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Abstract: In this note we study the applicability of the color-kinematics duality to the

scattering of two distinguishable scalar matter particles with gluon emission in QCD, or

graviton emission in Einstein gravity. Previous analysis suggested that direct use of the

Bern-Carrasco-Johansson double-copy prescription to matter amplitudes does not repro-

duce the gravitational amplitude in multi-Regge kinematics. This situation, however, can

be avoided by extensions to the gauge theory, while maintaning the same Regge limit.

Here we present two examples of these extensions: the introduction of a scalar contact

interaction and the relaxation of the distinguishability of the scalars. In both cases new

diagrams allow for a full reconstruction of the correct Regge limit on the gravitational

side. Both modifications correspond to theories obtained by dimensional reduction from

higher-dimensional gauge theories.
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1 Introduction

Deeper understanding of the relationship between gravity and gauge theories has been a

longstanding problem in high-energy theoretical physics, both in the strong-weak aspect of

AdS/CFT [1–4] and in the weak-weak setting of perturbative calculations [5]. Early glar-

ing evidence of a perturbative relationship came from string theory, where closed-string

graviton vertex operators can be seen as a direct product of open-string gauge-field vertex

operators. This structure leads to a relation between gravity and gauge theory tree ampli-

tudes known as the Kawai-Lewellen-Tye (KLT) relations [6]. In the 90’s this problem was

further studied [7–11] strengthening the idea that, at the level of scattering amplitudes,

gravity is in some loose sense the “square” of a gauge theory.

This idea was made precise following a proposal put forward by Bern, Carrasco, and

one of the current authors (BCJ), who recognized that the underlying mechanism is a

duality between color and kinematics present in gauge theory [12]. The color-kinematics

duality then generates gravity amplitudes by replacing the color factors in a gauge-theory

amplitude with kinematic numerator functions depending on particle momenta and states,

giving a double-copy representation of gravity amplitudes. Much of the power of the

proposal stems from the fact that it is expected to directly generalize to loop amplitudes [13]

(see also [14]), opening the door to the riches of interesting perturbative calculations [15–26].

At tree level, the inclusion of general matter states and interactions in the color-

kinematics duality is an open problem. In a recent paper [27], the duality was studied

in the context of inelastic amplitudes involving scalar particles in multi-Regge kinemat-

ics (the relation between multi-Regge kinematics [28, 29] and supergravity amplitudes in

the BCJ context has been explored in [30]). It was shown that an initial application

of the BCJ color-kinematics duality to the scattering of two scalar particles with gluon

emission in scalar QCD only retrieves part of the gravitational amplitude. More pre-

cisely, the part that was correctly obtained corresponds to the square of two Lipatov’s

QCD emission vertices [31–35]. The terms crucial for the cancellation of simultaneous

divergences in overlapping channels [30, 36–40], as required by unitarity (Steinmann re-

lations [41, 42]), were absent in this application of the duality. While the main line of

studies of color-kinematics duality deals with pure (super)-Yang-Mills theories in various

dimensions, where the double-copy prescription is proven [14], the calculation of ref. [27]
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incorporated additional minimally-coupled matter states in Yang-Mills theory. As this is a

setup that is outside of the standard application of color-kinematics duality, it is perhaps

not unexpected that a refined double-copy prescription is needed.

In this note we revisit the problem pointed out in ref. [27], approaching it with two

different modifications of the theory. Firstly, we consider the scattering of two distinguish-

able scalars in Yang-Mills theory, where the scalars live in the adjoint representation. As

a crucial new element, we introduce the quartic matter self-coupling characteristic of the

bosonic sector of N = 2 supersymmetric Yang-Mills theory. Secondly, we repeat the cal-

culation of ref. [27], only this time considering identical adjoint scalars. In both cases,

the color-kinematics duality reproduces, in the Regge limit, the gravitational amplitude

as computed in [40], including those terms responsible for the fulfillment of the Stein-

mann relations. The D = 4 Yang-Mills + scalar theories studied here are via dimensional

reduction directly related to pure Yang-Mills theory in D = 6 and D = 5 dimensions, re-

spectively. Similarly, the theories can be thought of as originating from the bosonic sector

of N = 2 super-Yang-Mills theory. This explains why the inclusion of matter in these cases

is straightforward from the perspective of color-kinematics duality.

