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1. Introduction

In the past 30 years, the commonly accepted way to estimate theoretical uncertainties associated to collider physics
observables has been based on the notion of QCD scale variations. We introduce the concept ofMHO(U), missing
higher order (uncertainty), which is linked to the truncation error in the perturbative expansion. At present, and for
some time to come, estimations of observables will be based on a finite number of terms of a series, such that additional
information on the behavior of that series should be exploited.

Regardless of their precision, truncated calculations areonly as accurate as the higher orders that they lack. A more
accurate evaluation of the observable may be obtained by estimating the MHO. The issue of precision then becomes
more tightly bound to the estimation of the MHOU, taking intoaccount both the uncertainty on the MHO estimation
procedure as well as any uncertainties in the terms that havealready been calculated.

In this Letter, the problem of MHO(U) in Higgs production through gluon-gluon fusion is approached using se-
quence transformations to improve the rate of convergence of the series and directly estimate the MHO. In Section 2
we discuss foundational issues related to the MHO problem and the applicability of sequence transformations. In Sec-
tion 3 we summarize existing calculations of Higgs production through gluon-gluon fusion, mapping out the inputs
needed to estimate the MHO. Then, in Section 4, we introduce different types of sequence transformations and dis-
cuss in detail their performance in synthetic problems as well as applications to series involving physical observables.
The main results are then presented in Section 5 where we apply sequence transformations to the problem of Higgs
production through gluon-gluon fusion problem and proposean estimate of MHOU and its probability distribution
function (pdf). Finally, in Section 6 we summarize the main arguments and results.

2. MHOU beyond scale uncertainties

Consider an observableX (Q,µ), whereQ is the typical scale of the process, andµ ≡ {µR,µF} are the renormal-
ization and factorization scales. The traditional procedure to estimate MHOU through scale variations [1] defines

X−
ξ (Q,µ) = min

{

X

(

Q,
µ
ξ

)

, X (Q, ξ µ)
}

, X+
ξ (Q,µ) = max

{

X

(

Q,
µ
ξ

)

, X (Q, ξ µ)
}

, (1)

or variations thereof, see Ref. [2]. Selecting a value forξ (typically ξ = 2) the prediction is that

X−
ξ (Q,µ)< X (Q,µ)< X+

ξ (Q,µ) . (2)

There are several examples in the literature where theξ = 2 scale uncertainty of thenth order underestimates the
n+1th order calculation.

There is also an open and debatable question on how to assign aprobability distribution function (pdf) to the
MHOU thus obtained [3]. The procedure that is most commonly used is based on a Gaussian (or log-normal) distri-
bution centered atµ = Xc = X (Q,Q). This choice of central value is afflicted by the accuracy issues from truncation
and there are cases in which the scale has been adapted to match resummation [4, 5]. What to use for the standard
deviation remains an open problem, though a common ansatz isto useσ = max

(

X+
2 (Q,Q),X−

2 (Q,Q)
)

. Alternatively,
it could be assumed that the pdf is a uniform distribution

P(X) =

{

1
X+

2 (Q,Q)−X−
2 (Q,Q)

X−
2 (Q,Q)< X < X+

2 (Q,Q),

0 otherwise.
.

Recently, Cacciari and Houdeau made a proposal to derive thepdf based on a flat (uninformative) Bayesian prior for
the MHOU from the scale-variation prescription [2].

More generally, the dependence on scales is only one part of the problem, as the MHO problem is based on how
to interpret the relation between an observableO, and a perturbative series

O ∼
∞

∑
n=0

cngn. (3)
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The perturbative expansion of Eq.(3) is unlikely to converge [6] (see also Refs. [7, 8, 9, 10, 11, 12]) and the
asymptotic behavior of the coefficients is expected to becn ∼ K nα n!/Sn whenn → ∞, and whereK,α andS are
constants [13]. An overview of the mathematical theory of divergent series and interpretation of perturbation series is
given in Ref. [14].

The requirement of Eq.(3) (∼) is not a formal one; it has the physical meaning of a smooth transition between
the system with interaction and the system without it [15]. Furthermore, Borel and Carleman proved that there are
analytic functions corresponding to arbitrary asymptoticpower series [16]. For a discussion on Borel summability
and renormalon effects, we refer to the work of Ref. [17]; fora criterion on Borel summability, we refer to the work
of Ref. [18].

