Cherenkov angle as compared to a gaseous radiator counter. These two facts concur
to make the relative magnetic-bend shift (AR/R)g very much smaller than (AR/R)chrom =
4%, also when taking into account that particle discrimination in a liguid radiator counter
is effective at much lower momenta than in a gaseous radiator counter.

As in the case of the gaseous-radiator counter the multiple Coulomb error in R is of
negligible magnitude in most practical cases.

5. SOME COMMENTS ON THE PARTICLE DISCRIMINATION POWER

OF THE RICH METHOD

The purpose of the discussion in Sections 3 and 4 was primarily to relate and compare
the different error-sources in the Cherenkov-angle determination in order to study their

influence on the design of RICH counters. In particular, the full width A# of the spread in ¢ '
due to chromatic dispersion was compared with the full widths of the spread due to-

geometric errors, photon positioning errors and errors due to magnetic deflections. We will
here make a few comments on how the particle discrimination power of a RICH counter is
related to the parameters of the counter.

The estimator of  in a RICH counter is in its simplest form a mean value of Cherenkov
angles derived from a number Nyetecea Of individually measured photons. The shape of the
error distribution of the one-photon Cherenkov-angle estimator is given by a convolution of
the chromatic, geometric, photon position, and magnetic-bend error-functions. Once the
standard deviation o, of the convoluted error function is determined, the standard error in
the full Cherenkov-angle estimator is obtained as o,/vNacrectea, provided that there is no
correlation between the measurement of the individual photons.

For example, on the simplistic assumption that the convoluted error function is
Gaussian with a FWHM of Af and that there are Npn = 9 independent determinations of ¢,
the standard error of their mean value is '

6, = (1/N9)- A8/2.35 = (1/T) &6 .

Ideally the separation by the full spread Afchrom, as discussed in Sections 3 and 4, would
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thus be on the very high level of seven standard deviatons if Af is interpreted as the FWHM
of a Gaussian and Npn = 9. Note that the upper velocity limits ~max in Figs. 6 and 15 assume
all errors other than the chromatic to be negligible. This will most probably not be the case
in any given practical RICH counter used in a particle-collider experiment. Therefore the
vmax values quoted should primarily be taken as upper bounds.

In Section 3.1 the upper limit for separation of particies a and b is defined as the energy

asv at which the difference 8, —~ 6y is smaller than a certain width A8, According to
Eq. (19) the angular difference is inversely proportional to . This implies that a reduction
of the error in # by a certain factor will increase the upper energy-limit for particle
separation only by the square-root of the same factor.

As to the lower energy limit for particle separation we have so far only referred to the
absolute threshold. Since a minimal average number of photons is required for reliable
detection and measurement of 8, the effective threshold is higher than the absoiute
threshold. If we define the normalized number of photons Nuorm as

Noorn (yrorm) = —2eccted (1mom) (35)

Ndetecled (’Ynorm = 1)

then relations (10) and (18) yield for small angles
Nnorm = B%mrm =1- I/Tzr.lorm - 'Yll:.é)j?m = 1/+1 - Nnorm (36)

If, for example, Nyorm = 1/3 isrequired, then 'ynmé?m = 1.22, i.e. the effective threshold is
22% higher than the absolute, The value of Npom should be chosen such that the
probability of having zero photons in an individual event {= exp (— Ngewecied)] at the
effective threshold is reasonably low. (If Naciectea = 9 and Npormn = 1/3, then we have exp
(— 3) = 3% at the effective threshold). Note that the lower velocity limits ymin i0 Figs. 6
and 15 represent the absolute thresholds. The ymia values quoted may thus only-be taken as
lower bounds.

In the region between the upper and lower energy limits for acceptable particle
discrimination the particle rejection factor and the particle detection efficiency are both far
higher than in the regions close to these limits. Here we will not make an attempt to estimate
quantitatively the levels of and relation between rejection and efficiency as a function of
energy but himit ourselves to pointing out the particular features which make the RICH
counter a far more discriminative detector as compared to the classical threshold
Cherenkov-counter. The intrinsic granularity of a RICH counter is more than three orders
of magnitude higher than that of conventional threshold Cherenkov-counter arrays
(microsteradians as compared to many millisteradians) making possible the separation also
of very nearby tracks. This is valuable when studying particles in jets, in particular in
situations where conversion electrons cannot be avoided. The high granularity,

furthermore, suppresses that particular limitation in the particle rejection of threshold
counters which is due to emission of light from & electrons.
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it is finally important to remember that, as already discussed in Section 2 mass
separation of particles can only be achieved through simultaneous measurement of - and p.
This implies that the momentum resolution of the magnetic spectrometer, necessary in any
experiment that uses RICH counters for mass determination, may in some case be the
limiting factor rather than the Cherenkov angular resolution. The upper momentum
boundary most sensitive to this limitation is that for discrimination between the two
heaviest particles, i.e. for K/p separation.

The above discussion does not pretend to be complete. In a real detector the error
distributions have tails, measurement of individual! photons are correlated, irrelevant
background observations get mixed with real data, and there are systematic errors of
various kinds. The effects of all this on the accuracy of ¢ and on the particle discrimination
power can only be evaluated using a fully-fledged Monte Carlo simulation program, based
on experience with prototype measurements for a given individual project. The so far quite
limited experience of large-scale RICH projects in collider experiments makes it difficult to
arrive at quantitative statements of general validity with regard to momentum ranges and
rejection factors for particle separation. As already noted the upper and lower limits given
in Figs. 6 and 15 should be taken as bounds based on reasonable but optimistic appreciation
of the status and the further developement of the RICH technique.
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