2 Color-kinematics duality with scalar matter

Our aim is to study gauge-theory scattering of two scalar particles with the emission of

a gluon; and later on, gravity scattering of two scalars with the emission of a graviton.

These have momenta p1, p2 (incoming scalars), p3, p4 (outgoing scalars), and p5 (emitted

gluon/graviton), which are all taken to enter the diagram. Before particularizing to the

case of distinguishable or indistinguishable scalars and matter self-interactions, we carry

out a general analysis.

After resolving any quartic vertices into trivalent ones, the five-point gauge-theory

amplitude can be written as a sum over 15 channels,

A5 = g3
15∑

i=1

cini

di
, (2.1)

where ci are the color factors defined by

c1 = fa5a3bf ba4cf ca2a1 , c2 = fa5a4bf ba3cf ca2a1 ,

c3 = fa2a1bf ba5cf ca3a4 , c4 = fa5a1bf ba2cf ca3a4 ,

c5 = fa5a2cf ca1bf ba3a4 , c6 = fa5a3cf ca1bf ba2a4 ,

c7 = fa5a4bf ba2cf ca3a1 , c8 = fa5a4cf ca1bf ba2a3 , (2.2)

c9 = fa5a3bf ba2cf ca4a1 , c10 = fa5a1bf ba3cf ca2a4 ,

c11 = fa5a2bf ba4cf ca3a1 , c12 = fa5a2bf ba3cf ca4a1 ,

c13 = fa5a1bf ba4cf ca2a3 , c14 = fa2a4bf ba5cf ca3a1 ,

c15 = fa2a3bf ba5cf ca4a1 ,
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Figure 1. The fifteen three-vertex topologies contributing to the sum in the amplitude (2.1). The

labels 1-4 correspond to the scalars and 5 to the gluon.

with fabc being the structure constants. Finally, the denominators

di =
∏

αi

sαi
, (2.3)

correspond to the product of the kinematic invariants associated with the internal lines in

the i-th diagram (the numbering is the one shown in figure 1).

Due to the Jacobi identities of the structure constants, the color factors satisfy nine

independent identities that we label as jα. They are

j1 ≡ c12 − c9 + c15 = 0, j2 ≡ c11 − c7 + c14 = 0, j3 ≡ −c4 + c5 + c3 = 0,

j4 ≡ c1 − c2 − c3 = 0, j5 ≡ −c10 + c6 − c14 = 0, j6 ≡ −c13 + c8 − c15 = 0, (2.4)

j7 ≡ c4 − c10 + c13 = 0, j8 ≡ c8 + c7 − c2 = 0, j9 ≡ c6 + c9 − c1 = 0.

The numerators ni in eq. (2.1) can be computed from the Feynman rules of the theory.

In general, they will not satisfy the Jacobi-like identities ±ni±nj ±nk = 0, corresponding

to jα with ci → ni. However, this can be cured after performing a generalized gauge

transformation, consisting of adding zero to the original amplitude in the form

A5 =
15∑

i=1

cini

di
+

9∑

α=1

γαjα =
15∑

i=1

cin
′
i

di
, (2.5)

where the new numerators n′
i are obtained by collecting the coefficients of each color factor

ci and multiplying by corresponding denominator: n′
i = di∂ciA5. The parameters γα are

unknown functions of the momenta and gluon polarization. They are determined by forcing

the new numerators to satisfy the Jacobi identities

jα

∣∣∣
ci→n′

i

= 0. (2.6)
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These new numerators will be used to construct the corresponding gravitational amplitude

using the BCJ double-copy prescription

−iM =
(κ
2

)3
15∑

i=1

n′
iñ

′
i

di
, (2.7)

with κ being the gravitational coupling constant.

