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Iñaki Garćıa-Etxebarria,a Ben Heidenreichb and Timm Wrasec

aTheory Group, Physics Department, CERN,

CH-1211, Geneva 23, Switzerland
bDepartment of Physics, Cornell University,

Ithaca, NY 14853, U.S.A.
cStanford Institute for Theoretical Physics, Stanford University,

Stanford, CA 94305, U.S.A.

E-mail: inaki@cern.ch, bjh77@cornell.edu, timm.wrase@stanford.edu
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tifolds wrapping vanishing cycles, of the dual pairs of gauge theories analyzed in [1]. Based

on the resulting construction we argue that the duality that we observe in field theory is

inherited from S-duality of type IIB string theory. We analyze in detail the complex cone

over the zeroth del Pezzo surface and discuss an infinite family of orbifolds of flat space. For

the del Pezzo case we describe the system in terms of large volume objects, and show that

in this language the duality can be understood from the strongly coupled behavior of the

O7+ plane, which we analyze using simple F-theory considerations. For all cases we also

give a different argument based on the existence of appropriate torsional components of the

3-form flux lattice. Along the way we clarify some aspects of the description of orientifolds

in the derived category of coherent sheaves, and in particular we discuss the important role

played by exotic orientifolds — ordinary orientifolds composed with auto-equivalences of

the category — when describing orientifolds of ordinary quiver gauge theories.
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1 Introduction

In a companion paper [1] we have argued for existence of a duality between the following

N = 1 field theories in four dimensions. The first theory is given by

SO(N − 4) SU(N) SU(3) U(1)R Z3

Ai 2
3 + 2

N ω3N

Bi 1 2
3 − 4

N ω−23N

(1.1)
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with ωn ≡ e2πi/n and the superpotential

W =
1

2
εijk TrAiAjBk . (1.2)

The second theory is given by

USp(Ñ + 4) SU(Ñ) SU(3) U(1)R Z3

Ãi 2
3 − 2

Ñ
ω3Ñ

B̃i 1 2
3 + 4

Ñ
ω−2
3Ñ

(1.3)

with the superpotential

W̃ =
1

2
εijk Tr ÃiÃjB̃k . (1.4)

In [1], we have argued that the USp theory is dual to the SO theory when Ñ = N − 3

for odd N , where in our conventions Ñ has to be even for USp(Ñ + 4) to be defined. (In

section 2, we argue that the SO theory is self-dual for even N .)

Although both theories describe the worldvolume gauge theory on D3 branes probing

orientifolds of the C3/Z3 singularity, the arguments for the duality presented in [1] were

formulated mainly in field theoretic terms, verifying the agreement of several protected

quantities between the two theories. One may well wonder if a careful study of the corre-

sponding branes in string theory could shed light on the physical origin and nature of the

duality.

We show in this paper that this is indeed the case. In particular, we present two

converging lines of argument leading to the main claim of our paper: the duality found

in [1] is a strong/weak duality, directly inherited from S-duality in type IIB string theory.

As such, its closest known analogues are the electromagnetic dualities relating N = 4 SO

and USp gauge theories.

Our paper employs two complementary arguments to establish our main claim. The

first approach, outlined in section 2, focuses on topological aspects of the gravity dual.

Following [2], we argue that there are four possible choices of NSNS and RR 2-form discrete

torsion, splitting into a singlet and a triplet of SL(2,Z). As in [2], the different torsion

values naturally correspond to the different possible gauge theories. The action of SL(2,Z)

on the discrete torsion triplet reproduces the duality found in field theory; in particular,

the dual theories are related by S-duality (τ → −1/τ), and at most one can be weakly

coupled for a given value of the string coupling, leading to a strong/weak duality which

descends from ten-dimensional S-duality.

As a non-trivial check of this argument, in section 3 we apply the same reasoning to

other orbifold singularities and show that they admit the same choices of discrete torsion.

We then write down the corresponding field theories and show that they have matching

anomalies, as expected for S-dual theories. In particular, we carry out this program for an

infinite family of orbifold singularities, resulting in an infinite family of new dualities with

an increasing number of gauge group factors.

– 2 –
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In the second line of argument, developed in section 4 and section 5, we reformulate the

system in terms of large volume objects, i.e. D7 branes and O7 planes. We then connect the

discussion in section 2 to the large volume perspective, giving a direct brane interpretation

of the different torsion assignments. We show that the behavior of the resulting brane

system under S-duality of type IIB reproduces the duality structure found in field theory.

Critical to this statement is the behavior of the O7 plane at strong coupling, which we

analyze in section 5.1. Along the way we discuss in detail some interesting points in the

dictionary relating orientifolds at the quiver point and large volume which are important

for our considerations.

Based on these arguments it seems natural to conjecture, as in [1], that C3/Z3 is just

the simplest member of an infinite class of toric geometries giving rise to N = 1 S-dual

pairs, including but not limited to the infinite family of orbifolds discussed in section 3. To

illustrate how our ideas can be generalized to these other cases, we also discuss a Seiberg

dual (non-toric) phase of dP0 in section 6. We defer consideration of non-orbifold examples,

such as those introduced in [1], to an upcoming work [3], where we also discuss an infinite

family of dual gauge theories obtained from D3 branes probing orientifolds of the real cone

over Y 2p,2p−1.

We close in section 7 with our conclusions and a review of the main questions that our

analysis does not address. In appendix A we discuss some aspects of the mirror to C3/Z3

that complement and clarify the analysis in section 6.

While this paper was in preparation [4] was published which has some overlap with

section 3.

2 Discrete torsion and S-duality

In this section we generalize the argument [2] that O3 planes fall into SL(2,Z) multi-

plets classified by their discrete torsion1 to the case of fractional O7 planes at an orbifold

singularity.

We first review the argument for an O3 plane in a flat background, resulting in an

N = 4 SO or USp gauge theory in the presence of D3 branes. The electromagnetic

dualities which arise in these theories [12–14] can be understood by considering the action

of the SL(2,Z) self-duality of type IIB string theory on the O3 plane.

The gravity duals of the different possible gauge theories are distinguished by B2 and

C2 discrete torsion on a cycle surrounding the point in R6 where the O3 is located [2]. To

explain the geometric origin of this discrete torsion, note that B2 is not a globally-valued

two-form, but a connection on a gerbe [15, 16].2 The underlying gerbe is classified by a

cohomology class [H] ∈ H3(M,Z), where the de Rham cohomology class of the curvature

three-form H3 (locally dB2) is the image of [H] under the natural map H3(M,Z) →
1A more general treatment of discrete torsion than that needed here is given for orbifolds in [5–10] and

for orientifolds in [11].
2This is the viewpoint we adopt in this paper. A complete treatment of C2 and B2 in general orientifold

backgrounds is more subtle [16–19], and may be required to analyze more involved singularities.

– 3 –
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H3(M,R) which takes Z → R and Zn → 0 for each factor of the cohomology group. The

same considerations apply to C2, the integral class [F ], and the curvature three-form F3.

Before orientifolding the cycle surrounding the D3 branes is an S5, which has

H3(S5,Z) = 0 and thus does not admit a nontrivial gerbe. After orientifolding this becomes

a RP5. Since B2 and C2 are odd under the worldsheet part of the orientifold projection the

associated gerbes are classified by the twisted cohomology group H3(RP5, Z̃) = Z2. Hence

the B2 gerbe is classified by the “discrete torsion” θNSNS ∈ Z2, and likewise the C2 gerbe

by the discrete torsion θRR ∈ Z2, for a total of four possible topologically distinct configu-

rations. Denoting the trivial and nontrivial elements of H3(RP5, Z̃) as {0, 12} respectively,

the four choices are (θRR, θNSNS) =
{

(0, 0), (12 , 0), (0, 12), (12 ,
1
2)
}

.

The action of SL(2,Z) on these torsion classes follows directly from its action on NSNS

and RR fluxes. In particular, the action of the generator T ∈ SL(2,Z) is:

T

(
θRR

θNSNS

)
=

(
1 1

0 1

)(
θRR

θNSNS

)
=

(
θRR + θNSNS

θNSNS

)
. (2.1)

whereas the action of the S ∈ SL(2,Z) S-duality generator is

S

(
θRR

θNSNS

)
=

(
0 −1

1 0

)(
θRR

θNSNS

)
=

(
θNSNS

θRR

)
, (2.2)

where we have used the Z2 nature of the cohomology class to set θNSNS = −θNSNS .

Combining the two generators, we conclude that (θRR, θNSNS) = (0, 0) is an SL(2,Z) singlet

whereas the three remaining choices with non-trivial torsion form an SL(2,Z) triplet.

Vanishing discrete torsion must therefore correspond to the N = 4 SO(N) gauge

theory with even N , as this is the only case with a full SL(2,Z) self-duality. Introducing

discrete torsion for B2 leads to an extra sign in the worldsheet path integral for unoriented

worldsheets and changes the gauge group to USp(Ñ). The case with both B2 and C2

discrete torsion is related to this one by a shift of C0. Up to an overall normalization

C0 is the theta angle of the gauge theory, so this case corresponds to the same USp(Ñ)

gauge theory at a different theta angle. By a process of elimination, we conclude that

the remaining choice with only C2 discrete torsion must correspond to the N = 4 SO(N)

gauge theory with odd N , which is S-dual to the USp(Ñ) gauge theory. D3 charge is

SL(2,Z) invariant, which implies that Ñ = N − 1 under this S-duality, as expected from

the Montonen-Olive duality relating SO(2k + 1) with USp(2k).

These identifications can be subjected to various consistency checks via the AdS/CFT

correspondence [2]. Here we confine our attention to D3 branes wrapping the torsion three-

cycle generating H3(S
5/Z2,Z) = Z2, corresponding to a particle in four-dimensions. For

SO(N) with even N the wrapped brane is dual to a single-trace operator: the Pfaffian of

N/2 adjoint scalars, a “baryon” of SO(N). The product of two Pfaffians can be rewritten

as the product of N/2 mesons, but a single Pfaffian cannot be reduced to a product of

mesons, since it is charged under the Z2 outer automorphism group of SO(N), perfectly

reproducing the Z2 stability of the wrapped D3 brane.

– 4 –
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For the other gauge groups there is no corresponding Pfaffian operator. To understand

this fact in the gravity dual, note that the existence of a U(1) gauge bundle on a D-brane

wrapping a cycle Σ embedded via the map i : Σ ↪→ RP5 imposes a restriction on the

pullback of the B2 gerbe [2]:

i∗([H]) = W (2.3)

where W ∈ H3(Σ, Z̃) is a torsion class equal in the absence of orientifolds to the third

integral Stiefel-Whitney class [20]. We follow the prescription of [2] for computing W in

the presence of orientifolds; in particular, this implies that W vanishes whenever Σ admits

a spin structure.

For the wrapped D3 brane considered above, Σ has the topology of RP3, which is spin

(as is any orientable three-manifold). Therefore W = 0 according to the prescription of [2]

and so a singly wrapped brane requires θNSNS = 0. For a D3 brane an analogous condition

also restricts the C2 gerbe [F ], so we must also require θRR = 0. Thus, topologically stable

wrapped D3 branes only exist for the case of trivial discrete torsion, in perfect agreement

with field theory expectations.

These arguments generalize readily to the case of D3 branes probing an orbifold singu-

larity, for which the near-horizon geometry is given by AdS5 ×X with X a 5-dimensional

lens space. Recall that the lens space Ln(a1, a2, a3) is defined as the quotient of S5 by the

Zn action

(z1, z2, z3)→ (ωa1n z
1, ωa2n z

2, ωa3n z
3) , (2.4)

where ωn ≡ exp(2πi/n) and we have taken the natural embedding of S5 in C3, with

C3 parameterized by (z1, z2, z3). We confine our attention to the cases with unbroken

supersymmetry and a smooth horizon, which requires
∑

i ai = 0 mod n and gcd(ai, n) = 1

respectively. For instance, the infinite family of orbifolds we study in section 3.1 have

horizons Ln(1, 1, n − 2), which is supersymmetric and smooth for odd n and reduces to

the horizon of C3/Z3 for n = 3. More generally smoothness and supersymmetry together

require odd n.3

We choose the orientifold involution

zi → −zi (2.5)

This involution acts freely on the horizon for odd n, and therefore corresponds to O3 planes

or fractional O7 planes at the orbifold singularity zi = 0. In particular, since Zn×Z2
∼= Z2n

for odd n, the orientifolded horizon is the smooth lens space L2n(n+ 2a1, n+ 2a2, n+ 2a3),

where gcd(n+ 2ai, 2n) = 1 follows directly from gcd(ai, n) = 1 for odd n.

We denote the orientifold quotient of the horizon as X = Y/Z2. To classify discrete tor-

sion in this geometry, we compute H3(X, Z̃). Since X is orientable, H3(X, Z̃) ∼= H2(X, Z̃)

by Poincare duality, whereas the latter group is more easily computed. As we discuss be-

low, H2(X, Z̃) has a natural physical interpretation as the group classifying possible domain

walls changing the rank and type of the orientifold theory.

3Unbroken N = 2 supersymmetry requires a3 = 0 up to a permutation of the labels, precluding a smooth

horizon except in the trivial n = 1 case with maximal supersymmetry. Thus, all of the examples we study

will have N = 1 supersymmetry.

