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Binary pulsars are excellent laboratories to test the building blocks of Einstein’s theory of General
Relativity. One of these is Lorentz symmetry which states that physical phenomena appear the same
for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the
orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary’s
orbital period due to the emission of dipolar radiation. The absence of such behaviour in recent
observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus
verifying one of the cornerstones of Einstein’s theory much more accurately than any previous
gravitational observation.
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Introduction.— Lorentz symmetry allowed physicists
to reconcile Maxwell’s electromagnetism with the princi-
ple of relativity, which states that the outcome of experi-
ments should be the same for all inertial observers. This
reconciliation was the basis of Einstein’s theory of Special
Relativity. Einstein later formulated General Relativity
(GR) as a Lorentz symmetric completion of Newtonian
gravity. Today, much of theoretical physics is built on
Lorentz symmetry. In particular, it is a cornerstone of
the standard model of particle physics. Given how em-
bedded this symmetry is in our understanding of Nature,
any observation of its violation would shake theoretical
physics at its core.

The experimental verification of Lorentz symmetry has
a long history. Today, particle physics experiments con-
strain Lorentz violation in the standard model to an
exquisite degree [1]. But the same is not yet true for
gravitational phenomena. Solar System [2–4], certain bi-
nary pulsar [4–6], and cosmological [4, 7, 8] observations
have been used to derive bounds on Lorentz violation in
gravity, but those are either weaker or partial, focusing
on preferred-frame effects. Lorentz symmetry has not yet
been tested in regimes where gravity is strong and the
gravitational interaction is non-linear, such as mergers of
neutron stars (NSs) and black holes collisions.

One may wonder about the necessity to test Lorentz
symmetry in gravity, given the tight constraints coming
from particle physics. In fact, if the Lorentz violating
effects in gravity were to percolate into particle physics
in a manner consistent with these constraints, such ef-
fects would be unobservable in gravitational experiments.
However, this is not necessarily the case; different mech-
anisms have been put forth leading to Lorentz violating
effects in gravity that can be much larger than those in
particle physics, see e.g. Ref. [9] or the discussion in

Ref. [10] for a review.

Lorentz Violation in Gravity.— Let us consider mod-
ified theories that violate Lorentz symmetry due to the
existence of a preferred time direction at each point of
space and time. This establishes a local preferred frame
that violates Lorentz symmetry because the velocity of
inertial observers with respect to this frame is in princi-
ple observable. Much work has gone into searching for
this preferred time direction in high energy physics [1, 9],
but here we will concentrate on constraining low-energy
Lorentz violation in the gravity sector. As explained in
detail and shown in [11, 12], one can model this preferred
frame without loss of generality through a timelike unit
vector, the so-called Æther field Uµ. The dynamics of
this vector field can be prescribed by two related theo-
ries: Einstein-Æther theory [11] and khronometric theory
[13]. In the former, the vector field is generic, while in the
latter it is related to the existence of a global preferred
time coordinate [12, 13]. Both theories can be consid-
ered as low-energy descriptions of high-energy comple-
tions of GR responsible for Lorentz violation [11]. In the
khronometric case, a possible completion is Hořava grav-
ity [14, 15], which hinges on Lorentz violation to yield a
power-counting renormalizable completion of GR.

The couplings of the Æther field to gravity are di-
rectly related to Lorentz violation. In the low-energy
limit, these are controlled by two sets of constants
that affect different phenomena. One of them, param-
eterized by (α1, α2), controls preferred-frame effects in
the weak-field and has been constrained by Solar Sys-
tem [2, 3, 16, 17] and pulsar observations [5, 6]. The
other set, parametrized by (c+, c−) in Einstein-Æther
theory and (β, λ) in khronometric theory, controls other,
more relativistic, Lorentz-violating effects. Theoretical
constraints on this set follow from stability considera-
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tions and the absence of gravitational Cherenkov radi-
ation [4, 13, 18]. Cosmological observations can also be
used to constrain this set of parameters in the khronomet-
ric case [8, 13], but not efficiently in the Einstein-Æther
theory [4, 7]. Likewise, as we show in [10], constraints
on the strong-field versions of (α1, α2) [6, 19] do not ef-
ficiently bound (c+, c−) or (λ, β). In contrast, Lorentz-
violation in the dissipative sector of strongly-gravitating
systems may lead to large observable effects [20]. Here
we calculate these effects rigorously for the first time and
place constraints on both sets of parameters.

Binary Pulsars as Probes of Lorentz Violation.— Bi-
nary pulsars consist of a NS in orbit around either an-
other NS or a less compact companion, like a white dwarf.
NSs are strongly-gravitating sources because their masses
and radii are M∗ ∈ (1, 2.4)M� and R∗ ∈ (10, 15) km,
leading to gravitational fields and compactnesses C∗ =
−ΦNewt/c

2 = GM∗/(R∗c
2) ∈ (0.1, 0.3) , where G is New-

ton’s constant, c the speed of light and ΦNewt is the New-
tonian gravitational potential at the surface of the star.