We also would like to mention that a procedure allowing for the elimination of the leading uncertainty of pertur-
bative expansions in QCD can be found in Ref. [19] and that large orders in perturbation theory have been discussed
in Ref. [20].

We should stress that recoverability of a function by means of its asymptotic series is possible only if “enough”
analyticity is available [15] and any work on MHO(U) should be based on this assumption. In other words, there are
in general infinitely many functions with the same asymptotic expansion. Therefore, one should assume that: a) there
is a sufficiently large analyticity domain and b) that there is an upper bound on the remainder for each order above a
certain value. We will discuss the plausibility of these assumptions in the context of the example of Higgs production
via gluon-gluon–fusion. It is worth nothing that the authors of Ref. [2] only assume b); starting from Eq.(3), they
estimate the remainderRk = O −∑k

n=0 cngn, to beRk ≈ ck+1gk+1 with ck+1 = max{| c0 |, . . . , | ck |}. This, in turn,
reflects into a width ofck+1gk+1 for the flat part of the uncertainty pdf.

Therefore, the MHO problem and its associated uncertainty can be summarized in one point: how can we make
predictions for higher order perturbative coefficients, whose explicit calculation is cumbersome and time-consuming,
while keeping a balance with analyticity? As discussed in Ref. [15], the problem is not that of divergence of the series,
but of whether the expansion uniquely determines the function or not, and examples are given of functions which are
singular at the origin while their asymptotic expansion is aconvergent series.

We will not be able to answer these general questions (namelyto prove uniqueness) and will rather concentrate on
predicting higher orders using the well-known concept of “series acceleration” [21, 22, 23], i.e., one of a collection
of sequence transformations for improving the rate of convergence of a series. If the original series is divergent, the
sequence transformation acts as an extrapolation method. In the case of infinite sums that formally diverge, the helpful
property of sequence transformations is that they may return a result that can be interpreted as the evaluation of the
analytic extension of the series for the sum. The relation between Borel summation (the usual method applied for
summing divergent series) and these extrapolation methodswas noted for the first time in Refs. [24, 25]. Note that
the definition of the sum of a factorially divergent series, including those with non-alternating coefficients, is always
equivalent to Borel’s definition (see Section 7 of Ref. [14]).

3. Existing calculations of Higgs production via gluon-gluon fusion

Let us consider what is presently known of Higgs production via gluon-gluon–fusion, i.e., the process gg→ H.
There have been several attempts to compute approximate N3LO corrections, see Refs. [26, 27, 28]. Here we follow
the work of Ref. [27] and define

σgg

(

τ , M2
H

)

σ0
gg

(

τ , M2
H

) = Kgg

(

τ , M2
H , αs

)

= 1+
∞

∑
n=1

αn
s (µR)Kn

gg

(

τ,µ = MH
)

, (4)

whereτ = M2
H/s, σ0

gg is the LO cross section, and theK -factorKgg was expanded in powers ofαs(µR). In Eq.(4) it is

understood that when computing the partial sumsSN = 1+∑N
n=1 αn

s (µR)Kn
gg, αs is computed at the highest level, i.e.,

NLO for S1, NNLO for S2, etc.
Introducingγn =Kn

gg, the known values areγ1 =K1
gg

(

τ,µ = MH
)

= 11.879 andγ2=K2
gg

(

τ,µ = MH
)

= 72.254. In
their recent work, the authors of Ref. [27] computed an approximation ofα3

s (µ) K3
gg (µ) at

√
s= 8 TeV for µ =MH/2,

MH, and 2MH. Sinceα3
s (µ) K3

gg (µ) is only known within a given interval (see Tab. 1 and discussion after Eq.(4.1)
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Our notation Ref. [27] µ = MH/2 µ = MH µ = 2MH

γ1 K1
gg 11.879

γ2 K2
gg 72.254

γc
3±∆γ3 K3

gg 168.98±30.87 377.20±30.78 681.72±29.93

Table 1: Numerical values as derived from Ref. [27] assuming
√

s= 8 TeV. These values are the relevant inputs to an estimation
of MHO(U): while traditionally MHOU is estimated from the scale variation ofγc

3, the proposed procedure only requires the values
in the middle column (µ = MH).

of Ref. [27]) we report in Table 3 the numerical values ofγ3 as a central value (γc
3) and the corresponding uncertainty

range (∆γ3).
In Table 3 one can immediately see that the approximate calculation of K3

gg can be varied in two ways: 1) the
change inγc

3 via scale variation, and 2) the intrinsic uncertainty∆γ3 due to the approximate nature of the result. While
the traditional approach to MHOU estimation considers the effect from scale variation, the procedure that we put forth
in later Sections combines∆γ3 with the uncertainty on the estimation of the MHO based on sequence transformations.