– 5 –
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The computation is facilitated by the existence of a long exact sequence relating the

twisted homology groups to ordinary homology (see section 3.H in [21] for a derivation):

. . . Hi(X, Z̃) Hi(Y,Z) Hi(X,Z)

Hi−1(X, Z̃) Hi−1(Y,Z) Hi−1(X,Z) . . .

pi∗

pi−1
∗

(2.6)

where the map pi∗ is the induced map on homology coming from the double covering p : Y →
X. Since both X and Y are lens spaces their homology groups are well known (see for

instance example 2.43 in [21]). For Lk(a, b, c) the homology groups are H•(Lk(a, b, c),Z) =

{Z,Zk, 0,Zk, 0,Z}. The maps p5∗ and p0∗ take Z→ 2Z and Z→ Z, respectively. The action

of p1∗ and p3∗ can be deduced by considering representative one and three-cycles z2 = z3 = 0

and z3 = 0 respectively, which gives Zn → Zn ⊂ Z2n in both cases. The remaining cases

are trivial, so pi∗ is injective for all i and the long exact sequence splits into short exact

sequences:

0 −→ Hi(Y,Z)
pi∗−→ Hi(X,Z) −→ Hi−1(X, Z̃) −→ 0 (2.7)

From this it is straightforward to compute H•(X, Z̃) = {Z2, 0,Z2, 0,Z2, 0}, and in particular

H2(X, Z̃) = Z2. The corresponding twisted two-cycle is an RP2 given by the orientifold

quotient of the S2 ⊂ S5/Zn defined by Im(zi) = 0.

By analogy with the N = 4 examples, we expect three different gauge theories corre-

sponding to the possible choices of NSNS and RR discrete torsion, where the two cases with

NSNS discrete torsion give the same gauge theory at different theta angles. Indeed, for

C3/Z3, there are three theories: the SO(N −4)×SU(N) theory (1.1) with even and odd N

as well as the USp(Ñ+4)×SU(Ñ) theory (1.3), where Ñ is necessarily even. The field the-

ory duality between the odd-N SO theory and the USp established in [1] suggests that they

form the expected SL(2,Z) triplet of theories (which reduces to 2 perturbatively distinct

theories, as in the N = 4 case) and the even-N SO theory corresponds to vanishing dis-

crete torsion and has an SL(2,Z) self-duality. As before, we expect that the introduction of

NSNS torsion will change the sign of the orientifold projection, and therefore the cases with

NSNS torsion should correspond to the USp theory, whereas the case with only RR discrete

torsion should correspond to the SO theory with odd N . We thus find that at the level of

discrete torsion the duality structure is compatible with the action of S-duality in IIB.

As a further check that we have identified the correct field theory duals of the different

possible choices of discrete torsion, we consider D3 branes wrapping a torsion three-cycle, as

above. For C3/Z3, these correspond to “baryons” charged under a Z6 discrete symmetry.

Indeed, for the SO theory with even N , there is a candidate Z6 discrete symmetry as

follows:

SO(N − 4) SU(N) SU(3) U(1)R CZ6

Ai 2
3 + 2

N ω6N

Bi 1 2
3 − 4

N ω−26N

(2.8)

– 6 –
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where C denotes the generator of the Z2 outer automorphism group of SO(N − 4), so that

CZ6 is an (anomalous) flavor symmetry, whereas Z6 is anomaly-free but does not commute

with SO(N − 4). The corresponding minimal baryon is the Pfaffian of B, which in close

analogy with the N = 4 case we conjecture to be dual to the wrapped D3 brane.

For odd N and for the USp theory, there is no Z6 discrete symmetry, but only a Z3

discrete symmetry as in (1.1), (1.3), with corresponding minimal baryons BN and ÃÑ re-

spectively. As before, this is explained in the gravity dual by the topological condition (2.3),

which requires a D3 brane to wrap the torsion three-cycle an even number of times in the

presence of discrete torsion.

As in [2] (see also [22]), we can relate the different possible choices of discrete torsion

with domain walls in AdS5. We briefly review how the argument can be generalized to

C3/Z3 and other orbifolds, as this result will be needed in section 4.4.

Domain walls in AdS5 are three-branes, and can arise both from D3 branes at a point

on S5/Z6 and from D5 or NS5 branes wrapping the torsion cycle RP2 found above, where

the dual gauge theory will in general change when crossing the wall. For unwrapped D3

branes, it is easy to see that the domain wall changes the D3 charge by one unit, and hence

takes N → N + 2 without altering the discrete torsion. We now argue that domain walls

coming from wrapped five-branes will change the discrete torsion.

To do so, consider the torsion cycles S3/Z2n ⊂ X defined by z3 = 0 and RP2 ⊂ X

defined by Im(z1,2) = 0 and Im(z3 + iz1) = 0. The latter is Poincare dual to the nontrivial

element ofH3(X, Z̃), whereas it intersects the S3/Z2n transversely at a point, itself Poincare

dual on S3/Z2n to the nontrivial element of H3(S3/Z2n, Z̃). We conclude that the pullback

of the B2 gerbe is trivial on S3/Z2n if and only if it is trivial on X = S5/Z2n and likewise

for the C2 gerbe.

We now consider a D5 brane wrapping the RP2 at a radial distance r0 from the orbifold

singularity. We construct a four-chain Σ given by S3/Z2n times the interval r ∈ [r−, r+] for

r− < r0 < r+, which therefore intersects the D5 brane transerversely at a point. Cutting

out a small ball B surrounding the point of intersection, the C2 gerbe is well-defined on

the remainder Σ − B, where ∂(Σ − B) is given by two copies of S3/Z2n at r+ and r− as

well as ∂B ∼= S3. We now wish to relate [F ] on the three boundaries using the fact that

the gerbe is well-defined in the interior of Σ−B.

We start by solving a simpler problem: suppose that ω is a closed three-form defined

globally on a four-manifold M with boundary ∂M . Stokes’ theorem implies that the

pullback of ω is trivial in H3(∂M,R). Using the long exact sequence . . . −→ H3(M,R)
×2∗−→

H3(M,R) −→ H3(M,Z2) −→ 0 associated to the short exact sequence R ×2−→ R −→ Z2,

we obtain a surjective map H3(M,R) −→ H3(M,Z2) which commutes with the pullback

map. Thus, we conclude that if [ω] is an element of H3(M,Z2), then its pullback is trivial

within H3(∂M,Z2).

However, the long exact sequence associated to the short exact sequence Z̃ ×2−→ Z̃ −→
Z2 also induces a surjective map f : H3(M, Z̃) −→ H3(M,Z2) which once again commutes

with the pullback map. For S3/Z2n f is an isomorphism, whereas for ∂B ∼= S3, f maps

Z → Z/2Z ∼= Z2. Since f([F ]) is well-defined on Σ − B, we conclude that the product of

– 7 –
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⇣1
2
, 0
⌘

⇣1
2
,
1

2

⌘⇣
0,

1

2

⌘

⇣
0, 0

⌘

D5

D5

NS5 NS5

Figure 1. The effect of wrapped five-brane domain walls on discrete torsion.

the classes of f([F ]) pulled back to the three boundaries is trivial. Thus, for a single D5

brane (or any odd number) wrapping the RP2, the C2 discrete torsion jumps upon crossing

the domain wall between r+ and r−. The same argument applies to wrapped NS5 branes

and by extension to wrapped (p, q) five branes. We summarize the situation in figure 1.

The geometric arguments presented in this section apply to other isolated orbifold

singularities besides C3/Z3, suggesting that in each case there should be three different

gauge theories corresponding to the different choices of discrete torsion. Heuristically,

since n is odd the parent quiver theory has an odd number of nodes, and applying the

rules outlined in appendix A of [1] will lead to (at least) one SO or USp gauge group

factor. Thus, the pattern of discrete torsion can plausibly be explained in a manner closely

analogous to the examples already discussed. Less trivially, we expect new gauge theory

dualities relating the SO and USp theories. The appearance of these dualities is a highly

nontrivial check on the discrete torsion classification presented above, and is the subject

of the next section.

3 An infinite family of dual gauge theories

In this section we discuss the gauge theory dualities which arise from orientifolds of other

N = 1 orbifold singularities. In particular, based on the arguments given in the previous

section, we expect a dual pair of gauge theories and a self-dual gauge theory for every

isolated orbifold singularity. As a nontrivial check of this conjecture, we write down the

possible gauge theories for the orientifolds of an infinite family of orbifold singularities and

show that two of three possibilities have matching anomalies, consistent with an S-duality

relating these theories.

We focus our attention on the zi → −zi orientifolds of the orbifolds C3/Zn=2k+1
4 with

the Zn action

z1,2 → ωnz
1,2, z3 → ω−2n z3 , (3.1)

4Throughout the discussion we use both n = 2k + 1 and k to simplify the presentation.

– 8 –
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z1

z2

wk−1w1w0
· · · z3

(a) Toric diagram with points la-

beled.

· · ·

(b) Triangulated toric diagram.

wi−1 wi+1

z1

z2

(c) Fan for the exceptional divisor

wi = 0.

Figure 2. (a) The toric diagram for the C3/Z2k+1 orbifold discussed in the text. The black vertices

z1, z2, z3 are fields in the corresponding gauged linear sigma model (GLSM) (see e.g. [25, 26]),

whereas each internal point corresponds to an exceptional divisor. (b) Triangulating the toric

diagram corresponds to fully resolving the geometry, where each internal point wj is now a GLSM

field. (c) The fan for the exceptional divisor wj = 0, with a ray for each edge connected to wj in

the triangulated toric diagram. For j > 0, this is the fan for the Hirzebruch surface F2j+1, whereas

for j = 0 the left-facing ray is absent, and we obtain the fan for P2.

where ωn ≡ exp(2πi/n). The resulting geometry is toric,5 where the U(1)3 toric isometry

group is enhanced to SU(2)×U(1)×U(1)R with SU(2) acting on the doublet (z1, z2), except

that in the special case of C3/Z3 (studied in [1]) the isometry group is further enhanced to

SU(3)×U(1)R with SU(3) acting on the triplet (z1, z2, z3).

The toric diagram6 corresponding to this singularity is shown in figure 2(a). Fully

resolving the singularity corresponds to triangulating the toric diagram, as in figure 2(b),

giving a GLSM description with fields zi and wj , 0 ≤ j < k. Acting on the resolved

geometry, one can show that the involution zi → −zi has fixed planes wj = 0 for k − j
odd, as well as a separate fixed point z1 = z2 = w0 = 0 for even k. Thus, for odd k there

are k+1
2 O7 planes wrapping exceptional divisors P2 and F2j+1 for 0 < j < k even (see

figure 2(c)) where Fm denotes the mth Hirzebruch surface, whereas for even k there are

k/2 O7 planes wrapping exceptional divisors F2j+1 for 0 < j < k odd as well as an O3

plane at a point on the P2.

To obtain the worldvolume gauge theory of D3 branes probing these orientifolds, we

work within the framework of dimer models [27, 28]. We refer the reader to [29] for the

state of the art on orientifolds of generic dimer models, and [30] for a treatment in a dimer

model language of a family of orientifolds similar to the one considered here and in [3].

Brane/orientifold systems very similar to some of the ones we consider here have appeared

in the literature many times before, most often studied in the CFT language. See for

example [31–38] for some relevant work on orientifolds and in particular orientifolds of

orbifolds.7

5See e.g. [23, 24] for a review of toric geometry.
6The fan of a toric Calabi-Yau threefold can be drawn with all of its primitive generators ~ni ∈ Z3 in the

(·, ·, 1) plane [25]. Having done so, the toric diagram is the intersection of the fan with this plane in R3,

and contains the same information as the fan: one, two, and three-dimensional cones in the fan correspond

to vertices, edges and faces in the toric diagram.
7We would like to highlight in particular [34], where S-duality of a type I configuration T-dual to our

main example, the orientifolded C3/Z3 quiver, was studied. (See also [33–37] for other heterotic/type I
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Figure 3. The brane tiling for the C3/Zn orbifold singularity described in the text. The red crosses

indicate the orientifold fixed points and the dashed blue line outlines the unit cell.

3.1 An infinite family S-dual gauge theories

In this subsection we derive the worldvolume gauge theories for D3 branes probing the

infinite family of orientifold singularities considered above. As anticipated in section 2,

for each singularity we obtain three different gauge theories, two of which are expected

to be S-dual. We demonstrate that the prospective S-dual gauge theories have matching

anomalies. Other orbifold singularities not belonging to this infinite family are briefly

considered in section 3.2.

The brane tiling corresponding to the C3/Zn orbifold singularity described above is

shown in figure 3. The tiling is invariant under reflection about a horizontal line through

the middle row, which gives rise to a global SU(2) symmetry in the corresponding gauge

theory.

We focus on involutions of the dimer with isolated fixed points, since only these involu-

tions can leave the global symmetries completely unbroken [3]. Since there are 2n nodes in

the unit cell and n = 2k+1 is odd, the sign rule in [29] requires the product of the four signs

associated to the four orientifold fixed points to be odd. Due to the reflection symmetry

there are six inequivalent choices. Labelling the fixed point signs counter-clockwise from

the leftmost fixed point in figure 3, these are (∓,±,±,±), (±,∓,±,±), and (±,±,∓,±).