Lorentz-violating theories induce corrections to the or-
bital evolution of binary pulsars. In GR, the orbital pe-
riod decreases due to the emission of gravitational waves,
which occurs in a quadrupolar fashion because the com-
ponent’s masses and the center of mass vector are con-
served. In Lorentz-violating theories, however, the or-
bital period decays much more rapidly because of the
existence of dipolar radiation. Such radiation is present
because the center of gravitational mass does not nec-
essarily coincide with the center of inertial mass. This
results in a time-varying dipole moment that emits radi-
ation as the objects spiral into each other, dramatically
accelerating the rate of orbital decay.

Orbital Period Decay.— Let us consider a binary in a
circular orbit with component masses m1 and m2. The
orbit-averaged rate of orbital decay in a post-Newtonian
(PN) expansion 1 is [20]

Ṗb
Pb

= −192π

5

(
2πGm

Pb

)5/3 (m1m2

m2

) 1

Pb
〈A〉 , (1)

in Einstein-Æther theory, m = m1+m2 is the total mass,
Pb is the orbital period and we have defined

〈A〉 = [(1− s1) (1− s2)]
2/3 (A1 + SA2 + S2A3

)
+

5

32
(s1 − s2)

2A4

(
Pb

2πGm

)2/3

+O
(

1

c2

)
. (2)

In this equation, the quantities sA are sensitivity pa-
rameters that will be defined in the next section, S =
m1s2/m+m2s1/m is a mass-weighted sensitivity average

1 A PN expansion is one in the ratio of the orbital velocity to the
speed of light. Henceforth, we set c = 1, except to label PN
orders.

and (A1,A2,A3,A4) are certain functions of the coupling
constants (c+, c−) 2 [10]. An identical expression is ob-
tained in khronometric gravity, except that the functions
(A1,A2,A3,A4) now depend on the coupling constants
(β, λ) of that theory [10]. Equation (1) reduces to the
GR result when A = 1, while the second term in Eq. (2)
corresponds to dipolar radiation.

For systems that are widely separated, like all observed
binary pulsars, the orbital decay rate is dominated by the
term with the least powers of Gm/Pb. This is because
Gm/Pb = O(10−10) for a typical NS binary with a 1-hour
orbital period. Clearly then, the dipole term dominates
the orbital decay rate for all Lorentz-violating theories,
unless s1 − s2 ≈ 0.
Neutron Star Sensitivities.— As is clear from Eqs. (1)

and (2), the orbital decay rate in Lorentz-violating the-
ories depends on the sensitivity parameters sA. These
quantities are a measure of how the binding energy of
a star changes as a function of its relative motion with
respect to the preferred frame.

The sensitivities can only be computed once a moving
NS star solution in Lorentz-violating theories is obtained;
we will work in a slow-motion approximation to first or-
der in the velocity v � 1, which is sufficient for their cal-
culation without loss of generality [10, 20, 21]. We begin
by constructing the most general metric and Æther field
ansatz for a slowly-moving NS. At O(v0), this ansatz con-
tains only 2 free functions of the radial coordinate. At
O(v1), an appropriate gauge choice reduces the ansatz
to 3 (2) additional functions of the radial coordinate and
polar angle in Einstein-Æther (khronometric) theory.

With this metric ansatz, one can expand the field equa-
tions in small velocity and solve them numerically order
by order. To O(v0), one obtains the Lorentz-violating
version of the Tolman-Oppenheimer-Volkoff equation,
which describes the NS structure and leads to the NS
mass-radius relation. To O(v1), one finds a system of
partial differential equations that can be decoupled into
ordinary differential equations with tensor spherical har-
monics. This decoupling is similar to what occurs with
the Einstein equations for generic metric perturbations
about a Schwarzschild black hole background [22]. We
establish this result here for the first time in Lorentz-
violating theories, which is crucial to easily find a nu-
merical solution. The O(v1) equations prescribe the be-
havior of the metric and Æther perturbations, which in
turn determine the sensitivities.

When numerically solving the differential equations of
structure one must close them by choosing an equation of
state (EoS). This equation fixes the pressure as a function
of the energy density in the NS interior. We restrict at-
tention to spherically-symmetric, non-rotating, cold (and

2 This expression was first derived in [20], but with mistakes that
we correct in Eqs. (1) and (2), as described in [10].
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thus old) NSs, as these are appropriate simplifications for
binary pulsar studies [23, 24]. For these stars, there are
several realistic EoSs available; we here explore four rep-
resentative examples: APR [25], SLy [26], Shen [27, 28]
and Lattimer-Swesty with nuclear incompressibility of
220 MeV (LS220) [29], the last two with temperature
0.1 MeV, neutrino-less and in β-equilibrium. Since
Lorentz violations in the matter sector are strongly con-
strained experimentally, viable Lorentz-violating modifi-
cations to the EoSs are forced to be small and would not
produce any detectable effect on the systems we are con-
sidering. Thus, we can focus, without loss of generality,
on violations in the gravity sector alone (see e.g. Ref. [9]
and the discussion in Ref. [10] for a review of possible
mechanisms yielding violations of Lorentz symmetry in
gravity that do not percolate into the matter sector).