4. Sequence transformations

The theory of sequence transformations is a well-established branch of numerical mathematics with many appli-
cations in science, as described in Refs. [29, 30, 31] and Ref. [32]. As an example in connection with the summation
of the divergent perturbation expansion of the hydrogen atom in an external magnetic field, the work of Refs. [33, 34]
introduces a new sequence transformation which uses as input not only the elements of a sequence of partial sums, but
also explicit estimates for the truncation errors.

Through sequence transformations, slowly convergent and divergent sequences and series can be transformed into
sequences and series with hopefully better numerical properties. Thus they are useful for improving convergence. In
most situations, a sequence transform does not sum a series exactly; however, in many cases, it correctly predicts some
of the unknown terms of the sequence.

4.1. The Levin τ -transform

Let us recall the definition of the Levinτ -transform, see Refs. [35, 36, 37]. Given the partial sumsSn = ∑n
i=0 γi zi

we define theτ -transform as

τn
k (β ) =

∑k
i=i0 Wτ (n,k, i,β ) Sn+i

∑k
i=i0 Wτ (n,k, i,β )

, τk ≡ τ0
k ≡ τ0

k (0) (5)

where i0 = max{0,n− 1} andWτ(n,k, i,β ) = (−1)i
(k

i

) (β+n+i)k−1
∆Sn+i−1

,where(z)a = Γ(z+ a)/Γ(z) is the Pochhammer
symbol, and∆ is the usual forward-difference operator,∆Sn = Sn+1−Sn.

The algorithm for estimating the first unknown coefficient isbased on the Taylor expansion ofτk; if S1 , . . . , Sk are
known, one computesτk −Sk = γk+1zk+1 +O

(

zk+2
)

andγk+1 is the prediction forγk+1. Of course, this prediction
is not expected to be very reliable for small values ofk. Nevertheless, applyingτ2 −S2 = (γ2

2/γ1)z3 +O
(

z4
)

to the
series of Eq.(4), one predictsγ3

(

µ = MH
)

= 439.48 which has the correct sign and the right order of magnitudewhen
compared with the results from Ref. [27], 346.42< γ3

(

µ = MH
)

< 407.48.

Recursive estimation of unknown coefficients.Let us outline our algorithm to improve the convergence of a series.
This algorithm can be used with any of the transforms introduced later and to any of the series also discussed in the
examples later. We give it below in an explicit form for the Levin τ -transformτ0

k (β ) and applied to the series of Eq.(4)
assuming that the inputs from Table 3 are known:

1. Use the first 3 terms in Eq.(4), chooseγ3 = γc
3(µ =MH), and deriveγ4 = 3 γ3

γ1γ2

[

2 (5+2β )γ2
2−(3+β )γ1 γ3

12+7β+β 2 +γ1γ3−γ2
2

]

.

2. ConstructS4 assumingγ4 = γ4.

3



3. Deriveγ5 =
ϑ γ4

γ1 γ2 γ3

(

120+72β +15β 2+β 3
)−1

,whereϑ = 4γ2
2 γ3

(

6+11β +6β 2+β 3
)

−6γ1γ2
3

(

24+26β +

9β 2+β 3
)

+4γ1γ2γ4

(

60+470β +12β 2+β 3
)

.

4. ConstructS5 assumingγ5 = γ5.
5. Repeat the previous steps untilτ3, . . . ,τ6 are constructed.
6. Compare theS3, . . . ,S6 with theτ3, . . . ,τ6.
7. Repeat steps 1–6 forγ3 = γc

3+∆γ3 andγ3 = γc
3−∆γ3, always taken atµ = MH.