Following the meson sign rules given in [29], we find the corresponding geometric invo-

lutions z3 → −z3, z1 → −z1 and zi → −zi, respectively. Thus, the cases (∓,±,±,±),

(±,∓,±,±) correspond to non-compact O7 planes, and lead to field theories with gauge

anomalies in the absence of flavor branes.

The remaining two cases (±,±,∓,±) correspond to the desired zi → −zi involution,

and lead to anomaly-free gauge theories for certain choices of the gauge group ranks. For

(−,−,+,−), we obtain the gauge group
∏k
a=1 SU(Na)×SO(Nk+1) with the ranks fixed by

anomaly cancellation to be Na = N − 4ba2c for some N . The charge table for this theory is

S-dual orbifold pairs.) An important physical difference of these works with respect to the configuration

studied here is that the heterotic/type I S-duality of string theory in ten dimensions generically gives rise

to a weak/weak duality in four dimensions, while S-duality in our singular configurations naturally gives

strong/weak dualities in the four-dimensional field theory.

– 10 –



J
H
E
P
1
0
(
2
0
1
3
)
0
0
6

SU(N1) SU(N2) SU(N3) . . . SU(Nk−1) SU(Nk) SO(Nk+1) SU(2)

Xi 1 1 . . . 1 1 1

Y 1 . . . 1 1 1 1

Ai(1) 1 . . . 1 1 1

B(1) 1 . . . 1 1 1 1

Ai(2) 1 . . . 1 1 1
...

...
...

...
...

...
...

...
...

Ai(k−1) 1 1 1 . . . 1

B(k−1) 1 1 1 . . . 1 1

Ai(k) 1 1 1 . . . 1

Z 1 1 1 . . . 1 1 1

where we have omitted the abelian global symmetries, which are discussed below.

The remaining choice (+,+,−,+) is related to the SO theory described above by the

negative rank duality discussed in appendix B of [1]. Therefore this theory has gauge group∏k
a=1 SU(Ña)×USp(Ñk+1) with Ña = Ñ + 4ba2c and charge table

SU(Ñ1) SU(Ñ2) SU(Ñ3) . . . SU(Ñk−1) SU(Ñk) USp(Ñk+1) SU(2)

X̃i 1 1 . . . 1 1 1

Ỹ 1 . . . 1 1 1 1

Ãi(1) 1 . . . 1 1 1

B̃(1) 1 . . . 1 1 1 1

Ãi(2) 1 . . . 1 1 1
...

...
...

...
...

...
...

...
...

Ãi(k−1) 1 1 1 . . . 1

B̃(k−1) 1 1 1 . . . 1 1

Ãi(k) 1 1 1 . . . 1

Z̃ 1 1 1 . . . 1 1 1

where we once more omit the abelian global symmetries.

The superpotential for the SO theory is

W = εij Tr

(
XiAj(1)Y +

k−1∑

a=1

Ai(a)A
j
(a+1)B(a) +Ai(k)A

j
(k)Z

)
, (3.2)

and for the USp theory one has similarly

W̃ = εij Tr

(
X̃iÃj(1)Ỹ +

k−1∑

a=1

Ãi(a)Ã
j
(a+1)B̃(a) + Ãi(k)Ã

j
(k)Z̃

)
. (3.3)

The quiver diagrams for the two gauge theories are shown in figure 4.
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Figure 4. The quivers for the two gauge theories arising from orientifolding D3-branes probing

the C3/Zn=2k+1 singularity. There are k SU factors. The Xi and Z matter fields of the SO theory

transform as while the matter fields X̃i and Z̃ of the USp model transform as .

In addition to the continuous SU(2)×U(1)×U(1)R global symmetry group, there are

sometimes additional discrete symmetries. In particular, an extra Zn symmetry appears

whenever N or Ñ is a multiple of n, whereas an extra Z2 symmetry is present in the SO

theory for even N . The latter arises from a combination of the Z2 outer automorphism

group of SO(2m) with a discrete flavor symmetry. Thus, a duality (if it exists) must relate

the USp theory and the odd-N SO theory with N − Ñ an odd multiple of n.

The fields carry the following charges under the U(1)×U(1)R × Zn symmetries8,9

Xi Y Ai(a), a odd

U(1) 1 −2 + 2(n−3)
N−4 1 + (n−2a+1)(a−1)

N−2(a−1) − (n−2a−1)(a+1)
N−2(a+1)

U(1)R
2
3 − n∓1

N
2
3 + n∓1

2N + (n−3)5+3±3
6(N−4)

2
3 + (n−2a+1)(4a−1)+3∓3

6(N−2(a−1)) − (n−2a−1)(4a+1)+3±3
6(N−2(a+1))

Zn ω−2nN ωnN · ω3
n(N−4) ω2a−1

n(N−2(a−1)) ·
[
ω−2a−1n(N−2(a+1))

]1−δa,k

B(a), a odd Ai(a), a even

U(1) −2− (n−2a+1)(a−1)
N−2(a−1) + (n−2a−3)(a+1)

N−2(a+1) 1 + 2a
N−2a

U(1)R
2
3 −

(n−2a+1)(4a−1)+3∓3
6(N−2(a−1)) + (n−2a−3)(4a+7)+3∓3

6(N−2(a+1))
2
3 + 10a−3(n∓1)

3(N−2a)

Zn ω1−2a
n(N−2(a−1)) ·

[
ω2a+3
n(N−2(a+1))

]1−δa,k−1

ω2a−1
n(N−2a) ·

[
ω−2a−1n(N−2a)

]1−δa,k

8The discrete symmetry group is Zn rather than ZnN since the generator to the n-th power is gauge

equivalent to the identity. The generator of the discrete Zn symmetry to the kN -th power is gauge equivalent

to a global U(1) transformation, which means that the global discrete Zn symmetry is contained in the

U(1) unless N is a multiple of n. The R-charges are assigned so that the global anomalies take a relatively

simple form. We discuss the correct R-charges obtained from a-maximization below.
9For simplicity, we omit the extra Z2 symmetry which appears for even N in the SO theory.

– 12 –



J
H
E
P
1
0
(
2
0
1
3
)
0
0
6

B(a), a even Z

U(1) −2− (n−2a+1)a
N−2a + (n−2a−3)(a+2)

N−2(a+2) −2− 2(n−2±1)
N−n+2∓1

U(1)R
2
3 −

(n−2a+1)(4a−3)+3±3
6(N−2a) + (n−2a−3)(4a+5)+3±3

6(N−2(a+2))
2
3 −

2(2n−1∓1)
3(N−n+2∓1)

Zn ω1−2a
n(N−2a) ·

[
ω2a+3
n(N−2(a+2))

]1−δa,k−1

ω
−2(n−2)
n(N−n+2∓1)

where ωm ≡ e2πi/m and the upper/lower sign is for k = (n − 1)/2 even/odd. The U(1) ×
U(1)R × Zn charges for the USp theory are obtained by replacing N → −Ñ , as dictated

by the negative rank duality relating the two theories.

Calculating the global anomalies that are relevant for anomaly matching in dual the-

ories [39] one finds that the SU(2)2 Zn anomaly as well as the gravitational Zn and U(1)

anomalies vanish and the other anomalies are given by

SO theory USp theory

SU(2)3 1
2N(N − n) mod 2 1

2Ñ(Ñ + n) mod 2

SU(2)2 U(1) 1
2nN(N − n) 1

2nÑ(Ñ + n)

SU(2)2 U(1)R
1
6(±3− n(2 + n2 +N(N − n))) 1

6(±3− n(2 + n2 + Ñ(Ñ + n)))

U(1)3 −3nN(N − n) −3nÑ(Ñ + n)

U(1)2 U(1)R −n(n2 ∓ n+N(N − n)) −n(n2 ∓ n+ Ñ(Ñ + n))

U(1) U(1)2R −1
3(n± 3)n(n∓ 1) −1

3(n± 3)n(n∓ 1)

U(1)3R

1
18(9± 90− n(99 + 6n(n∓ 1)

−8N(N − n)))

1
18(9± 90− n(99 + 6n(n∓ 1)

−8Ñ(Ñ + n)))

U(1)R −1
2 (5n− 1∓ 4) −1

2 (5n− 1∓ 4)

where again the upper/lower sign is for k even/odd. We conclude that the two theories

have matching anomalies for Ñ = N − n. This is a highly non-trivial check of our pre-

vious assertion that these theories should be S-dual, and is in perfect agreement with the

arguments given in section 2.

As an aside we note that the two dual theories have the same number of chiral multi-

plets and vector multiplets. In particular for Ñ = N − n we find for the USp theory

number of vector multiplets:
1

6
(3∓ 9 + n(n2 + 5 + 3N(N − n)) (3.4)

number of chiral multiplets:
1

2

(
6± 3 + n

(
n2 − 10 + 3N(N − n)

))
(3.5)

which agrees with the SO theory where as usual the upper/lower sign is for k even/odd.

There is no obvious reason for the dual theories to be related in this fashion, and indeed

the relation does not persist for nonorbifold singularities [1, 3].

For completeness, we describe a-maximization for these theories. To find the super-

conformal R-charge we define a trial R-symmetry under which the fields carry the charge

qR+b qU(1), where qR and qU(1) are the charges given above. Since the gravitational anomaly
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for the U(1) flavor symmetry vanishes, a-maximization [40] reduces to maximization with

respect to b of the U(1)3R anomaly for the trial R-symmetry. We find for the SO theory

b = −n(n∓ 1) +N(N − n)−
√
n2(n∓ 1)2 +N(N − n)(n∓ 3)(n∓ 1) +N2(N − n)2

3N(N − n)
,

(3.6)

where again the upper/lower signs are for k = (n − 1)/2 even/odd. For the USp theory

b is given by replacing N → −Ñ . Note that the vanishing of the gravitational U(1)

anomaly implies that the U(1)2R U(1) anomaly vanishes after a-maximization. Using the

above formula, the central charge and other anomalies involving the R-symmetry can easily

be obtained. The results are rather lengthy, so we refrain from spelling them out explicitly.

3.2 Generalization to other orbifolds

A general supersymmetric C3/Zn orbifold with an isolated singularity takes the form

zj → e
2πiaj
n zj (3.7)

where
∑
ai = 0 mod n and gcd(ai, n) = 1, so that (a1, a2, a3) = (1, `,−`−1) for gcd(`, n) =

gcd(`+1, n) = 1. The first nontrivial example not belonging to the infinite family discussed

above is the Z7 orbifold (1, 2, 4). Choosing the same zi → −zi involution one obtains the

gauge theories found in [41]. The gauge groups are SO(N+4)×SU(N)3 and USp(Ñ−4)×
SU(Ñ)3, where the explicit charge table is given in table III of [41]. Both theories have a

global U(1)2 × U(1)R symmetry, and their anomalies match for Ñ = N + 1, as expected

based on our arguments in section 2.

We leave it to the interested reader to work out the details of other Zn orbifolds with

isolated singularities, which are expected to behave similarly to the cases studied here. For

simplicity, we omit discussion of non-isolated singularities — such as for Zn orbifolds with

even n, Zm×Zn orbifolds with gcd(m,n) > 1, and nonabelian orbifolds — and proceed to

discuss a different physical viewpoint on the duality.

4 The large volume picture

While the arguments presented in section 2 provide a clear link between the duality relating

the C3/Z3 SO and USp gauge theories and ten-dimensional S-duality, the interpretation of

the duality in terms of branes is initially less obvious. Whereas the N = 4 case involved O3

planes, which transform into each other under SL(2,Z), the C3/Z3 orientifold we consider

corresponds to an O7 plane wrapping the P2 exceptional divisor. Since O7 planes do

not transform simply under SL(2,Z) (in particular, the S-dual of an O7 plane is not an

O7 plane), the N = 4 story requires substantial modification to correctly describe the

“microscopics” of how the duality acts on the fractional branes. The primary goal of

the following sections is to develop this story. Along the way, we will also provide an

explanation for the rank relation Ñ = N − 3 in terms of D3 charge conservation.

In order to systematically study D-branes in type IIB string theory, it is convenient

to work in the framework of the derived category of coherent sheaves (we refer the reader
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to [42–46] for excellent reviews and some of the original works on this topic in the physics

literature). For completeness we review certain parts of this description below, highlighting

those aspects that will be most important in our analysis. Much of the following formalism

is well understood in the absence of orientifolds, see for example [47–53] for some early

works. The action of orientifolds on the derived category of coherent sheaves has been

discussed in [54]; we follow the formalism and notation in that paper, extending it to

include non-trivial B2 fields and auto-equivalences of the category.