To study this amplitude in the multi-Regge kinematics limit it is convenient to express

the momenta in terms of Sudakov parameters. As a first step we write

p3 = −p1 + k1, p4 = −p2 − k2, p5 = −k1 + k2, (2.8)

where in turn k1 and k2 are written as

k
µ
1
= α1p

µ
1
+ β1p

µ
2
+ k

µ
1,⊥, k

µ
2
= α2p

µ
1
+ β2p

µ
2
+ k

µ
2,⊥, (2.9)

with ki,⊥ being vectors orthogonal to p1 and p2. Then, the gluon momentum takes the form

p
µ
5
= (α2 − α1)p

µ
1
+ (β2 − β1)p

µ
2
+ k

µ
2,⊥ − k

µ
1,⊥. (2.10)

Finally, the multi-Regge kinematics regime is defined in terms of the Sudakov parameters by

1 ≫ α1 ≫ α2, 1 ≫ |β2| ≫ |β1|. (2.11)

The gravitational amplitude (2.7) can then be written as

−iM = −iAkkM
µνǫµν(p5), (2.12)

where ǫµν(p5) is the graviton polarization tensor and [40]

Mµν = (k1 + k2)
µ
⊥
(k1 + k2)

ν
⊥ +Ak1

[
(k1 + k2)

µ
⊥
pν1 + p

µ
1
(k1 + k2)

ν
⊥

]

+Ak2

[
(k1 + k2)

µ
⊥
pν2 + p

µ
2
(k1 + k2)

ν
⊥

]
+A12

(
p
µ
1
pν2 + p

µ
2
pν1

)
(2.13)

+A11p
µ
1
pν1 +A22p

µ
2
pν2 .

The parameters Ak1,Ak2,A12,A11,A22 are to be determined. The coefficient Akk contains

all the information about the coupling to external particles in the amplitude.1 By factoring

it out we isolate Lipatov’s graviton emission effective vertex Mµν , which in multi-Regge

kinematics is independent of the states involved in the collision and has the structure

Mµν = ΩµΩν −N µN ν . (2.14)

The vectors Ωµ and N µ are given, respectively, by [37, 40]

Ωµ ≃

(
α1 −

2β1
β2

)
pµ +

(
β2 +

2α2

α1

)
qµ − (k1 + k2)

µ
⊥
, (2.15)

which corresponds to the effective vertex for the coupling of two reggeized gluons to an

on-shell gluon, and

N µ ≃ −2i
√
β1α2

(
pµ

β2
+

qµ

α1

)
. (2.16)

The term N µN ν is crucial for the cancellation of the simultaneous poles in α1 = 0 and

β2 = 0.

1Notice that this definition of Mµν differs from the one used in ref. [40] by the factorization of Akk.

– 4 –



J
H
E
P
1
0
(
2
0
1
3
)
2
1
5

Distinguishable scalars. We first deal with the scattering of two distinguishable scalars

Φ and Φ′. In ref. [27] three of us analyzed this problem and found that the BCJ prescription

only reproduces the QCD-like part of the gravitational amplitudes; that is, the ΩµΩν piece

in eq. (2.14). In this paper we note that the problem with the incorrect N µN ν term is

solved by embedding the Yang-Mills + 2 scalar theory into the bosonic sector of N = 2

super-Yang-Mills theory, which amounts to taking both scalars to transform in the adjoint

representation and introducing a matter self-coupling for the two scalars of the form

∆L =
g2

2
Tr

(
[Φ,Φ′]2

)
. (2.17)

The corresponding Feynman rules then contain a new quartic scalar contact vertex and we

need to add four more diagrams to the ones computed in ref. [27]. These new diagrams do

not contain any t-channel poles, but their numerators combine with the remaining ones to

contribute to the double-copy amplitude in the Regge limit. Evaluating all contributions,

we find the following values for the numerators n′
i

n′

1 = (p1 + p2)
2

[
− (γ9 − γ4)(p3 + p5)

2 − 2p3 · ǫ(p5)
]
,

n′

2 = (p1 + p2)
2

[
− (γ4 + γ8)(p4 + p5)

2 + 2p4 · ǫ(p5)
]
,

n′

3 = (γ3 − γ4)(p1 + p2)
2(p3 + p4)

2,

n′

4 = (p3 + p4)
2

[
(γ7 − γ3)(p1 + p5)

2 + 2p1 · ǫ(p5)
]
,

n′

5 = −(p3 + p4)
2

[
− γ3(p2 + p5)

2 + 2p2 · ǫ(p5)
]
,

n′

6 = −(p3 + p5)
2

[
− (γ5 + γ9)(p2 + p4)

2 + (p2 − p4) · ǫ(p5)
]

− 2(p2 − p4) · (p1 − p3 − p5)[p3 · ǫ(p5)],

n′

7 = −(p4 + p5)
2

[
(γ2 − γ8)(p1 + p3)

2 + (p3 − p1) · ǫ(p5)
]