The whole strategy is based on the fact that one can predict the coefficients by constructing an approximant with
the known terms of the series (γ0, . . . ,γn) and expanding the approximant in a Taylor series. The firstn terms of this
series will exactly agree with those of the original series,while the subsequent terms may be treated as predicted
coefficients. Once the series is completed via an algorithm such as the one above, the dependence onµ is removed,
and the notion of scale variation with it. This implies that the uncertainty estimation is moved from scale variations to
the completion procedure, as discussed in Section 5.3. Thisprocedure represents an extension of the work in Ref. [2].

β -tuning. If γ1, . . . ,γ3 are known, the values ofγ1 andγ2 can then be used to computeβ =
(

1− 1
2 γ3

γ1
γ2
2

)−1
−2. This

value ofβ is such thatγ3 = γ3. With β determined this way, one can then apply the recursive algorithm above.
For a discussion onβ -tuning of the Levinτ -transform, with applications to predicting new coefficients in the

g−2 of muon and electron, see Ref. [32]. Here, givenaµ = a
(

1/2+0.7655a+24.05a2+125.6a3
)

, wherea = α
π

and tuningβ =−0.90935, one derivesγ4 = 513.3 with γ4 expected in the range 433< γ4 < 713.
Theβ -tuned procedure is used to cross-check results withoutβ -tuning in Section 5.3.

4.2. The Weniger δ -transform

A second transform that we have considered in detail in laterSections is theδ -transform introduced by Weniger [36]:

δk(β ) =
∑k

i=0 Wδ (k, i,β ) Si

∑k
i=0 Wδ (k, i,β )

, δk ≡ δk(1), (6)

whereWδ (k, i,β ) = (−1)i
(k

i

) (β+i)k−1
(β+k)k−1

1
γi+1 zi+1 .Following the same algorithm described in Section 4.1, the predictedγn

values forδk(1) areγ4 =
γ3

3γ1 γ2

(

4γ1 γ3− γ2
2

)

andγ5 =
γ4

10γ1 γ2 γ3

(

γ2
2 γ3−9γ1γ2

3 +18γ1γ2 γ4

)

.

4.3. Other series transformations

There are other well-known transforms that we have tested using the algorithm described above:

• Wynn’sε -algorithm [38], the nonlinear recursive schemeεn
−1 = 0, εn

0 = Sn, εn
k+1 = εn+1

k−1 +
1

εn+1
k −εn

k
.

• Brezinski’sJ -algorithm [39], based on the recursive scheme

Jn
0 = Sn, Jn

k+1 = Jn+1
k − ∆Jn

k ∆Jn+1
k ∆2Jn+1

k

∆Jn+2
k ∆2Jn

k −∆Jn
k ∆2Jn+1

k

, ∆Jn
k = Jn

k+1− Jn
k . (7)

• Generalized Levint -transform [35]:tn
k =

∑k
i=i0

Wt (n,k,i)Sn+i

∑k
i=i0

Wt (n,k,i)
, whereWt(n,k, i) = (−1)i

(k
i

) (n+i)k−1
∆Sn+i−1

.

• Generalized Leviny-transform [40]:yn
k =

∑k
i=i0

Wy(n,k,i)Sn+i

∑k
i=i0

Wy(n,k,i)
, with Wy(n,k, i) = (−1)i

(k
i

) (n+i)k−2
∆Sn+i−1

.
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4.4. Example applications of sequence transformations

To discuss our results, we introduce the following notation: SN,n = ∑n
k=0 γk zk+∑N

k=n+1 γk zk, andτN,n constructed
accordingly. For example,τ6,3 = N6,3/D6,3 with

N6,3 = − 720
S1−S0

S1+
10800
S2−S1

S2−
50400
S3−S2

S3+
100800
S4,3−S3

S4,3−
90720

S5,3−S4,3
S5,3+

30240
S6,3−S5,3

S6,3,

D6,3 = − 720
S1−S0

S1+
10800
S2−S1

− 50400
S3−S2

S3+
100800
S4,3−S3

− 90720
S5,3−S4,3

+
30240

S6,3−S5,3
. (8)

The transformations listed in Section 4.3 have been appliedto a suite of test series. Note that for the calculations
one could have used readily-available software, e.g. the one described in Ref. [41], Maple [42], or GSL [43]. The suite
of test series considered includes:

• We first considered the series

S∞ = (1+ z)ν = 1+
∞

∑
n=1

γnzn, ν = 12.62 (9)

whereν was tuned such that its first 3 coefficients are similar to those of the series in Eq.(4). The sum of the