4.1 Preliminaries on derived categories and orientifolds

In the language of the derived category, branes are described by a complex of sheaves E

in an ambient space X. We will be interested in branes wrapping a complex surface S
in a Calabi-Yau manifold X, with embedding map i : S ↪→ X, and supporting a sheaf

E , possibly with some non-trivial integer shift in the grading. In other words, we do not

need to deal with general complexes, but only objects of the form E = i∗E [k], with E an

ordinary sheaf on S and k the position of E in the complex.10

The branes E corresponding to the fractional branes at the singularity can be con-

structed by (left) mutation of a basic set of projective objects Pi [48, 50, 51, 55, 56]. On a

del Pezzo surface S the Pi objects can be easily constructed as line bundles on S, and there

are systematic algorithms for finding such a collection [53]. We will give various examples

below. The left mutation of a brane Fi through Fj , denoted LFj
(Fi), is defined as [51]:

LFj
(Fi) = Cone

(
Hom(Fj ,Fi)⊗Fj → Fi

)
[−1] . (4.1)

We refer the reader to [46] for a review of the cone construction. If one is only interested

in the Chern characters of the branes, then (4.1) simplifies to:

ch(LFj
(Fi)) = ch(Fi)− χ(Fj ,Fi) ch(Fj) , (4.2)

with

χ(Fj ,Fi) =

∫

S
ch(F∨j ) ∧ ch(Fi) ∧ Td(TS) . (4.3)

Using these definitions, a basis of fractional branes can be constructed by taking:

E1 = P1 ,

E2 = LP1P2 ,

· · ·
En−1 = LP1LP2 · · · LPn−2Pn−1 ,

En = LP1LP2 · · · LPn−1Pn .

(4.4)

Now that we know how to construct the fractional branes at the singularity in terms

of geometric objects, we want to define a suitable orientifold action. Consider first the case

10For convenience of notation, we will often denote the brane described by the sheaf i∗E [k] simply by E .

Whether we are talking of the brane or its associated bundle should always be clear from the context.
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with vanishing B2 field. In the case that the orientifold wraps S itself, the action on the

fractional branes is given by [54]

i∗E [k] −→ i∗(E
∨ ⊗KS)[2− k] , (4.5)

with KS the anti-canonical class of S. This agrees with the usual large volume action on

D7s, which is generally considered only at the level of Chern classes. In this case (4.5)

maps D7s to D7s and D7s to D7s. Furthermore, the worldvolume flux F on the brane is

related to E by F = E ⊗K−1/2S [57]. Acting on F , (4.5) then gives F → F∨, in agreement

with the usual prescription.

Incorporating a B2 field in H2(S,R) is relatively straightforward. Usually one intro-

duces a quantity F = c1(F )−B2, with c1(F ) the field strength for the connection in the

bundle F , in terms of which the orientifold acts as F → −F .

However, there is an equivalent alternative viewpoint that fits better with the derived-

category description of branes. Notice that since orientifolds map B2 → −B2, only half-

integrally quantized B2 fields are allowed, and we can view 2B2 as the field strength of a

line bundle L2B2 . The orientifold therefore has a double effect: it acts on the D-branes as

in (4.5) while also reflecting the real part of the Kähler moduli space. We can trivially undo

the action on Kähler moduli space (so we can compare branes and their images at the same

point in moduli space) by shifting −B2 → −B2 + 2B2 = B2. Due to the invariance of the

theory under joint integral shifts of B2 and the bundles on the branes, this is equivalent to

tensoring the sheaf E on the brane by L2B2 . Thus, in the presence of B2 ∈ H2(S,R), (4.5)

gets amended to

i∗E [k] −→ i∗(E
∨ ⊗KS ⊗ L2B2)[2− k] . (4.6)

This action can also be understood purely in terms of the derived category, forgetting about

the physical origin of L2B2 . From this viewpoint, (4.6) generalizes the ordinary action of

the orientifold by twisting the elements of the category with a line bundle. Twisting all

the elements of the category by the same line bundle is an autoequivalence of the category,

so we have our first example of an orientifold that combines the ordinary large-volume

orientifold action with an auto-equivalence of the derived category. We discuss a variation

of this idea below, which turns out to be useful in understanding the orientifolds of various

quiver configurations.

While the description of the branes in terms of the derived category of coherent sheaves

is relatively simple (at least in comparison with the objects in the mirror description, the

Fukaya category, see [46] for a review), there is an important complication: as we move

in Kähler moduli space the supersymmetry preserved by the D-branes changes, in a way

highly influenced by world-sheet instanton corrections. The most convenient way to deal

with this issue is by considering the central charge Z(E , t), with E our brane of interest

and t = B2 + iJ our position in complexified Kähler moduli space.11 At large volume,

11For the sake of brevity, we will often drop the dependence on t from the notation. Also, despite the

fact that in N = 1 compactifications the holomorphic field involving J is C4− i
2
J ∧J , we will keep referring

to t as parameterizing the complexified Kähler moduli space, since this is the natural variable entering the

central charge formulas for BPS D-branes in the theory.
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where we can ignore α′ corrections, a brane E wrapping S has central charge

Z(E [k], t) = (−1)k
∫

S
e−t ch(E )

√
Td(TS)

Td(NS)
. (4.7)

It will be convenient to introduce a charge vector for the brane given by:

Γ(E [k]) = (−1)k[S] ch(E )

√
Td(TS)

Td(NS)
(4.8)

in terms of which the large volume central charge is given by:

Z(E [k], t) =

∫

X
e−t Γ(E [k]) . (4.9)

One can incorporate α′ corrections to the central charge by going to the mirror of

the configuration in question. In what follows, we quote the relevant results as needed,

referring the interested reader to [46, 58, 59] for surveys of the techniques required to derive

these results and further references.

Once we have the set of branes and the orientifold action we can compute the spectrum

of light states. The precise calculation requires computation of Ext groups [57]. In the

particular case that we will be considering — Ext groups between sheaves A, B supported

on a surface S in the Calabi-Yau X — there is a one-term spectral sequence [57, 60] giving

the Ext groups in X in terms of Ext groups in S:

ExtkX(i∗A, i∗B) =
∑

p+q=k

ExtpS(A,B ∧N q
S)

= ExtkS(A,B)⊕ Extk−1S (A,B ⊗KS) ,

(4.10)

where in the second line we have used the fact that S is a divisor in a Calabi-Yau, so

NS = KS . Using Serre duality on S we can rewrite the final expression as:

ExtkX(i∗A, i∗B) = ExtkS(A,B)⊕ Ext3−kS (B,A)∨ . (4.11)

If one were interested only in the dimensions of the Ext groups the dual sign in the second

term could be ignored, but we will keep it as it nicely encodes some of the flavor structure

of the quiver, as demonstrated in some of the examples below.

For our purposes it is usually sufficient to compute only the chiral index of states

between the branes. This is defined as:

〈
Ei,Ej

〉
=
∑

(−1)k ExtkX(Ei,Ej) , (4.12)

with X the Calabi-Yau threefold. As is often the case with an index, this expression can be

expressed as an integral of forms on X. In particular, it is given by the Dirac-Schwinger-

Zwanziger (DSZ) product of the corresponding charge vectors:

〈
Ei,Ej

〉
=
∑

k

(−1)k
∫

X
Γ(2k)(Ei) ∧ Γ(6−2k)(Ej) , (4.13)
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Number of chiral multiplets Representation
〈
Ei,Ej

〉
( i, j)〈

Ei,E ′j
〉

( i, j)
1
2

〈
Ei,E ′i

〉
+ 1

8

〈
e−B2Ei, O7±

〉
i

1
2

〈
Ei,E ′i

〉
− 1

8

〈
e−B2Ei, O7±

〉
i

Table 1. Spectrum of chiral multiplets charged under brane Ei in the presence of a O7± plane. Ej
denotes a generic brane intersecting Ei, and primes denote image branes. Any resulting negative

signs should be interpreted as conjugate representations. Notice that Ei refers to the basic fractional

branes, we count multiplicities separately.

with Γ(m) denoting the part of Γ of degree m. This product is clearly antisymmetric, and in

fact it is the mirror to the usual intersection product in IIA. Since we have branes wrapping

a complex surface S, the charge vector takes the form:

Γ(Ei) = [S] ∧
(
ω
(i)
0 + ω

(i)
2 + ω

(i)
4

)
, (4.14)

with ωn ∈ Hn(S,R). Eq. (4.13) then simplifies to:

〈
Ei,Ej

〉
=

∫

S
c1(TS) ∧

(
ω
(i)
0 ∧ ω

(j)
2 − ω

(j)
0 ∧ ω

(i)
2

)
, (4.15)

where we have used adjunction: c1([S]|S) = c1(NS) = −c1(TS), since X is a Calabi-Yau

manifold.

Orientifold planes will also contribute to the D-brane charges. The charge vector for

an O7 plane is given by:

Γ(O7±) = ±8[S] ∧
√
L̂(TS/4)

L̂(NS/4)
= ±[S] ∧

(
8− 1

6
c2(TS)

)
, (4.16)

with L̂ the Hirzebruch genus L̂(E) = 1 + 1
3(c21(E) − 2c2(E)) + . . ., where we have omit-

ted terms of degree 6 or higher, since they vanish on S. In the presence of such an

orientifold, the spectrum gets truncated to invariant states, given by bifundamentals and

(anti-)symmetric representations. The precise matter content in the presence of the orien-

tifold plane can be read off from the mirror formulas in IIA [61–65]. Given branes Ei,Ej
with orientifold images E ′i ,E

′
j respectively, one obtains the spectrum in table 1.

As in [64], this spectrum can essentially be derived from tadpole/anomaly cancellation

and linearity of the DSZ product. Tadpole cancellation requires that the 4-form and 2-form

parts of the charge vectors satisfy:

Γ(O7±) +
∑

e−B2Γ(Ei) = 0 , (4.17)

where the sum is over all branes in our configuration, including images under the orientifold

involution and multiplicities for non-abelian stacks. We have added the B2 field explicitly,

since we did not include it in our definition of the charge vector (4.8), but it enters in the
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definition of the Chern-Simons charge. Consider now a fractional brane Ei not invariant

under the orientifold involution, and let us put a stack of Ni(Ei + E ′i ) branes on our

singularity, with gauge group U(Ni). Taking the DSZ product of (4.17) with e−B2Γ(Ei)

one gets (with a slight abuse of notation):

∑

j 6=i,i′

〈
Ei,Ej

〉
+
〈
Ei, NiE

′
i

〉
+
〈
e−B2Ei, O7±

〉
= 0 , (4.18)

where we have used the fact that the DSZ product is an index, so it does not change by

deforming both sides by the same B2 field, and in particular the B2 field can be ignored

if it appears in both sides of the DSZ product. (The 6-form part of the charges (i.e. the

D3 charge) was not constrained by (4.17), but since we have no Calabi-Yau filling branes

in our background the D9-D3 contribution drops out of (4.18) anyway.) Notice that the

first term in (4.18) is just the field theory anomaly coming from the chiral fields in the

fundamental representation of U(Ni), in conventions where each chiral fundamental field

contributes 1 unit to the anomaly. The second and third terms must then equal the net

anomaly coming from two-index tensors:

n (Ni + 4) + n (Ni − 4) = Ni

〈
Ei,E

′
i

〉
+
〈
e−B2Ei, O7

〉
. (4.19)

Imposing that the relation is satisfied for any Ni we obtain the relations in table 1.

Finally, given a generic brane Ei, one has Ext0(Ei,Ei) gauge bosons from the brane

to itself. In the absence of orientifolds, this gives rise to a U(Ni) gauge stack, with N2
i =

dim Ext0(Ei,Ei). If the brane is invariant under the orientifold projection, the involution

projects U(Ni) to either USp(Ni) or SO(Ni). If the brane is not invariant, but is mapped

to an image brane instead, then the original U(Ni) × U(Ni) gauge group gets projected

down to U(Ni).

4.2 Large volume description of the orientifolded C3/Z3 quiver

Let us put what we just described into practice. The theory for branes at a C3/Z3 is

conventionally described by the exceptional collection

C = {O[0],Ω(1)[1],O(−1)[2]} (4.20)

with Ω the cotangent bundle on P2. This collection can be obtained by mutation of the

basic set of projective objects:

P = {O,O(1),O(2)} . (4.21)

In our case it will be convenient to tensor all the elements in the collection with O(−1),

and thus we will be dealing with the following collection instead:

C = {O(−1)[0],Ω[1],O(−2)[2]} . (4.22)

The reason for tensoring with O(−1) is simple: since we want to orientifold, the branes

that we identify under the involution should have the same mass, but it is not hard to see
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using the explicit expressions for the central charge given below that the elements of (4.20)

have different central charges, and thus different masses. Tensoring the whole basis by a

line bundle does not change the quiver structure, but it changes the central charge and

hence fixes the problem. To wit, if we have a D7 brane wrapping S with charge vector

Γ(D7) = [S] ∧ (Q0 +Q2`+Q4`
2) (4.23)

with ` the hyperplane in S = P2, then its exact central charge is given by [46]

Z(D7) =

(
Q0

2
−Q2

)
Φ1 +

(
1

2
Q0

)
Φ2 +

1

12
Q0 +Q4 , (4.24)

where Φi are the quantum periods. We will discuss these periods in more detail in section 6,

but for our current purposes we will only need the fact that they vanish at the quiver point,

where

Z•(D7) =
1

12
Q0 +Q4 . (4.25)

This implies in particular that:

Z•(O(n)) =
1

12
+

(
1

2
n2 +

3

2
n+

5

4

)

Z•(O(n− 1)) =
1

12
+

(
1

2
n2 +

1

2
n+

1

4

)
.

(4.26)

Imposing that both central charges are equal gives n = −1, as claimed. Tensoring the

collection byO(−1) can also be achieved by a change in conventions, see [46] for an example.