−2(p3 − p1) · (p2 − p4 − p5)[p3 · ǫ(p5)],

n′

8 = (p2 + p3)
2

[
(γ6 + γ8)(p4 + p5)

2 + 2p4 · ǫ(p5)
]
, (2.18)

n′

9 = −(p1 + p4)
2

[
(γ1 − γ9)(p3 + p5)

2 + 2p3 · ǫ(p5)
]
,

n′

10 = −(p1 + p5)
2

[
(γ5 + γ7)(p2 + p4)

2 + (p2 − p4) · ǫ(p5)
]

−2(p2 − p4) · (−p1 + p3 − p5)[p1 · ǫ(p5)],

n′

11 = −(p2 + p5)
2

[
− γ2(p1 + p3)

2 + (p3 − p1) · ǫ(p5)
]

−2(p3 − p1) · (−p2 + p4 − p5)[p2 · ǫ(p5)],

n′

12 = (p1 + p4)
2

[
γ1(p2 + p5)

2 + 2p2 · ǫ(p5)
]
,

n′

13 = −(p2 + p3)
2

[
(γ6 − γ7)(p1 + p5)

2 + 2p1 · ǫ(p5)
]
,

n′

14 = −(p2 − p4) · (p1 + p3 − p5)[(p3 − p1) · ǫ(p5)]

−(p3 − p1) · (p2 − p4)[(−p1 + p2 − p3 + p4) · ǫ(p5)]

+γ2(p1 + p3)
2(p2 + p4)

2 − γ5(p1 + p3)
2(p2 + p4)

2,

n′

15 = (γ1 − γ6)(p2 + p3)
2(p1 + p4)

2.
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Although, in principle, we have nine equations for the nine functions γα, momentum

conservation makes some of the nine conditions in eq. (2.6) linearly dependent. One con-

venient way to implement momentum conservation is to express our momenta using the

Sudakov parameters introduced above. Doing so, we find that the equation system is de-

scribed by a 9 × 9 matrix that has rank 5 and the solution can be written in terms of 4

independent variables that we take to be γ1, γ3, γ6 and γ7:

γ2 =
(p2 + 2p3 + p4) · ǫ(p5)

sβ1
− γ1

1 + β2

β1
− γ3

−1 + α1 − α2 + β1 − β2

β1
,

γ4 =
2(p3 + p4) · ǫ(p5)

s
+ γ3(1− α1 + α2 − β1 + β2) + γ7(β1 − β2), (2.19)

γ5 =
(−p2 + p4) · ǫ(p5)

sα2

− γ3
1− α1 + α2 − β1 + β2

α2

+ γ6
1− α1

α2

− γ7
β1 − β2

α2

,

γ8 =
2(p2 + p3) · ǫ(p5)

s(α1 + β1)
− γ1

1 + β2

α1 + β1
+ γ6

1− α1

α1 + β1
− γ7

β1 − β2

α1 + β1
,

γ9 = −
2(p2 + p3) · ǫ(p5)

s(α2 + β2)
+ γ1

1 + β2

α2 + β2
− γ6

1− α1

α2 + β2
.

After applying the BCJ prescription (2.7), the four independent γ’s cancel out of the

gravitational amplitude, so we set them to zero from now on. Plugging the five remaining

γ’s back in the numerators of eq. (2.18), we construct the gravitational amplitude from

eq. (2.7). In the multi-Regge kinematics limit, the coefficients in eq. (2.13) take the form

A11 ≃ α2

1 −
4α1β1

β2
+

4β2
1

β2
2

+
4α2β1

β2
2

+ . . . ,

A22 ≃ β2

2 +
4α2β1

α1

+
4α2β1

α2
1

+
4α2

2

α2
1

+ . . . ,

A12 ≃ α1β2 − 2β1 + 2α2 + . . . , (2.20)

Ak1 ≃ −α1 +
2β1
β2

+ . . . ,

Ak2 ≃ −β2 −
2α2

α1

+ . . . ,

where the ellipsis denote subleading contributions in the multi-Regge limit. The above

coefficients correctly reproduce the full form of Lipatov’s effective graviton emission vertex

shown in eq. (2.14), including the −N µN ν piece that was not correctly retrieved in the

analysis of ref. [27].