γ1 γ2 γ3 γ4 γ5 γ6

12.620 73.322 259.56 624.24 1076.2 1366.8
γ4 γ5 γ6

624.89 1081.8 1388.9

Table 2: Actual and predicted coefficients for the series of Eq.(9), which was designed so as to approximately reproduce the values
in Table 3 whenz= 0.1.

series forz= 0.1 is S∞ = 3.32947445. Using up to 6γ -coefficients, shown in Table 2, we derive that the best
improvement for the rate of convergence is obtained with theLevin τ -transform of Eq.(5) withβ = n= 0:

S∞ = 3.32947445, S6 = 3.32933563, τ6 = 3.32947445 (10)

Table 2 also shows the partial results of using our recursiveapproximations algorithm. Eventually, we obtain
τ6 = 3.32962298, orτ6/S∞−1= 0.0045%.

• The goodness of the approximation has also been tested by expanding the hypergeometric function2F1(n+
1/2,n+1;n+3/2;z2) for large values ofn, with positive results: in all cases convergence is improved.

• Several other examples,(1+ z)1/2, ln(1+ z), ez, ∑∞
n=0 (−1)nn! zn, Φ(n,z,a), whereΦ is the Learch Phi-

function, can be found in Ref. [32]. The same work provides examples where higher-order coefficients are
estimated, e.g.,aµ,e (muon or electrong−2) and the hadronic ratioR.

• Consider now the case of an asymptotic series, e.g.

S∞ =
∞

∑
n=0

n! zn+1 = e−1/zEi(1/z) (11)

where the exponential integral is a single-valued functionin the plane cut along the negative real axis. However,
for z> 0, Ei(z) can be computed to great accuracy using several Chebyshev expansions. Note that the r.h.s. of
Eq.(11) is the Borel sum of the series.

The approximation returned by theγn is not of high quality. Nevertheless, the approximation works reasonably
well andτ6,3 is not worse thatS6,3, as shown in Table 3. It has been shown in Ref. [40] that there is a large class
of series that have Borel sums that are analytic in the cut-plane and the numerical results of Ref. [44] suggest that
Levin-Weniger transforms produce approximations to theseBorel sums. Furthermore, in Ref. [30], numerical
evidence is shown suggesting that the Weniger transform canresum a function with singularities in the Borel
plane (but not on the positive axis).

5



S∞ S6 τ6 S6,3 τ6,3

1.097737721.09743700 1.097788641.09705909 1.09705234
− 0.027% 0.005% 0.062% 0.062%

Table 3: Predictions for the series of Eq.(11).

• Other relevant examples are: the prediction for the fifth (known) coefficient of theβ -function of the Higgs boson
coupling, the derivative expansion of QED effective action, and the partition function for zero-dimensionalφ4

theory [30].

• We have also tested the method against some recent calculations like the leptonic contributions to the effec-
tive electromagnetic coupling at four-loop order in QED. The coefficients ofα/π and∆αlep are [45]: γ1 =
13.52631(8), γ2 = 14.38553(6), andγ3 = 84.8285(7). The predicted and known results forγ4 areγ4 = 705.22
andγ4 = 770.76, for a relative difference ofγ4/γ4−1=−8.5%.

• There are cases where the algorithm cannot make a reliable prediction, such as in predicting QCD corrections
to the QEDβ -functions, see Refs. [46, 47]. Looking at Eqs.(4.4−4.6) of Ref. [46] we see series with sudden
jumps of sign in the coefficients; for instance, the series for 5 flavors is

α2 (1.667+1.667aS+2.813a2
S−5.971a3

S−32.336a4
S

)

(12)

with aS= αs/π . Our results, based onτ4,3 are shown in Table 4. Here, neglecting the termO(a4
S) or computing

nf S4 τ4,3

4 1.145469 1.146096
5 1.138618 1.140940

Table 4: Predictions for the series of Eq.(12).

τ4 with an approximatedγ4 gives a difference of the same size. In this case we are considering a series represent-
ing a self-energy that will have a two-particle cut (with thecorresponding series of corrections), a three-particle
cut (with the corresponding series of corrections), etc. Therefore, at each order in perturbation theory new con-
tributions (i.e. new series) will arise and it is unsafe to make a guess by using only the first 3 orders. However, in
this case, usingγ4 as an estimate of the uncertainty inS3 gives a reasonable result: 0.95< |τ4−S4|/γ4a4

S< 1.14.