The charge vectors for the fractional branes in (4.22) are given by:

Γ(O(−1)[0]) = [S] ∧ ch(O(−1))

√
Td(TS)

Td(NS)
= [S] ∧

(
1 +

1

2
`+

1

4
`2
)

Γ(Ω[1]) = −[S] ∧ ch(Ω)

√
Td(TS)

Td(NS)
= [S] ∧

(
−2 +

1

2
`2
)

Γ(O(−2)[2]) = [S] ∧ ch(O(−2))

√
Td(TS)

Td(NS)
= [S] ∧

(
1− 1

2
`+

1

4
`2
)
.

(4.27)

Plugging these expressions in (4.25) we easily see that

Z•(O(−1)[−1]) = Z•(Ω[0]) = Z•(O(−2)[1]) =
1

3
, (4.28)

which is what one expects from the Z3 symmetry permuting the fractional branes. For

illustration we show the behavior of the central charges as we go to large volume in figure 5,

where we have used the explicit form (6.12) of the periods Φi and the mirror map [58],

which in our case is just B2 + iJ = Φ1(z).

Using (4.5) it is straightforward to check that (4.22) maps to itself under the orientifold

involution. In the case of the line bundles this is easy to see:

i∗O(−1)[0] −→ i∗(O(−1)∨ ∧KS)[2] = i∗(O(1) ∧ O(−3))[2] = i∗O(−2)[2] . (4.29)
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Figure 5. Phase of the central charges for the C3/Z3 fractional branes as we go from the quiver

point at J = B2 = 0 towards large volume (J = +∞) along the B2 = 0 line. The central charge of

Ω[1] stays real and positive, so we do not show it. The phases of O(−2)[2] and O(−1)[0] asymptote

to ±π.

The case of Ω[1] is slightly more complicated, but follows from the fact that Ω∨⊗KS = Ω,

so the brane maps to itself:

i∗Ω[1] −→ i∗(Ω
∨ ⊗KS)[2− 1] = i∗Ω[1] . (4.30)

We can in fact derive the quiver in full detail. By (4.27), we know that Ω[1] has

D7 charge equal to −2, so we can cancel the D7 brane tadpole by adding 4 Ω[1] branes.

Since Ω[1] maps to itself, and it has dim Ext0(Ω[1],Ω[1]) = 1, we see that under the O7+

action the resulting stack is USp(4).12 We can add k pairs of regular D3 branes, and

thus enhance the symmetry to USp(2k + 4)×U(2k). The intersection products are easily

computed using (4.27), (4.15) and the fact that c1(TS) = c1(O(3)) = 3`:

〈
Ω[1],O(−1)[0]

〉
=

∫

P2

(3`) ∧
(
−2 · 1

2
`

)
= −3

〈
O(−1)[0],O(−2)[2]

〉
= −3

〈
O(−1)[0], O7+

〉
= −12 .

(4.31)

By applying the rules in table 1 we thus find the following matter content:

USp(2k + 4) U(2k) SU(3)

1

(4.32)

with the SU(3) being a global symmetry, which at this level simply encodes the multiplic-

ity of the matter fields. We will see in some simpler examples below how this group of

global symmetries can also be understood geometrically, but we avoid the discussion of this

particular case since it is slightly more technical.

12Determining the orientifold projection is not straightforward. It can be done in general by using

the methods of [66, 67], or more simply in our example by matching with the CFT computation, since

determining the symmetric/antisymmetric representation is straightforward.
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Central charge for the orientifold. Let us assume that the mass of the orientifold

can be computed exactly (including all α′ corrections) in a manner similar to that of a D7

brane. We will analyze the O7+ plane, and assume that it has the same argument for the

central charge as the O7− plane (i.e. they preserve the same supersymmetries). Using the

same notation as above, we have from (4.16) that Q0 = 8, Q2 = 0, Q4 = −χ(P2)/6 = −1
2 .

The central charge at the quiver point is thus:

Z•(O7+) =
8

12
− 1

2
=

1

6
> 0 . (4.33)

The central charge at large volume, on the other hand, is given by:

Z lv(O7+) = 8

∫

S
e−B2−iJ

√
L̂(TS/4)

L̂(NS/4)

vol(S)→∞−−−−−−→ −8

∫

S
J2 < 0 .

(4.34)

As it is clear, the central charge of the orientifold changes sign in going from large to small

volume, and in particular, since it is a real quantity, it passes through 0 (the vanishing

point is located at J ≈ 0.0694). Close to the quiver point, the orientifold has a phase of the

central charge opposite to the one at large volume. So we learn that the supersymmetry

preserved by the O7± orientifold at the quiver point is opposite to the one preserved at

large volume, and furthermore it is the same supersymmetry preserved by the fractional

branes (4.22).

4.3 Quantum symmetries and ærientifolds

As we have just seen, the orientifold action (4.5) left the fractional brane Ω[1] invariant,

while it exchangedO(−1)[0] andO(−2)[2]. This beautifully reproduces the quiver structure

obtained via CFT or orientifolded dimer model techniques. However, a longer look to the

quiver may leave one puzzled: from the point of view of the quiver gauge theory there is

nothing special about the node associated with the Ω[1] brane, one could have taken an

involution of the quiver leaving invariant any of the other two nodes.13 This is in fact true

in the full string theoretic description, and in the present language follows from the fact

that the derived category has auto-equivalences, as we now explore.

We will not go into details of the mathematical meaning of auto-equivalences (we

refer the reader to [46] for a detailed review), but we can think of an auto-equivalence

of the derived category as a re-labeling of the D-branes in such a way that the physics is

unaffected. We have already encountered a simple auto-equivalence of the derived category

in section 4.1, where we discussed integer shifts of the B2 field. Another familiar context

in which this phenomenon arises is that of monodromy around a conifold point. Consider

for example a point in moduli space where a brane F becomes massless. As we circle once

around this point in moduli space the charges of the branes shift as [69, 70]:

Γ(E )→ Γ(E )−
〈
E ,F

〉
Γ(F ) . (4.35)

13See for example [68] for some instances in which this perspective was taken.
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As we see, the charges of most branes will change, but this cannot induce a change in the

physics of the background or the set of stable branes, since we end up at the same point

in moduli space. The operation must then amount to a relabeling of the D-brane charges.

In our particular context the conifold points in moduli space are precisely those where

the fractional branes in the quiver point become massless. In particular, we will present the

moduli space in such a way that it is O(−1)[0] that becomes massless. The induced action

on the charge vectors as we go around the point where O(−1)[0] becomes massless is:

Γ(E )→ Γ(E )−
〈
E ,O(−1)

〉
Γ(O(−1)) . (4.36)

Since this is a linear transformation, it is convenient to rewrite this as a matrix action on

the charge vector:



Γ(2)

Γ(4)

Γ(6)


→




−1
2 3 0

−3
4

5
2 0

−3
8

3
4 1







Γ(2)

Γ(4)

Γ(6)


 ≡MC




Γ(2)

Γ(4)

Γ(6)


 (4.37)

where as usual Γ(2i) denotes the 2i-form part of Γ.

A similar phenomenon that appears in our context is monodromy around the large

volume point, which shifts the B2 field by one unit, or equivalently it acts on the charges as:

Γ(E )→ Γ(E ) ∧ ch(O(−1)) . (4.38)

Again writing this monodromy in matrix form, we have:



Γ(2)

Γ(4)

Γ(6)


→




1 0 0

−1 1 0
1
2 −1 1







Γ(2)

Γ(4)

Γ(6)


 ≡MLV




Γ(2)

Γ(4)

Γ(6)


 . (4.39)

The moduli space of C3/Z3 is a P1 with three marked points around which monodromy

occurs: the large volume point, the conifold point, and the quiver point. The total mon-

odromy around all three points must then vanish, and in this way we can easily obtain the

monodromy around the quiver point:

MQ =
(
MLVMC

)−1
=




−1
2 −3 0

1
4 −1

2 0
1
8

1
4 1


 . (4.40)

It is straightforward to show that M3
Q = 1, and furthermore, from the charges (4.27):

MQΓ(O(−1)[0]) = Γ(Ω[1]) ,

MQΓ(Ω[1]) = Γ(O(−2)[2]) ,

MQΓ(O(−2)[2]) = Γ(O(−1)[0]) .

(4.41)

We therefore identify MQ with the quantum symmetry rotating the quiver.14

14It is possible to identify the quantum symmetry at the level of the category itself, and not just at the

level of charges; we refer the reader to [46] for details.
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We are now in a position to resolve the issue that we presented at the beginning of this

section. Denoting the ordinary orientifold involution (4.5) by P (which acts on the charges

as diag(1,−1, 1)), one can construct a new class of orientifolds by composing with the auto-

equivalences of the category just described. We call the resulting object an ærientifold, in

order to distinguish it from the ordinary large volume orientifold given by P, although we

emphasize that ærientifolds are just as natural from the quiver point of view. For example,

the ærientifold leaving the O(−1)[0] node invariant would be defined by P ′ =M−1Q PMQ,

and the one leaving O(−2)[2] invariant would be P ′′ =MQPM−1Q . At the level of charges

we have that:

P ′ =




−1
2 3 0

1
4

1
2 0

1
8 −1

4 1


 . (4.42)

We see that from the quiver point of view it is very natural to dress the ordinary large

volume action of the orientifold with auto-equivalences of the category, and such dressings

appear very naturally when orbifolding the quiver for certain singularities.15

4.4 Microscopic description of the discrete torsion

We now connect the classification of the different orientifolds based on discrete torsion

advocated in section 2 with the large volume picture discussed in this section. To do so,

we make use of the fact (explained in section 2) that a D5 brane wrapped on RP2 ⊂ S5/Z6

induces a change in the C2 discrete torsion when crossing the brane. Thus, allowing the

wrapped D5 brane to collapse onto the singularity (restoring supersymmetry) should alter

the configuration of fractional branes in a way which corresponds to changing the C2

discrete torsion.

Consider the resolved geometry, i.e. O(−3) ↪→ P2. Contracting the D5 brane onto

P2 should induce some brane charge which is visible in the large volume description. This

charge should be Z2 valued, stable only in the presence of an orientifold, and associated with

a 5-brane. There is a natural candidate fulfilling these conditions, given by a generalization

of the non-BPS D7 brane of type I string theory, which we now briefly review.16

It is well known that the stable states in type I string theory are classified by elements

of KO(X), where X is the spacetime manifold [72–79] (see also [80–83] for nice reviews).

For X = R10, the classification of branes reduces to computing the non-trivial homotopy

groups πi(O(32)). In particular, due to the fact that π1(O(32)) = Z2 there is a topologically

stable 7-brane in type I with Z2-valued charge. This object is non-BPS in type I, and it has

15The idea of dressing the large volume action by a quantum symmetry is not entirely new, see for exam-

ple [54, 66, 71], although the dressing considered in those papers is of a different nature of the one considered

here, which is in some sense physically trivial (but still very useful when thinking about orientifolded quivers

in large volume language).
16Since we want to identify topological charges we will work in the classical (geometric) regime in this

section, and in particular we will find that the different brane configurations are related by adding non-BPS

objects. Similarly to what happens in [2, 22], if we go to the singular locus and let the system relax it will

find a BPS vacuum, in our case due to the familiar α′ corrections to the central charges.
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some tachyonic modes with respect to the background D9 branes [84].17 Of most interest

to us is that this brane admits an alternative description in terms of a D7-D7 pair in a

type IIB orientifold description. The orientifold involution Ω of type I removes the tachyon

between the D7 and the D7 [79, 84], and renders the object stable (modulo the tachyon

with respect to the background D9 branes).

A first principles computation for the case at hand would require a generalization of

the KO group to the wrapped orientifold, which seems to be an involved technical problem.

(We refer the reader to [18, 19, 67] for some recent work on the definition of the proper

K-theory in the contexts of interest to us.) Luckily, the observation in [79, 84] that the

non-BPS D7 can be constructed from a D7-D7 pair identified by the orientifold involution

generalizes much more easily, if somewhat more heuristically.

For the C3/Z3 SO theories there is an O7− plane wrapping the P2 rather than the

space-filling O9− plane of type I, so a natural (in some sense T-dual) generalization of the

Z2-stable D7 brane of type I would be a Z2-stable D5 brane wrapping a divisor of the P2.

Recall that at the quiver locus a single D3 (in covering space conventions) decomposes into

a Ω[1]+O(−1)+O(−2)[2] system. In particular, the Ω[1] has no induced D5 charge, so we

will ignore it in what follows. The other two branes have charge vectors given by (4.27),

reproduced below for convenience:

Γ(O(−1)[0]) = [S] ∧
(

1 +
1

2
`+

1

4
`2
)

Γ(O(−2)[2]) = [S] ∧
(

1− 1

2
`+

1

4
`2
)
.

Notice the appearance (at the level of the charges) of the D5-D5 pair that we expected

would generalize the D7-D7 stable object of type I. It is therefore natural to conjecture

that a discrete Z2 charge remains in the system after tachyon condensation.18 Since adding

a single stuck D3 in the covering space is precisely the change that one would associate

with wrapping a D5 on RP2 (i.e. introducing some discrete torsion for C2), it must be the

case that retracting the D5 wrapping RP2 to the exceptional locus P2 induces this stable

Z2-valued D5 charge.