We note that away from the Regge-limit the amplitude obtained from eq. (2.7) is still

a valid gravitational amplitude, however, it includes one additional contact term of the

form ∼ κ2gµνΦ′2∂µ∂νΦ
2. This term typically appears in the bosonic sector of supergravity

theories, or in dimensional reductions of D > 4 gravities. If desired, this contribution

can be subtracted from the amplitude, thus obtaining a gravity amplitude with minimally

coupled scalars.

Indistinguishable scalars. A second possibility to avoid the problem of ref. [27] is to

consider the theory of a single adjoint scalar minimally coupled to a nonabelian gauge

– 6 –
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field and compute the scattering amplitude of two indistinguishable scalars with a gluon

emission. Again, the number of Feynman diagrams contributing to the amplitude is larger

than the original calculation, since all channels are allowed. Resolving the diagrams con-

taining four-leg vertices in terms of trivalent ones, we arrive at the following form of the

numerators in eq. (2.1):

n1 = −(p3 + p5)
2[(p2 − p1) · ǫ(p5)]− 2(p2 − p1) · (−p3 + p4 − p5)[p3 · ǫ(p5)],

n2 = −(p4 + p5)
2[(p2 − p1) · ǫ(p5)]− 2(p2 − p1) · (p3 − p4 − p5)[p4 · ǫ(p5)],

n3 = −(p2 − p1) · (p3 − p4)[(p1 + p2 − p3 − p4) · ǫ(p5)]

−(p3 − p4) · (−p1 − p2 + p5)[(p2 − p1) · ǫ(p5)]

−(p2 − p1) · (p3 + p4 − p5)[(p3 − p4) · ǫ(p5)],

n4 = −(p1 + p5)
2[(p3 − p4) · ǫ(p5)]− 2(p3 − p4) · (−p1 + p2 − p5)[p1 · ǫ(p5)],

n5 = −(p2 + p5)
2[(p3 − p1) · ǫ(p5)]− 2(p3 − p1) · (−p2 + p4 − p5)[p2 · ǫ(p5)],

n6 = −(p3 + p5)
2[(p4 − p1) · ǫ(p5)]− 2(p2 − p1) · (−p3 + p4 − p5)[p3 · ǫ(p5)],

n7 = −(p4 + p5)
2[(p3 − p1) · ǫ(p5)]− 2(p3 − p1) · (p2 − p4 − p5)[p4 · ǫ(p5)], (2.21)

n8 = −(p4 + p5)
2[(p2 − p3) · ǫ(p5)]− 2(p2 − p3) · (p1 − p4 − p5)[p4 · ǫ(p5)],

n9 = −(p3 + p5)
2[(p4 − p1) · ǫ(p5)]− 2(p4 − p1) · (p2 − p3 − p5)[p3 · ǫ(p5)],

n10 = −(p1 + p5)
2[(p2 − p4) · ǫ(p5)]− 2(p2 − p4) · (−p1 + p3 − p5)[p1 · ǫ(p5)],

n11 = −(p2 + p5)
2[(p3 − p1) · ǫ(p5)]− 2(p3 − p1) · (−p2 + p4 − p5)[p2 · ǫ(p5)],

n12 = −(p2 + p5)
2[(p4 − p1) · ǫ(p5)]− 2(p4 − p1) · (−p2 + p3 − p5)[p2 · ǫ(p5)],

n13 = −(p1 + p5)
2[(p2 − p3) · ǫ(p5)]− 2(p2 − p3) · (−p1 + p4 − p5)[p1 · ǫ(p5)],

n14 = −(p2 − p4) · (p1 + p3 − p5)[(p3 − p1) · ǫ(p5)]

−(p3 − p1) · (−p2 − p4 + p5)[(p2 − p4) · ǫ(p5)]

−(p3 − p1) · (p2 − p4)[(−p1 + p2 − p3 + p4) · ǫ(p5)],

n15 = −(p2 − p3) · (p4 − p1)[(−p1 + p2 + p3 − p4) · ǫ(p5)]

−(p4 − p1) · (−p2 − p3 + p5)[(p2 − p3) · ǫ(p5)]

−(p2 − p3) · (p1 + p4 − p5)[(p4 − p1) · ǫ(p5)].