Further examples of the performance of different transforms on a number of test sequences can be found in
Refs. [48, 49, 50, 51, 52, 53, 54].

5. Application to gg-fusion

For all the examples considered in Section 4.4 we have found that the Levinτ -transform and the Wenigerδ -
transform provide the fastest convergence. The power of these transformations is due to the fact that the explicit
estimates for the truncation error of the series are incorporated into the convergence acceleration. The Levinτ -
transform has been shown to work with good accuracy for the prediction of higher order coefficients of alternating and
non-alternating factorially-divergent perturbation series, see Ref. [30].

Arguments supporting the general applicability of Levin transforms to the series of mathematical structures ex-
pected from quantum field theory can be found also in Ref. [30].

It should be noted that in theτn
k sequence transformation, the superscriptn indicates the minimal index occurring

in the finite subset of input data, whilek, the order of the transformation, is a measure of the complexity for the
transformation itself. It is worth noting thatτn

k requires knowledge of the firstn+ k partial sums, that is why we limit
our considerations toτk ≡ τ0

k .
The most important question concerns the reliability of theprocedure when applied to the series of Eq.(4).

6



Dn γc
3−∆γ3 γc

3 γc
3+∆γ3

D2 27.02%
D3 14.93% 16.08% 17.21%
D4 6.59% 7.99% 9.68%
D5 2.20% 3.08% 4.59%
D6 0.14% 0.39% 1.38%

Table 5: Effect of QCD scale variation for predicted higher order terms in the Higgs gluon-gluon fusion production cross-section.
Dn = 1−σ−,n

2 /σ+,n
2 with theσ±,n

ξ are defined in Eq.(14). In the extrapolation region (n≥ 3) the variation decreases as expected
from a reliable estimate of MHO.

γn Levin−τ Weniger−δ
γc
3−∆γ3 γc

3 γc
3+∆γ3 γc

3−∆γ3 γc
3 γc

3+∆γ3

γ4 1437.9 1806.6 2214.7 1512.2 1860.8 2244.3
γ5 5412.4 8185.6 11733.0 6276.6 8912.3 12183.0
γ6 18979.0 35677.0 61133.0 25243.0 41918.0 65605.0

Table 6: Predicted higher-order coefficients in gluon-gluon–fusion, computed atµ = MH .

5.1. Applicability

In motivating the applicability of the procedure, scale variation can be of use. Consider

σn
gg(τ,µ) = σ0

gg(τ,µ) Sn,3 (µ) , Sn,3 (µ) = 1+
3

∑
k=1

αk
s(µ)γk(µ)+

n

∑
k=4

αk
s(µ)γk(µ) (13)

whereτ = M2
H/s,

√
s= 8 TeV, and vary the QCD scales withξ = 2. Introducing

σ−,n
ξ = min{σn(Q,µ/ξ ) , σn (Q,ξ µ)}, σ+,n

ξ = max{σn (Q,µ/ξ ) , σn (Q,ξ µ)} (14)

andDn = 1−σ−,n
2 /σ+,n

2 we obtain the values reported in Table 5. Comparing the results forD2 andD3 it can be seen
that the variability due to scale variation is substantially reduced by the inclusion of the N3LO term. We expect that a
reliable estimate of the missing higher orders should follow the trend of further reducing the effect as is the case. The
coefficients of the perturbative series, computed withτk at µ = MH, are given in Table 6. The ratioRn = αsγn+1/γn
becomes constant to a very good approximation, and is given in Table 7, whereδn is defined in Eq.(6).

Note that this does not represent a formal proof that there isan upper bound on the remainder but makes plausible
the argument in favor of that.

