Searches for Higgs and Higgs-like particles at LHCb

Marcin Kucharczyk on behalf of LHCb collaboration

EPS-HEP 2013, Stockholm

18.07.2013

Contents

- LHCb overview
- $H \rightarrow \tau^+ \tau^-$
- Higgs boson decays into long-lived exotic particles
- Towards $H \rightarrow bb(bar)$ in associated production with W/Z
 - → bb(bar) inclusive cross section
 - → forward-central *bb(bar)* production asymmetry

LHCb experiment

Designed for CP violation & rare decays of heavy mesons

Unique acceptance (10-300) mrad

able to access low p_T test models with enhanced forward production

precise tracking / vertexing in $\eta \in (2-5)$

JL: ~37 pb⁻¹ (2010)

 $\sim 1 \text{ fb}^{-1}$ (2011)

 \sim **2** fb⁻¹ (2012)

$H \rightarrow \tau^+ \tau^-$

Goal: set limits on neutral Higgs production in the forward region

Data sample used: 1 fb⁻¹ @ \sqrt{s} = 7 TeV

5 channels: (2 l's):
$$H \rightarrow \tau_{\mu}\tau_{\mu} \quad H \rightarrow \tau_{\mu}\tau_{e} \quad H \rightarrow \tau_{e}\tau_{\mu}$$
 (1 + 1-prong): $H \rightarrow \tau_{\mu}\tau_{h} \quad H \rightarrow \tau_{e}\tau_{h}$

Selection

- ullet cuts on lepton/hadron p_T
- leptons must be isolated + impact parameter wrt primary vertex
- leptons in $2 < \eta < 4.5$, hadrons in $2.25 < \eta < 3.75$
- pair must be ~back-to-back ($\Delta \phi$ > 2.7 rad)
- for di-muon stream: p_T asymmetry > 0.3, $60 < m_{\tau\tau} < 120$ GeV/c²

$H \rightarrow \tau^+ \tau^-$

INFN

Signal: SM and MSSM Higgs considered

Standard Model: model independent

cross sections from DFG (Phys. Lett. B 674 (2009) 291)

MSSM: $m(h^0)_{max}$ scenario (only $m(A^0)$ and $tan\beta$ free)

x-sections and efficiencies functions of $m(A^0)$ and $tan\beta$ from gg fusion and bb(bar) associated production (HIGLU, GGH@NNLO, BBH@NNLO)

contributions from h^0 , A^0 and H^0 summed

Branching fractions with FeynHiggs 2.7.4

All efficiencies determined from data-based methods

Main background

- $Z \rightarrow \tau \tau$

- **QCD**: leptonic b- or c-hadron decay or mis-ID hadron

Signal yield from fit to the $m_{\tau\tau}$ using template shapes of signal and background contributions

Upper limits calculated at CLs = 95%

Eur. Phys. J. C71 (2011) 1554, arXiv: 1007.1727

MSSM limits compared to ATLAS, CMS and LEP results

LHCb is able to test models with enhanced BR($H\rightarrow \tau\tau$) + forward production

SM: $H \rightarrow \tau \tau$ $\sigma \times BF$ upper bound ~3 pb for Higgs mass of 125 GeV/ c^2

MSSM: values above $\tan\beta \in (32 - 70)$ excluded for A^0 mass 90-150 GeV/ c^2

$h^0 \rightarrow \text{Long-Lived Particles } (LLP's)$

Many BSM models predict Long-Lived massive Particles (LLP's)

Hidden Valley models (Strassler & Zurek Phys. Lett. B651 (2007) 374)

- SM Higgs may decay into 2 HV particles which decay to bb(bar)

$$h^0 \to \pi_V^0 \pi_V^0 \to b \bar b b \bar b$$

mSUGRA with baryon number violation (Kaplan et al. Phys. Rev. Lett. 99 (2007) 211801)

- "Six-Quark Decays of the Higgs Boson in Supersymmetry with R-Parity Violation"

$$h^0 \to \tilde{\chi}_1^0 \tilde{\chi}_1^0 \qquad \tilde{\chi}_1^0 \to 3 \, \mathrm{jets}$$