Remarkably, these numerators obtained from the application of the Feynman rules

automatically satisfy the Jacobi-like identities (2.6), so there is no need to perform a

generalized gauge transformation. We immediately proceed to construct the gravitational

amplitude using the BCJ prescription (2.7). After taking the multi-Regge kinematics

limit (2.11) we find the following value for the coefficients in eq. (2.13)

A11 ≃ α2

1 −
4α1β1

β2
+

4β2
1

β2
2

+
4α2β1

β2
2

+ . . .

A22 ≃ β2

2 +
4α2β1

α1

+
4α2β1

α2
1

+
4α2

2

α2
1

+ . . .

A12 ≃ α1β2 − 2β1 + 2α2 + . . . (2.22)
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Ak1 ≃ −α1 +
2β1
β2

+ . . .

Ak2 ≃ −β2 −
2α2

α1

+ . . .

which again reproduce Lipatov’s effective vertex (2.14).

3 Discussion

In this note we have addressed the problem of applying color-kinematics duality to the

scattering of two distinguishable scalar matter particles with gluon emission, or graviton

emission. The calculation of ref. [27] suggested that, when applied to the scattering of min-

imally coupled distinguishable scalars, the BCJ double-copy prescription only reproduces

part of the gravitational amplitude in multi-Regge kinematics. Here we have studied two

extensions of the theory for which the prescription works, and which do not change the

Regge limit studied in ref. [27]. One consists of introducing a contact interaction between

the two scalar particles, as suggested by the bosonic sector of N = 2 super-Yang-Mills the-

ory. The second is to give up distinguishability of the scalars. In both cases the introduction

of new diagrams contributing to the process gives valid gravity amplitudes from the BCJ

double-copy prescription, and recovers the precise results of ref. [27] in the Regge limit.

The two cases can be thought of as originating from the bosonic sector of D = 4 N = 2

super-Yang-Mills theory, keeping either both scalars, or only one scalar. Moreover, they

can be regarded as coming from subsectors of N = 4 super-Yang-Mills theory, for which

double-copy prescription is proven to give valid gravity tree-level amplitudes [14]. Since

fermions do not play any role in the tree-level amplitudes studied here, the obtained results

can be fully explained by supersymmetry. However, we note that supersymmetry is not a

mandatory explanation of the results, nor is it the most elegant one.

Dimensional reduction of Yang-Mills theories in D > 4 provides a more direct path for

understanding the results. Indeed, the interaction term (2.17) is generated by dimension-

ally reducing D = 6 pure Yang-Mills to D = 4, where the gauge field along the extra two

dimensions are interpreted as two scalars, Φ ≡ A4, Φ
′ ≡ A5. The additional components

of the gauge field strength tensor are

Fµ4 = DµΦ, Fµ5 = DµΦ
′, F45 = −ig[Φ,Φ′], (3.1)

with Dµ being the adjoint covariant derivative. The four-dimensional Lagrangian is then

L = −
1

4
Tr

(
FµνF

µν
)
+

1

2
Tr

(
DµΦD

µΦ
)
+

1

2
Tr

(
DµΦ

′DµΦ′

)
+

g2

2
Tr

(
[Φ,Φ′]2

)
. (3.2)

Similarly, the tree-level scattering of two indistinguishable scalars with gluon emission can

be computed either from this Lagrangian or from the dimensional reduction of D = 5

pure Yang-Mills to D = 4 dimensions, which results in Yang-Mills theory with one adjoint

scalar, where Φ ≡ A4. In the latter case there is no quartic scalar term.

Hence, one can say that the successful application of color-kinematics duality in the

cases studied in our work directly stems from its validity in higher-dimensional Yang-Mills

– 8 –
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theory and gravity [12–16, 24–26]. Indeed, the dimensional reduction that we have used

is a standard computational tool; it is frequently used in loop calculations in gauge and

gravity theories with extended supersymmetry (e.g. see [43]).

While the modified theories we have considered avoid the specific problem observed

in ref. [27], the inclusion of general matter states and interactions in the color-kinematics

formalism is still an open problem. Specifically, it would be interesting to understand how

to precisely relate tree amplitudes in Yang-Mills theory with minimally-coupled matter, Ns

scalars and Nf fermions, to that of Einstein gravity with similar matter content. We expect

that an extension of the BCJ prescription is needed, which at intermediate steps embeds

the gauge and gravity theories into their respective higher-dimensional versions. The re-

sults presented here, with the help of the information gained by taking the multi-Regge

limit, were a first step towards understanding the general matter case.
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