5.2. Numerical results

Our strategy for estimating MHO and MHOU can be summarized asfollows: we select a scale,µ = MH, for gg-
fusion, and estimate the uncertainty due to higher orders atthat scale. This implies that the (scale variation) uncertainty
at the chosen scale is part of the uncertainty due to higher orders and should not be counted twice. Therefore, we
compare

σX,n
gg = σ0

gg

(

µ = MH
)

Xn,3
(

µ = MH
)

, with X ∈ {S,τ,δ} (15)

Rn R0 R1 R2 R3 R4 R5

Levin−τ 1.3280 0.6800 0.58360.5354 0.5065 0.4873
Weniger−δ 1.3280 0.6800 0.53600.4880 0.4640 0.4496

Table 7:Rn = αsγn+1/γn(γn) for theτ andδ transforms (note that the denominator is not an extrapolation when available). It can
be seen thatRn is constant to better than 10% in the extrapolation region (n≥ 3) for both transforms.
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n σS,n
gg [ pb] σ τ,n

gg [ pb] σδ ,n−1
gg [ pb]

γc
3−∆γ3 γc

3 γc
3+∆γ3 γc

3−∆γ3 γc
3 γc

3+∆γ3 γc
3−∆γ3 γc

3 γc
3 +∆γ3

3 19.89889 20.12922 20.3595421.83017 23.07444 24.83209
4 21.10181 21.64063 22.2123621.92044 23.10458 24.7975122.21881 23.42508 25.07780
5 21.60801 22.40620 23.3096721.91988 23.10473 24.7966122.21864 23.42407 25.07535
6 21.80644 22.77922 23.9488321.91988 23.10473 24.7965822.21864 23.42405 25.07525

Table 8: Cross-sections obtained using Eq.(15), usingµ = MH . Forσδ ,n
gg , β = 1 is used for the Wenigerδ -transform. Note that in

the case of the Weniger transform the index is shifted so thatrows represent the same order inγn.

and report the result of the calculations in Table 8 where thecoefficients needed to constructσS,n
gg are based onτ -

transform. To understand the comparison one should bear in mind that sequence transforms can also be characterized
by the highest coefficient involved:τk requiresγk but δk requiresγk+1. Therefore, we expectτk andδk−1 to give
predictions with comparable quality. The results show thatusing the Levinτ -transform improves the convergence;
indeedn= 3 is already a good approximation withσ τ,6

gg /σ τ,3
gg −1= 0.13%. The use of other transforms is compatible

with τ6 to within 2%: if we use the Wenigerδ -transform of Eq.(6) (withβ = 1) we obtainσδ ,5
gg /σ τ,6

gg −1= 1.38%.
Additionally, we have investigated the use ofβ -tuning, using the Levinτ -transform Eq.(5) withβ 6= 0. To have

γ3 = γc
3, we find β = −0.2482, and calculateσ τ,5

gg (β ) = 23.542 pb. This is to be compared withσ τ,5
gg (β = 0) =

23.105pb, the difference being within the uncertainty induced by∆γ3. Our conclusion is thatβ -tuning is a procedure
to be adopted in those cases where there is a reasonable guesson the value of the next coefficient or on the interval
where it is expected. Furthermore, all cases where theβ -tuned results are substantially different fromβ = 0 should
be taken with the due caution. Finally, basing the whole procedure onδ -transforms or estimating the coefficients with
δk(1) and accelerating the series withτ6 gives consistent results, namely 23.4241 pb (with δ5) in the first case and
23.4253pb in the second.

It is worth noting that if any of the transforms predicts at least one extra coefficient of the series, then in principle
the whole function is known, which is unlikely to be the case in any physical problem. We can only conclude that
a judicious use can make predictions at some relatively goodlevel of accuracy. We also know that all transforms
basically differ in the choice of the remainder estimates. Agood choice should satisfy the following asymptotic
condition [31]: Rn = S∞−Sn

ωn
∼ c, whenn → ∞, whereωn is the remainder. Levin selectsωn = ∆Sn−1 and, from

Table 7, we derive an approximate relationγn+1αs ≈ K γn, for n> n0, whereK is a constant withK < 1. In this case
Rn → 1/(1−K) for sufficiently largen.

5.3. Discussion of MHOU

Given that the sequence transform procedures outlined above provide an estimate for the sum of the full series,
when estimating the uncertainty on that quantity we will be deliberately conservative.

Uncertainty due to MHO estimation.Given the different nature of the calculations representedby σS,3
gg andσδ ,5

gg , it can

be expected that, to a very good accuracy,σS,3
gg <σgg<σδ ,5

gg . Forγ3= γc
3, this defines the interval[20.13, 23.42] pbthat

has a relative width of 16.4%. For comparison, the N3LO calculation forµ = MH andγ3 = γc
3 yieldsσgg = 20.13 pb

and traditional QCD scale variations withξ = 2 leads to the interval[18.90, 21.93] pb that has a relative width of
16.1% (the authors of Ref. [27] quote±7%). It is worth noting how in our approach the interval is shifted by≈ +7%
with respect to the N3LO result. This is to be compared to the+17% of N3LO with respect to NNLO [27].