All numerical solutions are obtained as follows. In
the NS interior, we numerically integrate the differen-
tial equations from some core radius rc � R∗ to the NS
surface R∗, defined as the radius at which the internal
pressure vanishes. We then use the value of the interior
solution at the NS surface as initial conditions to numer-
ically integrate the exterior equations from the surface to
some matching radius rm � R∗. The exterior solution
is then compared to an approximate analytic solution,
calculated asymptotically as an expansion about spatial
infinity. This comparison allows us to read out the mass
of the NS and to guarantee that the metric is continuous
and first-order differentiable at the matching surface. All
throughout we use a fourth-order Runge-Kutta algorithm
for numerical integrations, checking that our results are
robust to changes in discretization, size of core radius
and location of matching surface.

Figure 1 shows sA in Einstein-Æther theory (top panel)
and khronometric theory (bottom panel) as a function of
the NS compactness. The sensitivities can be approxi-
mated in the low-compactness regime as a linear function
in the ratio of the binding energy to the NS mass [20].
This expression for sA is shown as a solid (red) line in
Fig. 1. Observe that this approximation is inaccurate for
NSs since C∗ ∈ (0.1, 0.3) approximately, and the ratio of
the binding energy to the mass is not such a small num-
ber. We find that the low-compactness approximation
underestimates the correct value of the NS sensitivity by
as much as 200% for realistic NS compactnesses.

Binary Pulsar Constraints.— All binary pulsar mea-
surements of the orbital decay rate agree with the GR
prediction. Thus, any deviation from this prediction
must be smaller than observational uncertainties. Given
the numerical sensitivities computed above, we can now
evaluate the prediction of the orbital decay rate in
Lorentz-violating theories and compare them to binary
pulsar observations and their uncertainties.

We here concentrate on observations of the binary pul-
sars PSR J1141-6545 [23], PSR J0348+0432 [24] and PSR
J0737-3039 [30]. The first two are binary systems com-
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FIG. 1. NS sensitivities in Lorentz-violating theories. We
plot the absolute value of sA in Einstein-Æther (top) and
khronometric theory (bottom) as a function of the NS com-
pactness for (α1, α2) that saturate Solar System constraints.
We use the constraints from Solar System tests and not from
binary pulsars because the latter constrain not only (α1, α2)
but also c+ and c− [10]. We choose c+, c− and β equal to
10−4, with λ determined by β for the chosen values of (α1, α2).
Different curves correspond to different EoS. Observe that sA
increases with increasing C∗. The solid (red) curve is the low-
compactness approximation to sA [20], which disagrees with
our results for realistic NS compactness (C∗ ∼ 0.1).

posed of a NS and white-dwarf, either in a 0.17 eccen-
tricity, 4.74-hour orbit or in a O(10−6) eccentricity, 2.46-
hour orbit. The last system is a double binary pulsar
with 0.088 eccentricity and 2.45-hour orbit.

The Lorentz-violating prediction of the orbital decay
rate, however, depends not only on the coupling con-
stants of the theory, but also on the orbital period, the
individual masses and the sensitivities [see Eq (1)]. Each
of these quantities are measured to a finite accuracy that
then propagates into any constraints one may wish to
place. What is worse, the sensitivities and the individual
masses depend on the NS EoS, which again induces a sys-
tematic uncertainty on any constraints. Given this, any
given binary pulsar observation will lead to an allowed
surface (instead of a line) in the (c+, c−) and (β, λ) pa-
rameter space, since (α1, α2) are stringently constrained
by Solar System tests and binary pulsar observations.