$h^0 = \frac{\tilde{\chi}_1^0}{\tilde{\chi}_1^0}$ $\tilde{\chi}_1^0 = \frac{\tilde{s}}{\tilde{\chi}_1^0}$ $\tilde{\chi}_1^0 = \frac{\tilde{s}}{\tilde{\chi}_1^0}$

In both cases

- $m_{LLP} > 20 \text{ GeV/c}^2$, $\tau_{LLP} > 1 \text{ps}$
- far from PV and beam axis

h⁰→LLP's

Data $(\sim 36 \text{ pb}^{-1})$ compared to **MC**: bb, HV10, BV48

Models shown on the plots

HV10 (Hidden Valley)

$$m_H = 120 \text{ GeV}, \ m_{LLP} = 35 \text{ GeV}, \ \tau_{LLP} = 10 \text{ ps}$$

BV48 (Kaplan et al.)

$$m_H = 114 \text{ GeV}, \ m_{LLP} = 48 \text{ GeV}, \ \tau_{LLP} = 10 \text{ ps}$$

- Shapes well compatible with inclusive bb(bar)
- Yields also compatible with bb(bar)

MC predicts LLP candidates are back-to-back $\rightarrow cut: \Delta \phi > 2.8$

h⁰→LLP's

Zero candidates found in DATA (~36 pb-1)

Upper limits (in pb)

$$\sigma(h^0) \times BR(h^0 \rightarrow 2 LLP's) < 90 \text{ pb}$$

HV10

$$\sigma(h^0) \times BR(h^0 \rightarrow 2 LLP's) < 93 \text{ pb}$$

BV48

$$\sigma(h^0) \times BR(h^0 \rightarrow 2 LLP's) < 32 \text{ pb}$$

Ongoing

- → use 2011 + 2012 data

 should increase sensitivity by a factor of ~10
- → extend to single LLP search

LLP lifetime = 10 ps

@ 95% CL

m_{LLP}	30	35	40	48	55
m_h o					
100	101	58	44	58	
105	100	75	44	39	
110	132	75	56	34	
114	128	91	47	32	46
120	148	(93)	58	34	31
125	179	90	61	41	29

Higgs mass = 114 GeV/c² @ 95% CL

m_{LLP}	30	35	40	48	55
$ au_{LLP}$					
3	210	156	136	168	410
5	145	101	-68	58	137
10	129	91	47	32	46
15	155	90	49	31	33
20	131	93	63	32	31
25	142	100	61	34	25

SM Higgs into bb(bar)

Analysis of HW/Z ongoing

New tools developed:

- jet reconstruction
- b-jet tagging, calibration, etc.

HW/Z (H→bb(bar))

- $-\sigma(7 \text{ TeV}) = 0.89 \text{ pb}, \ \sigma(8 \text{ TeV}) = 1.09 \text{ pb}$
- fraction of events with 2 *b*-quarks from Higgs in LHCb acceptance: ~5% @ 7 TeV
- similar acceptance for lepton from Z/W

Studies towards $H \rightarrow bb(bar)$

- $\sigma(bb(bar))$ with inclusive final states (LHCb-CONF-2013-002)
- forward-central bb(bar) production asymmetry (LHCb-CONF-2013-001)

Inclusive $\sigma(bb)$ & $\sigma(cc)$

b-quark carries heavy mass

- b-hadron keeps characteristics of hadronizing quark
- inclusive measurement: study angular correlations in a wide kinematical range
- less dependence on BR's and fragmentation

- reconstruct b-seeds2- or 3-track secondary vertices
- ullet seeds close in $\Delta \phi$ merged according to invariant mass of the pair
- seeds calibrated wrt the true b-hadron
- sample decomposition with BDT

b-seed tagging based on excellent spatial resolution of the vertex locator

Inclusive $\sigma(bb)$ & $\sigma(cc)$

DATA sample

- only events with 1 rec. PV
- effective lumi = 2.6 pb^{-1}

Seeds approximate well the initial *b*-hadron direction

0.0017 rad 350 E LHCb Preliminary LHCb Preliminary Entries / 0.01 Simulation Simulation fit result fit result Entries / 100 E 100 50 E -0.2 -0.04 -0.020.02 Seed resolution in ϕ [rad] Seed resolution in θ [rad] $\sigma(\phi) = (12.7 \pm 0.8) \text{ mrad}$ $\sigma(\theta) = (1.33 \pm 0.05) \text{ mrad}$