For the USp theory, we have an O7+ plane wrapping the P2 instead. Since there is

no charge in KUSp(R10) that supports a D7 charge, we expect by analogy that there is

no stable D5-D5 pair, and thus wrapping a D5 brane on RP2 does not change the gauge

group, in agreement with the arguments of section 2. Nonetheless, we expect a change in

the theta angle of the gauge theory, though the mechanism for this change is not clear in

the K-theory picture.

Finally, by allowing a wrapped NS5 brane to collapse onto the P2, we expect the O7−

plane to change into an O7+ plane and vice versa. This is reminiscent of the general story

for Op planes in a flat background given in [22], but a less heuristic justification remains

elusive.
17In particular, it can decay into topologically non-trivial flux on the D9 branes, see [85].
18Since we haveD7-branes in the background theD5 branes will decay into flux. The topological structure

of the resulting flux in some particular examples is described in [85]; we expect a similar structure to remain

in our case.
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5 Interpretation as an orientifold transition at strong coupling

We have just seen how the system at the quiver point can be described in terms of large

volume objects. In this section we use this picture to argue that the duality that we

observe in field theory is inherited from IIB S-duality. We first consider the strongly

coupled behavior of O7+ planes in flat space, which we analyze in section 5.1. Once this

is understood, one can compactify the flat-space configuration, and the behavior at the

quiver locus can then be found by taking the continuation to small volume. Since the

chiral structure of the quiver is topological in nature, it is not affected by the continuation

to small volume, and we are able to reproduce the S-dual gauge theory expected from

the field theoretic arguments of [1]. We work this out in detail for the C3/Z3 example in

section 5.2.

5.1 S-duality for O7+ planes

As discussed in the introduction, our main claims in this paper are that the field theories

we analyze are related by a strong/weak duality, and that this duality is inherited from

S-duality of IIB string theory. If this is the case, the structure of the dual pairs should be

compatible with the properties under S-duality of the orientifolds and branes that engineer

the field theory. There is no issue with taking the D7 branes to strong coupling, but the

orientifold plane is more subtle. The strongly coupled limit of Op planes with p < 6 has

already been extensively discussed in the literature [2, 86–96]. Unfortunately, the large

volume picture of our system requires the introduction of O7± planes, and the strongly

coupled limit of these is less well understood (some relevant papers are [97–99]).

In this section we present evidence for a proposed description of the strongly coupled

limit of the O7+ plane in flat space as a bound state of an O7− plane with extra 7-branes,

which seems to be behind the duality between USp theories and SO theories with odd rank.

(We will comment at the end of the section on what happens in the self-dual case.) Our

proposal is the following: at strong coupling, IIB string theory in the presence of an O7+

can be alternatively described as a weakly coupled IIB theory in the presence of a bound

state of an O7−, 4 (1, 0) 7-branes (i.e. ordinary D7s), and 4 (0, 1) 7-branes.

This somewhat curious dual spectrum of branes can be motivated as follows. Geo-

metrically, the monodromy corresponding to an O7+ plane is that of a D8 singularity.19

Such a monodromy can be engineered by locating 8 mobile D7 branes on top of a O7−

plane. By describing as usual the O7− plane as a (1, 1) 7-brane together with a (1,−1)

7-brane [100], we have a description of the D8 singularity as 10 coincident (p, q) 7-branes.20

We apply S-duality to each of the 7 branes in the standard way, sending (p, q) → (q,−p).
The original configuration and its dual are shown (slightly resolved for clarity) in figure 6.

19As discussed in [98], this is correct at the level of monodromies, but the actual realization in M-theory

seems to be associated to a non-Weierstrass fiber of type D4 ×D4 with D8 monodromy.
20The two components of an O7− plane by itself (with no (1, 0) branes on top) are separated due to D(−1)

instanton effects by a distance of order e−1/gs , and thus the lift of a O7− is smooth. Adding the 8 extra

(1, 0) branes removes this separation, and the total configuration is indeed singular, with D8 singularity.

This is easily seen using a probe argument, see [101] for the original probe argument and [98] for an explicit

analysis of our case.
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Figure 6. S-duality for the standard components of a D8 singularity.

Figure 7. Monodromy converting the S-dual in figure 6 to our proposed dual. We have chosen the

branch cuts to run downwards from the 7-branes, as indicated by the dotted lines.

We can now connect the resulting S-dual system of (p, q) 7-branes to our proposed dual by

simple monodromy of branes, as shown in figure 7.

We describe this connection in detail. We take the convention that the branch cut for

the monodromy associated to a (p, q) 7-brane runs downwards from the brane. Crossing

this branch cut counter-clockwise induces the monodromy:

M(p,q) =

(
1− pq p2

−q2 1 + pq

)
. (5.1)

We divide the stack of 8 (0, 1) 7-branes into two stacks of 4 branes each. We now perform

the rearrangement shown in figure 7a, taking the (1,−1) 7-brane to the right of the (1, 1)

7-brane and the leftmost stack of (0, 1) 7-branes. As it moves to its new position it crosses

the (1, 1) branch cut counter-clockwise, and then the four (0, 1) branch cuts. Its new (p, q)

labels are thus given by

(
p′

q′

)
=M4

(0,1)M(1,1)

(
1

−1

)
=

(
0 1

−1 −2

)(
1

−1

)
=

(
−1

1

)
. (5.2)

The overall sign of the (p, q) charge is not physical, therefore the 7-brane charge is unaltered

following this operation. The second step is depicted in figure 7b. We take the leftmost

group of (0, 1) branes to the right of the (1,−1) brane. In doing this we cross the (1,−1)

branch cut counter-clockwise, and thus the (p, q) labels of the (0, 1) stack become

(
p′

q′

)
=M(1,−1)

(
0

1

)
=

(
2 1

−1 0

)(
0

1

)
=

(
1

0

)
. (5.3)

This gives the collection that we proposed, shown in figure 7c.

The above argument was made purely at the level of monodromies. This cannot be

the whole story, since eight D7 branes atop an O7− plane should naively yield an SO(16)

gauge group, distinct from the trivial gauge group expected for an O7+ plane. This was
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already observed in [98], and given an explanation in the context of K3 compactifications

of F-theory in [99]. A general analysis from the type II perspective was then presented

in [66, 67] (see also [18]). From the type II perspective, the type of the orientifold in our

configuration will be determined by the sign of the crosscap diagram around the orientifold.

As explained in [67], this sign is determined by a parallel section — known as the “crosscap”

section — of a line bundle with flat connection. The line bundle and connection are derived

from the “twist” line bundle and connection, whose curvature is B2 + σ∗B2 where σ is the

orientifold involution. Thus, the orientifold type is indirectly related to the B2 discrete

torsion [H] ∈ H3(X, Z̃).

While in general the crosscap section is not completely determined by [H], for the

case of the C3/Z3 orientifold we argued in section 2 that trivial (non-trivial) [H] should

correspond to an O7− (O7+) wrapping the exceptional divisor. This should follow from

the general discussion of [66, 67]; it would be interesting to work this out in detail.

5.2 The orientifold transition for C3/Z3

Given the proposal for the strongly coupled behavior of the O7+ above, let us try to obtain

the field theory duality conjectured in [1] from the brane description of the system.

The most important change with respect to the flat space case is that tadpole cancel-

lation requires the introduction of some (anti-)branes on top of the orientifold. Consistent

configurations are of the form O7++4Ω[1]+2kD3s, with gauge group USp(2k+4)×U(2k).

Under S-duality, the O7+ becomes an O7− with some 7-branes on top. At the quiver point

these 7-branes will decay into the standard basis of fractional branes. We conclude that

S-duality acts on the wrapped O7+ as follows:

O7+
S-duality−−−−−→ O7− + 4

(
O(−1)[0] +O(−2)[2]

)
+ 4
( ̂O(−1)[0] + ̂O(−2)[2]

)
+ nD3s . (5.4)

Here Ê indicates the S-dual of the brane E , and we have allowed for the inclusion of n D3

branes to take into account lower charges induced by curvatures and fluxes. This integer

can be determined by imposing D3 charge conservation, since D3 branes are self-dual under

SL(2,Z). Using the expressions for the charges (4.27) and (4.16) we obtain n = −5. Note

that the discussion in the previous section was in terms of mobile 7-branes, so in terms of

fractional branes we need to consider O(−1)[0] and its image O(−2)[2] together.

We can now treat the whole system. Starting with O7+ + 4Ω[1] + 2kD3s, S-duality

gives:

O7− + 4
(
O(−1)[0] +O(−2)[2]

)
+ 4
( ̂O(−1)[0] + ̂O(−2)[2] + Ω̂[1]

)
+ (2k − 5)D3s . (5.5)

Using the fact that the three fractional branes add up to a regular D3, which is SL(2,Z)

invariant, we can rewrite this configuration as:

O7− + 4
(
O(−1)[0] +O(−2)[2]

)
+ (2k − 1)D3s . (5.6)
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Taking into account the change in orientifold projection and the discussion in section 4, we

therefore find that the full matter content of the theory after the transition it is given by:

SO(2k − 1) U(2k + 3) SU(3)

1

(5.7)

This is precisely the conjectured field theory dual of theory (4.32), where Ñ = 2k = N −3.

The main features of this example will generalize to a number of further examples, so

let us highlight the primary consequences of the orientifold transition. First of all, we find

that under the transition the sign of the orientifold projection changes. This immediately

implies that SO and USp groups get exchanged, while SU groups stay invariant. Similarly,

symmetric and antisymmetric representations get exchanged. This agrees perfectly with

the features of the duality that we are proposing.

The orientifold transition picture also naturally explains the change in rank of the field

theory: it is simply the manifestation of D3 charge being conserved. In any given example

one can easily calculate the change in rank one needs in order to conserve D3 charge, and

in all examples that we have checked this change is exactly what is needed for agreement

with anomaly matching in the field theory.

The above discussion applies to the case where [H] is changed by S-duality, leading to

an orientifold transition. In the case where [H] does not change under S-duality, i.e. where

[H] = [F ], we expect a self-duality rather than an orientifold transition. In particular, both

[H] = [F ] = 0 and [H] = [F ] = 1/2, corresponding to the SO theory for even N and the

“ŨSp” theory, should be self-dual under S ∈ SL(2,Z). We now describe these self-dualities

at the level of the fractional branes.

In the SO case, we have the fractional branes O7− + 4
(
O(−1)[0] +O(−2)[2]

)
+ (N −

4)D3s, but the O7− + 4
(
O(−1)[0] + O(−2)[2]

)
is self-dual (at the level of monodromies)

using the same argument as in section 5.1, where we merely ignore the rightmost stack

of branes in figure 7; thus, the entire configuration of fractional branes is self-dual. In

the USp case, we start with the fractional branes O7+ + 4Ω[1] + ÑD3s and dualize the

7-branes as in the transition above, except that due to the non-vanishing [H] after the

duality we treat the resulting 7-brane cluster as the components of an O7+ plane. This

gives O7++4Ω[1]+nD3s for some n, where D3 charge conservation requires n = Ñ . Thus,

this configuration is also self-dual, in perfect agreement with the results of section 2.

6 Phase II of C3/Z3

We will now compare the orientifold transition picture we just discussed with the predic-

tions of field theory in a related but illustrative example, the theory Seiberg dual [102, 103]

to that of branes at C3/Z3, leaving the discussion of more involved singularities for the

upcoming [3].
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Figure 8. Seiberg dual of the C3/Z3 orbifold theory. We have indicated the involution we want to

study by the dashed line.

6.1 Field theory

Let us do a Seiberg duality on the top node of the quiver shown in figure 8. This leads

to an SU(2N) × SU(N)2 gauge theory that, following the procedure given in [1, 29], can

be orientifolded as indicated by the dashed line in figure 8. There are two anomaly-free

possibilities:

SO(2(N + 4)) SU(N) SU(3) U(1)R Z3

Ai 1
3 − 2

N ω3N

Bij 1 4
3 + 4

N ω−23N

with superpotential

W =
1

2
TrAiAjB

ij (6.1)

and

USp(2(Ñ − 4)) SU(Ñ) SU(3) U(1)R Z3

Ãi 1
3 + 2

Ñ
ω3Ñ

B̃ij 1 4
3 − 4

Ñ
ω−2
3Ñ

with superpotential

W̃ =
1

2
Tr ÃiÃjB̃

ij , (6.2)

where ωn ≡ e2πi/n and Ñ is even, since for odd Ñ the USp(2(Ñ − 4)) gauge group has a

Witten anomaly. The discrete symmetry group is Z3 since the third power of the generator

given above is contained in the gauge group. For N (Ñ) not a multiple of 3 one can

show that this Z3 is gauge equivalent to the center of the global SU(3). Thus the global

symmetry groups match only if Ñ and N differ by a multiple of 3.21

21For even N , the SO theory has an extra discrete Z2 symmetry (cf. (2.8)) under which Ai and Bi

carry charge ω6N and ω−2
6N , respectively. The Z2 outer automorphism group of SO(2(N + 4)) is anomalous.