One may worry that some orbital parameters, like the
individual masses, are measured assuming GR is cor-
rect, and thus, it would be inconsistent to use these val-
ues to test GR. In GR, these masses are measured from
the post-Keplerian parameters that depend only on the
Hamiltonian of the system, e.g. periastron precession and
the Shapiro time-delay. In Lorentz-violating theories,
corrections to the Hamiltonian of the system, and thus to
the previous observables, are of 1PN order, ie. O(v2/c2)
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FIG. 2. Binary pulsar constraints on Lorentz-violating theories. The dark, purple shaded surfaces are allowed regions in the
2-dimensional coupling parameter space of Einstein-Æther theory (left) and khronometric gravity (right), given observations
of PSR J1141-6545 [23], PSR J0348+0432 [24] and PSR J0737-3039 [30]. These regions account for possible variability in the
NS EoS, as well as 1σ observational uncertainties in all system parameters, where we have marginalized over (α1, α2) given
Solar System constraints. Observe that these regions are significantly smaller than those allowed given stability/Cherenkov
requirements (light, blue shaded region) and big bang nucleosynthesis constraints (dark, orange shaded region). The red dashed
curves show the values of the coupling constants for which the orbital decay rate is exactly the same as in GR in the weak
field/low-compactness limit [3, 20].

relative to the leading order GR term. Therefore, using
the values for the individual masses obtained by assuming
GR is valid induces an error that is of O(v2/c2) ∼ 10−6

for the binaries considered here.

Given N binary pulsar observations, one can construct
N , 2-dimensional allowed surfaces, all of which will be
different from each other because of different system pa-
rameters and observational uncertainties. The intersec-
tion of all these surfaces yields the only allowed region
in the coupling parameter space that would not be ruled
out by the binary pulsar observations under considera-
tion. Figure 2 shows the allowed coupling parameter re-
gion given the observations of PSR J1141-6545 [23], PSR
J0348+0432 [24] and PSR J0737-3039 [30] (dark, purple
shaded region). All throughout we restrict attention to
values of (α1, α2) that satisfy Solar System constraints.

Notice that PSR J0737-3039 is very useful in constrain-
ing Lorentz-violating theories not just because of how
relativistic it is, but also because both the dipolar and
quadrupolar, Lorentz-violating corrections to the orbital
decay rate are important for this system. This is because
PSR J0737-3039 is composed of two NSs with similar
masses, and thus similar sensitivities, which renders the
dipolar term comparable to quadrupolar one. Thus, the
orbital decay rate for this system scales with (c+, c−) dif-
ferently than for the other systems we considered, placing
stronger constraints when combining all observations.

Figure 2 also compares the new binary pulsar con-
straints to other constraints in the literature. The light,
blue shaded region and the dark, orange shaded one
are those allowed after considering stability/Cherenkov
constraints and big bang nucleosynthesis constraints re-
spectively. We do not show cosmological constraints on
Einstein-Æther theory [7] because they are comparable
to the stability/Cherenkov constraints shown in the plot.
Observe that binary pulsar observations push Lorentz-
violating theories to a tiny region of coupling parameter
space. The red, dashed curve shows the values of (c+, c−)
and (β, λ) for which the energy flux agrees exactly with
the GR prediction to leading-PN order and setting the
sensitivities to zero [3, 20]. Observe that this curve
greatly underestimates the constraints that one can place
with binary pulsars. The constraints on (c+, c−) showed
on the left panel are significantly stronger and more ro-
bust than the order-of-magnitude estimate of [20]3.

The above constraints are robust to systematic errors.
The two main sources of such systematics are the neglect
of the orbital eccentricity and the NS spin. The former
is justified because the binary pulsar systems we consid-

3 The estimates in [20] are based on a small (c+, c−) approxi-
mation, leading PN-order, leading-order in the sensitivities and
neglect all degeneracies, including our ignorance of the EoS.
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ered are almost circular and eccentricity affects the dipo-
lar radiation in the orbital decay rate at order eccentric-
ity squared. A non-vanishing eccentricity does play an
important role in other post-Keplerian parameters, like
periastron-precession, which is crucial to measure the in-
dividual masses of the system. As we explained, such ob-
servables are not modified in Lorentz-violating theories to
our working precision, and their measurement assuming
GR is still valid. The neglect of spin is justified because
the NS spin angular momentum S∗ observed in binary
pulsars is very small: |~S∗|/M2

∗ = O(10−2) [23, 24, 30].
These systematics would modify the constraints shown
here by less than 10%, and would not be visible in Fig. 2.

Discussion.— We have derived new constraints on
Lorentz-violating effects in gravity by using binary pulsar
observations. We began by establishing that the modified
field equations for slowly-moving NSs decouple through
a tensor spherical harmonic decomposition. We then nu-
merically integrated this decoupled differential system to
obtain the NS sensitivities for a variety of EoSs, with-
out making any weak-field assumptions. We used these
sensitivities to compute binary pulsar constraints on pa-
rameters related to Lorentz violation in gravity. The new
results presented here (in combination with Solar Sys-
tem, binary pulsar and cosmological bounds on preferred
frame effects) provide the strongest constraints to date
on Lorentz violation in the gravitational sector. These
constraints are essential in the study of Lorentz symme-
try as a fundamental property of Nature, an endeavour
which may provide insights into the theory that unifies
quantum mechanics and gravitational physics. Finally,
we stress that a detailed discussion of our analysis and
calculations can be found in Ref. [10].
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