Uncertainty due to∆γ3. We can now discuss how to take into account the uncertainty onγ3 induced by the∆γ3
(

µ = MH
)

.
In line with a simple and conservative approach that can later be refined, we consider all values ofγ3 in the interval
[γc

3−∆γ3,γc
3 +∆γ3] as equally likely and take the lowest value ofσS,3

gg and the highest value ofσδ ,5
gg .

Result. The previous choices lead to an interval with a relative width of 26.01%, shifted by at least+5% with respect
to the N3LO result:

σgg ∈
[

σS,3
gg (γc

3−∆γ3) , σδ ,5
gg (γc

3 +∆γ3)
]

= [σ− , σ+] = [19.89889, 25.07525] pb. (16)
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To conclude, our prediction is that the “true” cross-section value is bracketed by the estimations of Eq.(16) as all
other transforms fall in that interval. For instance,J2

1 from Eq.(7) gives 23.018pbandτ1
4 gives 23.244pb.

The advantages of our recipe for estimating MHOU are that theresult does not depend on the choice of the
parameter expansion (it is based on partial sums) and it takes into account the nature of the coefficients, i.e., that
the known terms of the perturbative expansion in gg -fusion are positive. Starting from the proposal in Eq.(16), the
corresponding pdf can be derived following the work of Ref. [2].

6. Conclusions

The flat part of the MHOU pdf has been chosen observing thatσS,3 is the last known term of the series, that
known and predicted coefficients are all positive, and that all transforms “predict” convergence towards a value inside
the interval of Eq.(16) and close toσδ ,5. Therefore, our best guess is the one in Eq.(16) since it would be ambitious
to claim thatσ τ,6 or σδ ,5 are the result, with a very small error. One should mention inthis regard that there is no
proof of the uniqueness of the result reconstructed from itsasymptotic series. There is only evidence that all sequence
transforms produce a result within a given interval to whichwe assign an uninformative prior, in the Bayesian sense.

It should be mentioned that we have included only the gg-channel. At higher orders we have new channels, new
color structures, etc. For instance, the qg-channel contribution is negative; at low orders its contribution is sub-leading
but nothing is known at higher orders. This is a general problem that will affect all procedures aimed at estimating
MHO(U). Finally, it should be stressed that all re-summation procedures for non-alternating (divergent) series usually
fail when the parameter expansion is on a (expected) cut in the complex plane.

We support the strategy presented for deriving informationon MHO(U) with the following arguments:

• Given the (few) known coefficients in the perturbative expansion, we estimate the next (few) coefficients and the
corresponding partial sums by means of sequence transformations. This is the first step towards “reconstructing”
the physical observable in Eq.(3).

• The use of sequence transformations was tried on a number oftest sequences, including several physical ob-
servables.

• A function can be uniquely determined by its asymptotic expansion if certain conditions are satisfied [18].

• The Borel procedure is a summation method which, under the above conditions, determines uniquely the sum
of the series. It should be taken into account that there is a large class of series that have Borel sums (analytic
in the cut-plane) and there is evidence that Levin-Weniger transforms produce approximations to these Borel
sums. This is one of the plausibility arguments supporting our results.

• The QCD scale variation uncertainty decreases when we include new (estimated) partial sums.

• All known and predicted coefficients are positive and all transforms predict convergence within a narrow inter-
val.

• Missing a formal proof of uniqueness, we assume an uninformative prior between the last known partial sum
and the (largest) predicted partial sum.

The arguments developed in this work support the opinion that perturbation theory up to N3LO is essential to obtain
accurate definition of the theory (MHO) and shed some light onhow to formulate consistent procedures for accurate
computations (MHOU). We conclude by saying that “new” insights into the properties of perturbative expansions
are always important, since computing higher-order corrections is not only cumbersome and costly but also suffers
fundamentally from the divergence of the series.

The investigation of QCD-scale and renormalization-scheme dependence of a truncated series should not be con-
fused with the attempt to estimate its uncalculated remainder which is the true source of MHOU.
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