Inclusive b seeding efficiency

- MC: $(81.6 \pm 0.7)\%$
- x-check with DATA: $(82.5 \pm 3.0)\%$ (tag with other side $B\rightarrow D\pi$)

GLOBAL EFFICIENCY

$$\epsilon^{bb} = (8.0 \pm 1.1) \cdot 10^{-4}$$

 $\epsilon^{cc} = (1.8 \pm 0.2) \cdot 10^{-5}$

Seeds built excluding signal particles

Inclusive $\sigma(bb)$ & $\sigma(cc)$

Contributions from *bb* and *cc* determined from PDF fit to BDT response

- x-check of the shapes with DATA (other side) $B \rightarrow D\pi$ and $D \rightarrow K\pi\pi$

Preliminary measurement of total $\sigma(bb)$ and $\sigma(cc)$

Ongoing: conclude studies of angular correlations use larger statistics (2011 & 2012)

 Total x-section
 $\sigma(bb)$ [μb]
 $\sigma(cc)$ [μb]

 FV: $\eta \in (2.5\text{-}4.0)$, $\rho_{Tjet} > 5$ GeV
 7.7 ± 0.12 (stat) ± 0.84 (syst)
 104.6 ± 2.7 (stat) ± 11.4 (syst)

 LHCb acceptance
 79.7 ± 1.2 (stat) ± 8.7 (syst)

 Extrapolated to 4π angle
 217.7 ± 24.1
 3352.6 ± 450

A_{FC} in bb(bar)

LHCb Preliminary

300

—all

····taq

-- 2-tag

400

M_{bb} [GeV]

13

$$A_{FC}^{b\bar{b}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)} \quad \Delta y = |y_b| - |y_{\bar{b}}|$$

b-tagging based on 2-, 3- or 4-track vertices significantly displaced from PV

DATA: ~1 fb-1 @ 7 TeV

- 2 jets from anti- k_T (R = 0.5), $p_T > 15 \text{ GeV/c}$
- $\Delta \phi(j_1, j_2) > 2.5 \text{ rad}, 2 < \eta < 5$
- jet energy corrected to quark level

Flavour tagging

- hardest displaced track must be a muon
- masses of B's from $B \rightarrow D\pi$ and $B \rightarrow J/\psi K$

100

Events / (25 GeV)

10²

10

~10% (time integrated), from B⁰ oscillations

Time integrated total tagging purity

200

 $(70.7 \pm 0.4)\%$

A_{FC} in bb(bar)

Final result (after correction on mistag)

Reflected plots along $\Delta y = 0$ in red

$$A_{\rm FC}^{b\bar{b}} = (0.5 \pm 0.5 \, ({\rm stat}) \pm 0.5 \, ({\rm syst}))\%$$

 $A_{\rm FC}^{b\bar{b}}(M_{b\bar{b}} > 100 \, {\rm GeV}) = (4.3 \pm 1.7 \, ({\rm stat}) \pm 2.4 \, ({\rm syst}))\%$

Systematics: mainly from flavor tagging purity and detector asymmetry

Ongoing: more efficient b-tagging, m_{bb} resolution unfolding, adding 2012, ...

Conclusions

- LHCb has a potential to complement LHC program of NP searches
 - unique forward acceptance $\eta \in (2 5) + \text{trigger system}$
 - search for soft NP signatures that cannot pass ATLAS/CMS high p_T cuts
- Set limits on neutral Higgs production in the forward direction
- Measurements towards H → bb
 - bb(bar) and cc(bar) inclusive cross sections
 - A_{FC} for *bb(bar)* production
- Plans
 - update with full 3 fb⁻¹
 - conclude with Higgs $\rightarrow bb(bar)$ associated production
- LHC upgrade
 - 13 TeV collisions in 2015 *(events more boosted forward + higher σ's)*