Therefore, as expected from Seiberg duality, the global symmetry group of the SO theories for phase I and

phase II match for even N . The Z2 discrete anomalies satisfy the matching conditions given in [39].
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The global symmetry groups and anomalies for these two theories are exactly as for

the orientifold theories of phase I (see section 1) and are

SO(2(N + 4))× SU(N) theory: USp(2(Ñ − 4))× SU(Ñ) theory:

SU(3)3 3
2(N − 3)N

SU(3)2 ×U(1)R −1
2(N − 3)N − 6

U(1)3R
4
3(N − 3)N − 33

U(1)R −9

SU(3)2Z3 0

Z3 0

SU(3)3 3
2Ñ(Ñ + 3)

SU(3)2 ×U(1)R −1
2Ñ(Ñ + 3)− 6

U(1)3R
4
3Ñ(Ñ + 3)− 33

U(1)R −9

SU(3)2Z3 0

Z3 0

where we write only those discrete anomalies which must match in comparing two dual

theories [39]. The anomalies of the two models above match for Ñ = N − 3.

The two theories given above can also be derived by applying Seiberg duality to the

SO or USp node of the orientifolds of phase I and integrating out the massive matter. In

the remainder of this section we derive these two quiver theories explicitly using string

theory methods and show that they are related by an orientifold transition.

6.2 String theory

Ordinary Seiberg duality can be understood in the context of the derived category as a

tilting of the category [51, 104–106]. In the particular case of the original collection (4.21)

the tilting object giving rise to the Seiberg dual theory can be easily constructed, following

the procedure in [51, 106], as:

P′0 = O
P′1 = O(1)⊕3 → O(2)

P′2 = O(1)

, (6.3)

where the underline denotes position zero in the complex.

We can construct the basis of fractional branes by mutating the collection {P′i} as

usual [50], with the result:

C′ =
{
O,O(−1)⊕2[1],O(−2)[2]

}
. (6.4)

This is the same basis of fractional branes given in [48], with the refinement of having the

grading in Z, rather than Z2. We have taken two copies of O(−1)[1] in order to cancel

tadpoles. It is easy to compute the spectrum of bifundamentals for this set of fractional

branes. We show the resulting quiver in figure 9, which agrees with the quiver in figure 8,

as it should.

On the other hand, it is clear from (4.5) that the ordinary orientifold involution does

not act on the fractional branes in the way that we expect, for example:

i∗O(−1)[1] −→ i∗(O(1)⊗O(−3))[1] = i∗O(−2)[1] , (6.5)
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Figure 9. Basis of branes for the Seiberg dual of the C3/Z3 orbifold theory.

so this action does not map the U(N) stack to itself. The solution, as advanced in section 4,

is to introduce a non-vanishing B2 field, in this way modifying the orientifold action to (4.6).

In particular, we will choose B2 = 1
2 , or equivalently L2B2 = O(1). The resulting orientifold

then acts as we expect:

i∗O(−1)[1] −→ i∗(O(1)⊗O(−3)⊗O(1))[1] = i∗O(−1)[1]

i∗O(−2)[2] −→ i∗(O(2)⊗O(−3)⊗O(1))[0] = i∗O
i∗O −→ i∗(O ⊗O(−3)⊗O(1))[2] = i∗O(−2)[2] .

(6.6)

The matter content of the orientifolded theory can be derived using the rules in sec-

tion 4. Assume that we introduce an O7+ plane. In order to cancel D7 tadpoles we

need to introduce 8 O(−1)[1] planes. We will determine the projection on the invariant

branes momentarily; for now let us denote the group on the stack of O(−1)[1] branes by

G, which can be either SO or USp. Adding N regular D3 branes, we obtain a gauge group

G(2(N + 4))× U(N). The chiral multiplet spectrum can be easily obtained using table 1

and the charge vectors

e−B2Γ(O) = 1 + `+
5

8
`2

e−B2Γ(O(−1)[1]) = −1− 1

8
`2

e−B2Γ(O(−2)[2]) = 1− `+
5

8
`2

Γ(O7+) = 8− 1

2
`2 ,

(6.7)

and it is given by:

SO(2(N + 4)) U(N) SU(3)

1

(6.8)

where we have set G = SO by comparing with the expectation from field theory. (As in

the theory before Seiberg duality, a derivation from first principles using the techniques
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in [66, 67] should be possible, but we will not attempt to do so here.) Notice also the flavor

structure, which can be derived as follows. The modes in the of U(N) come from:

Ext1X(i∗O(−2)[2], i∗O(−1)[1]) = Ext0S(O(−2),O(−1)) = C3 , (6.9)

where we have used (4.11), and the fact that Ext•S(O(−1),O(−2)) = 0. Furthermore,

we can identify geometrically the SU(3) flavor group as SU(3) rotations on the (z1, z2, z3)

homogeneous coordinates on P2. We have that Ext0S(O(−2),O(−1)) = Γ(O(1)), i.e. the

group of sections of O(1), which are described by polynomials of the form
∑
aizi. Thus

we can immediately see that the elements transforming in the fundamental of U(N) also

transform in the fundamental of SU(3). Similarly, the fields transforming in the of U(N)

come from:

Ext1X(i∗O[0], i∗O(−2)[2]) = Ext0S(O(−2),O)∨ = C6 . (6.10)

One has that Ext0S(O(−2),O) = Γ(O(2)). These are polynomials in the homogeneous

coordinates of the form
∑

ij cijzizj , which clearly transform in the symmetric representation

of the flavor group. Notice, though, that Serre duality gives us the dual of Γ(O(2)), which

accordingly transforms in the conjugate representation.

Seiberg duality as motion in moduli space Before going into details of the orientifold

transition in this system, we would like to clarify a couple of points in the discussion above.

Notice that in the process of Seiberg dualizing we had to introduce half a unit of B2 field.

It can also be easily seen that if we start with an O7+ its Seiberg dual should be an O7−.

We will now argue that both statements are compatible with (and in the case of the B2

field, required from) the usual picture in string theory of Seiberg duality as a motion in

Kähler moduli space.

Recall that the quantum moduli space of the C3/Z3 geometry can be seen as a P1

with three marked points: the quiver point, the large volume point, and a “conifold” point

in which a certain D-brane becomes massless. In order to visualize this structure it is

convenient, as done in [46], to unfold this sphere into three copies in such a way that the

quantum Z3 symmetry of the configuration is manifest. We present the resulting moduli

space in figure 10. Due to the orientifold projection this moduli space is restricted to

integer and half-integer values of the B2 field.

In brane constructions Seiberg duality can often be understood as continuation beyond

infinite coupling (see [107] for a nice review of a number of examples). In our configuration

this can be achieved as follows. We start from the quiver point at B2+iJ = 0, and continue

towards negative values of J (we depict the motion by arrows in figure 10). At a particular

point along this line the invariant brane Ω becomes massless.22 Note that due to the Z3

symmetry this point is identified with the point at which O(−1) becomes massless, so we

can continue beyond the singular CFT point along the B2 = 1
2 line. In this picture O(−1)

is the invariant brane which can become massless, and we have a non-vanishing background

value for the B2 field, perfectly consistent with the description of Seiberg duality above. It

22In terms of the coordinates for the moduli space introduced below this is the point ψ = 1.
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Figure 10. Unfolded moduli space of C3/Z3 [46]. The three colored regions are Z3 images of

each other, each region being a copy of the fundamental P1 moduli space. We have denoted the

points where the fractional branes become massless by red dots. The path followed in doing Seiberg

duality is marked by arrows.

is also easy to verify that the collection of branes that we found by tilting is that given by

Picard-Lefschetz monodromy around the point where the invariant brane becomes massless,

precisely as advocated in the mirror context in [48]. (We discuss further the mirror picture

in appendix A.)

There are a couple of complementary perspectives that could be illuminating. First,

notice that in figure 10 there are three branches coming out of the point where Ω becomes

massless. One of the branches is associated with the ordinary large volume orientifold at

B2 = 0. The other two branches are ærientifolds of the type that we have discussed in

section 4.3. So Seiberg duality in this context involves a change in the orientifold type as

we cross a conifold point, a process quite reminiscent of the processes analyzed in [108].

In our case the orientifold changes between an ordinary orientifold with B2 = 0 and an

ærientifold, which by composition with the quantum symmetry can be turned into an

ordinary orientifold of opposite type with B2 = 1
2 , as we implicitly did above.

Finally, in the picture of the moduli space as a P1, we have that the orientifold action

constrains us to move along the equator. All three special points are located along the

equator, and in particular the large volume and conifold points naturally divide the equator

into two halves, which we identify with B2 = 0 and B2 = 1
2 . Seiberg duality corresponds

to crossing from one branch to the other through the conifold point. We illustrate this

structure in figure 11.

A point which is clear in this last picture is that, as least at the level of motion in

Kähler moduli space, the Seiberg dual brane configuration is not supersymmetric, since

the quiver point lays in the B2 = 0 half of the real moduli space. It is not difficult to

see this explicitly by a direct computation of the periods, which satisfy the Picard-Fuchs
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Figure 11. Real moduli space for the orientifolded C3/Z3. The two possible values for the B2

field connect at the singular CFT and the large volume points. Seiberg duality comes from crossing

from the quiver side, with B2 = 0, to the side with B2 = 1
2 , via the conifold point.

equation [69, 109–111]

[(
z
d

dz

)3

+ 27z

(
z
d

dz

)(
z
d

dz
+

1

3

)(
z
d

dz
+

2

3

)]
Φ = 0 . (6.11)

A basis of solutions for this equation was found in [46, 111, 112]. A convenient way of

presenting the general form of the solution to this class of problems and doing the analytic

continuations is in terms of Meijer G functions [112]. Choosing the same conventions we

chose in writing (4.24), and introducing a variable ψ given by −27z = ψ−3, we obtain:

Φ1 = −
√

3

4π2i
G

[
1
3

2
3 1

0 0 0

]
(
−ψ−3

)
,

Φ2 = −
√

3

4π3
G

[
1
3

2
3 1

0 0 0 −

]
(
ψ−3

)
.

(6.12)

Plugging these values in the expression for the central charge (4.24) and going towards

large volume along the B2 = 1
2 line, we obtain the BPS phases shown in figure 12, which

clearly show that the Seiberg dual system of branes is not supersymmetric.

We will give further evidence for this statement by carefully analyzing the BPS struc-

ture of the mirror in appendix A.

This lack of supersymmetry is clearly something that makes the brane construction

of the Seiberg dual somewhat less appealing, but notice that the problem is independent

of the presence of the orientifold. Since the mismatch is just at the level of D-terms, we

will just assume that the information about the field theory that we get from the brane

construction is still reliable, and proceed with the construction. Notice that taking the

discussion in this section at face value would then imply a strong/weak duality between a

pair of non-supersymmetric theories, different from the example considered in [95, 113].

The orientifold transition. In the previous discussion we have considered the case in

which we add an O7+ plane. The other possibility consists of adding an O7− plane, which
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Figure 12. Behavior of the phase of the central charge for the fractional branes of the Seiberg

dual phases as we go towards large volume along the B2 = 1
2 line, starting from the conifold point

at ψ = e2πi/3 (equivalently B2 = 1
2 , J ≈ 0.46). The central charge of the O(−1)[1] brane stays real

and positive, so we have omitted it from the diagram. The BPS phases asymptote to ±π.

gives the following theory:

USp(2(Ñ − 4)) U(Ñ) SU(3)

1

(6.13)

As before, let us assume that the two configurations are dynamically connected via a

strongly coupled orientifold transition. We again expect a process of the form:

O7+ + 4O(−1)⊕2[1]←→ O7− + 4(O +O(−2)[2]) + nD3s . (6.14)

Conservation of D3 charge then requires:

8− 1

2
`2 + (−8− `2) =

(
−8 +

1

2
`2
)

+ (8 + 5`2) + n`2 , (6.15)

which implies n = −7. Adding N regular branes to the O7+ side one obtains the the-

ory (6.8). After the transition we thus expect the spectrum:

O7+ + 4O(−1)⊕2[1] +N D3s←→ O7− + 4(O +O(−2)[2]) + (N − 7)D3s , (6.16)

i.e. the theory (6.13) with Ñ = N − 3, in perfect agreement with the expectations from

field theory.

7 Conclusions

In this paper we have argued that the field theory duality presented in [1] admits a very

natural embedding in string theory as the action of type IIB S-duality on branes at singu-

larities.

Building on the field theory checks performed in [1], in this paper we argued that

the brane configurations corresponding to the dual theories of [1] source discrete torsions
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for the NSNS and RR two-forms related by S-duality. Furthermore, we found that the

collections of fractional branes constructing the dual theories are in fact S-dual once the

O7+ is resolved into its (p, q) seven-brane components.

Taken together, these arguments give very strong support to the idea that the N = 1

theories we have been discussing are indeed related by strong/weak dualities, and illuminate

the physical origin of some of its main features, such as the change in rank and the change

between SO/USp groups and symmetric/antisymmetric projections.

There are a number of interesting directions for future work, some of which we now

discuss. First, it would be very interesting to extend the ideas in this work to theories

without supersymmetry. It was realized in [95, 113] that the study of a non-supersymmetric

version of the brane configuration engineering N = 4 SYM would give interesting insight

into the strong dynamics of the corresponding non-supersymmetric version of N = 4. The

same idea should generalize to the much larger class of N = 1 duals we have introduced in

this paper (and the ones to appear in [3]), potentially giving a window into the strongly

coupled dynamics of a large class of non-supersymmetric theories.

There are also several formal problems that we have not addressed in this work, but

which would be interesting to understand. One such issue is that of K-theory tadpoles.

Typically, in the presence of orientifolds, in addition to the usual conditions for cancellation

of RR and NSNS tadpoles one should also make sure that certain Z2 valued K-theory

tadpoles are canceled [79, 85, 114–118]. It would be very interesting to have a systematic

understanding of such K-theory tadpoles in the configurations we study in this series of

papers.23

Finally, our discussion of the strongly coupled behavior of the O7+ plane was mostly

kinematical, focusing on monodromy and charge conservation. It would be very interesting

(but probably quite involved) to study the dynamics in more detail, and see that orien-

tifold transitions such as (5.4) are also dynamically preferred, in the sense that the brane

recombinations proceed as we have described.
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A Mirror picture for Seiberg duality on C3/Z3

We would like to describe the mirror geometry to the C3/Z3 orbifold. As discussed in

detail in [70, 119] (see also [120]), for the purposes of studying BPS objects the mirror can

be taken to be a fibration over the complex plane with fiber C∗ × T 2. Parameterizing the

base of the fibration by z, the total geometry is given by:

uv = z − 3ψ (A.1)

y2 = x3 +
(z

2

)2
x2 +

(z
2

)
x+

1

4
, (A.2)

with u, v ∈ C and x, y ∈ C∗. The dependence on the Kähler moduli of the original geometry

is encoded in the variable ψ introduced above (6.12). We can recast the elliptic part of the

fibration in the usual Weierstrass form by a linear change in variables, getting:

y2 = x3 + f(z)x+ g(z) (A.3)

with

f(z) = −z
2

(
z3

24
− 1

)

g(z) =
z6

864
− z3

24
+

1

4
.

(A.4)

The resulting discriminant is then given by:

∆(z) = 4f(z)3 + 27g(z)2 =
1

16

(
27− z3

)
, (A.5)

and from here we see that the elliptic fiber becomes singular at the three points z∗ =

3{1, e2iπ/3, e4iπ/3} (associated to the conifold points ψ = {1, e2iπ/3, e4iπ/3} in the original

C3/Z3 geometry). Finally, the holomorphic 3-form of the geometry can be taken to be:

Ω =
dx

y
∧ dz ∧ du

u
. (A.6)
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A.1 Lattices and elliptic fibrations

In order to compute the structure of special Lagrangian cycles, it is convenient to take the

torus from its Weierstrass expression in terms of an equation in C2 to a flat description of

the form C/L, where L is a lattice generated by the two vectors 2ω1 and 2ω3 (ω1 and ω3 are

called the half-periods, and they are defined up to SL(2,Z) transformations). Notice that

in the following we will be working with L, and not just the complex structure τ = ω3/ω1

of the torus. This is important in order to explicitly see the special Lagrangian structure

of our branes. The technology we will be using in this section is well developed, but we

will quickly review it here for the convenience of the reader. We will follow the conventions

in [121], to which we also refer for further explanations.

The basic map uses the Weierstrass ℘ function, defined by:

℘ (ζ|L) =
1

ζ2
+

∑

ω∈L\{0}

[
1

(ζ − ω)2
− 1

ω2

]
. (A.7)

This is a function of one complex coordinate ζ, and the chosen lattice L. The interest of

this function is that it satisfies the differential equation
(
d℘

dζ

)2

= 4℘3 − g2℘− g3 , (A.8)

which is clearly the equation of Weierstrass form. The g2 and g3 coefficients in this equation

are determined in terms of L:

g2 = 60
∑

ω∈L\0

1

ω4

g3 = 140
∑

ω∈L\0

1

ω6
.

(A.9)

We can thus map the x, y coordinates to a flat ζ coordinate if we set y = ℘′, x = 3
√

4℘ and

choose L appropriately.

The lattice half-periods can be determined as follows. Consider a Weierstrass fibration

rewritten in the following way:

y2 = 4x′3 − g̃2(z)x′ − g̃3(z) . (A.10)

This is just a change in conventions, with g̃2(z) ≡ − 3
√

4f(z), g̃3(z) ≡ −g(z). The right

hand side can be written as 4(x′ − e1)(x′ − e2)(x′ − e3). The ei are called the lattice roots.

The half-periods are then given by:

ω1 =
π

2
√
e1 − e3 2F1

(
1

2
,
1

2
; 1;

e2 − e3
e1 − e3

)
,

ω3 = i
π

2
√
e1 − e3 2F1

(
1

2
,
1

2
; 1;

e1 − e2
e1 − e3

)
,

(A.11)

where 2F1 denotes the ordinary or Gaussian hypergeometric function. These half-periods

define the lattice L = {2ω1m + 2ω3n, m, n ∈ Z}. Choosing this lattice, we have that

℘(ζ|L) satisfies (A.8) with g2 = g̃2(z) and g3 = g̃3(z). We thus have an embedding into a

flat torus, as claimed.
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Figure 13. Structure of mirror in the z plane. The central yellow triangle is where the C∗ fiber

degenerates, and the three black dots outside denote the zeroes of the discriminant. We have also

indicated which (p, q) cycle degenerates on which zero, in the particular SL(2,Z) convention used

in the text. Finally, the straight lines denote the segments in the base where the sLag branes are

to be wrapped.

A.2 Special Lagrangian branes at the quiver point

Using the embedding we have just discussed, the holomorphic 3-form simplifies to

Ω = dζ ∧ dz ∧ du
u
. (A.12)

Branes wrapping a 3-cycle S are BPS if they are special Lagrangian, which means that

Re(eiθΩ|S) = 0, for some constant θ. Two sLag branes S1, S2 are mutually supersymmetric

if θ1 = θ2. In our case we will be constructing supersymmetric branes wrapping a 1-

cycle in the C base, and a 1-cycle in each of the components of the fiber. We want to

construct a supersymmetric system of branes at the quiver point, which is located at

ψ = 0. Equation (A.1) then reduces to uv = z.

The C∗ direction is the easiest, we take a 1-cycle parameterized by u = eiα, v = ze−iα,

with α ∈ [0, 2π]. In this case du/u = i dα, so the phase of this component of Ω is constant.

In the base we will take the three straight segments that connect z = 0 with the three

points where ∆ vanishes. If the cycle degenerating at z = z∗ is of type (p, q), we will take

a straight (in the ζ-plane) line in the torus fiber, with winding number (p, q). We show

the resulting geometry in figure 13. The total space is thus a S1 × S1 fibration over a

segment, with each of the fibers degeneration at one of the ends of the segment. It is easy

to convince oneself that the topology of the resulting space is S3. We will now show that

in addition this S3 is sLag.

We will start with the horizontal cycle in figure 13, going to the locus where the (1, 1)

cycle degenerates. The phase of the dz term in Ω is thus constant, and equal to 0. The

structure in the elliptic fiber is more involved, and it is here where the discussion in terms

of the lattice L in the previous section pays off. It is useful to start by looking to the

behavior of the complex structure τ as we go from z = 0 to the (1, 1) degeneration. This

can be obtained by computing the inverse of the j function. Introducing Klein’s invariant
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Figure 14. Behavior of τ as we move along the base. We have depicted the corresponding rhombic

lattice cell for various values of τ . The red dashed line denotes the (1, 1) cycle wrapped by the

brane. The solid green line on the right shows the path of τ in the natural conventions from the

point of view of the rhombic lattice, while the dashed line on the left is an equivalent path along

the edge of the fundamental domain, obtained by τ → τ/(1 − τ) for the component with |τ | ≤ 1,

and τ → τ − 1 for |τ | ≥ 1.

J(τ) = j(τ)/1728, one has:

J−1(λ) =
i(r(λ)− s(λ))

r(λ) + s(λ)
(A.13)

with

r(λ) = Γ

(
5

12

)2

2F1

(
1

12
,

1

12
;
1

2
; 1− λ

)
(A.14)

s(λ) = 2(
√

3− 2)Γ

(
11

12

)2√
λ− 1 2F1

(
7

12
,

7

12
;
3

2
; 1− λ

)
. (A.15)

Plugging in the explicit fibration data (A.4) for our example, one can easily see that τ

varies as shown in figure 14. For our purposes the most natural domain for τ comes from

considering the rhombic lattice, and it is shown as the green vertical path in figure 14.

Recall, from [121], that rhombic lattices are defined by ω1 real and positive, Im(ω3) ≥ 0

and Re(ω3) = 1
2ω1. Since conventionally τ = ω3/ω1, one automatically has Re(τ) = 1

2 .

In these conventions the path is straight, starting from the equianharmonic24 lattice

at z = 0, with τ = eiπ/6/
√

3, and going vertically to infinity, reached at z = z∗, where the

(1, 1) cycle degenerates. As we go along the path, the unit cell becomes flatter and flatter

in the vertical direction. One can easily verify these statements using the formulas (A.11).

Of crucial importance for us is that not only is τ that of a rhombic lattice, but ω1 is

real. This means that, no matter our position along the segment in the z plane, the (1, 1)

cycle in the torus always wraps real values for the flat coordinate ζ, so dζ has constant

phase, and thus Ω has constant phase, as we claimed.

24The equianharmonic lattice is a rhombic lattice where the angles are π/6 and π/3, see [121].
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Figure 15. Three fundamental cells of the equianharmonic lattice, rotated by powers of β. We

have drawn the cycles wrapped by the D6 branes.

Notice that this construction strongly requires working with the whole lattice L, and

not just its complex structure τ . If we had defined the torus in the conventional way

ζ ∼ ζ + 1 ∼ ζ + τ the (1, 1) cycle would have had slope arctan(Im(τ)/(1 + Re(τ))), which

can easily be seen to vary non-trivially along the segment in the base.

Let us consider the other two D6 branes, going from the origin to the discriminant

points z∗ = 3{e2iπ/3, e4iπ/3}. For simplicity let us consider z∗ = 3e2iπ/3 only, the other

point works similarly. The first observation is that the segment in the base can be obtained

simply by multiplying the segment we just considered by β ≡ e2iπ/3 (i.e. it is just a rotation

by 120◦). From the expression for f and g in (A.4) it is clear that upon doing this rotation

f → βf , g → g. In addition, since j(τ) ∼ f3/∆, one has that the j function is invariant

upon doing this rotation, and this implies (by taking the inverse via (A.13)) that τ is

unaffected by the rotation. Since now we want to consider (p, q) cycles different from (1, 1)

this would immediately imply (if we just look to τ) that the phase of Ω would vary as we

move along the base, making the cycle non-calibrated.

The resolution is as before looking to L, instead of just τ . In particular, from (A.9)

one easily sees that ωi → β−1ωi, so the lattice is rotated in the direction opposite to the

rotation in the base. This also implies that, as we move towards z∗, the equianharmonic

lattice will start deforming, in a way that is a β−1 rotation of the deformation we saw before.

In particular the brane related by a β−1 rotation to the (1, 1) brane will be the one with

constant slope. As depicted in figure 15, in this particular case the brane of interest is the

(−2, 1) brane. This argument also shows that in addition to each brane being individually

sLag, the three branes are also mutually supersymmetric, since the rotation in the base

and in the fiber are precisely opposite.

A.3 The orientifold configuration and Seiberg duality

Let us now discuss the mirror to the discussion in section 6, once we introduce the orientifold

and move in moduli space. Looking to figure 13, or by recalling that in the C3/Z3 orbifold

the orientifold acted as ψ → ψ, it is clear that the mirror orientifold acts on the z plane by

conjugation: z → z. Similarly, it acts by complex conjugation on the flat torus C/L, which

in terms of cycles can be easily seen to correspond to a (a, b) ↔ (b, a) exchange for the

basis of cycles that we have chosen for the rhombic cell. The net effect is that the (1,−2)

and (−2, 1) branes are exchanged, while the (1, 1) brane stays invariant.
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Figure 16. The Seiberg dual configuration. We have depicted schematically the structure of the

special Lagrangian branes and the behavior of the elliptic fiber.

In the current picture Seiberg duality comes from changing the value of ψ in (A.1) [48].

A possible choice is to move in moduli space to a point where the C∗ fiber degenerates at

some real value of z larger than 3. The moduli space of the configuration is now restricted

to moving z along the real axis, so exactly as in the IIB picture, we necessarily pass through

the singular z = 3 point when doing this.

It is interesting to look to the detailed behavior of the torus lattice as we move along

the real line, we depict this in figure 16. On the side of the quiver point the lattice cell has

rhombic structure. This cell becomes singular at the conifold point, and on the opposite side

of the real line a rectangular lattice emerges. This is presumably the mirror manifestation

of the B2 = 0 to B2 = 1
2 transition on the IIB side. In a natural basis for the rectangular

lattice the invariant brane wraps the (1, 0) cycle, while the (−1, 2) and (−2, 1) branes wrap

the (1, 3) and (1,−3) cycles respectively. The orientifold acts on the z plane as before, and

acts on the rectangular lattice by sending (p, q) cycles to (p,−q) cycles (i.e. inverting the

sign of the second coordinate).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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