

(Direct) searches for Higgs and Higgs-like particles at LHCb

Stephane Tourneur (EPFL) (for the LHCb Collaboration)

Workshop on
Higgs and Beyond the Standard Model Physics
at the LHC

ICTP, Trieste 27-06-2013

- $H \rightarrow \tau \tau$
- Towards H → bbbar
- h0 decaying to Long-Lived Particles
- Indirect search: B_s → μμ
- Conclusion

2008 JINST 3 S08005

The LHCb detector

Data collected:

- 1 fb⁻¹
 - @ √s=7TeV
- 2 fb⁻¹
 - @ √s=8TeV
- Lumi leverage:
 - <Pile-up> ~ 2

- Despite lower geom. acceptance and luminosity than ATLAS/CMS, LHCb offers a complementary strategy for <u>direct New Physics (NP) searches</u>:
 - Unique acceptance at 2 <η< 5 : test models with enhanced forward production
 - Unique trigger strategy: 1MHz hardware trigger, ~ 5 kHz to disk
 - Very efficient on displaced vertices with a low p_T threshold
 - a "nightmare" scenario: NP produces no high p_T lepton, no high missing energy, but only jets with p_T below ATLAS/CMS trigger thresholds...
 - If with b's and/or long lived (1-100 ps) particles, LHCb could fill this gap!

- $H \rightarrow \tau \tau$
- Towards H → bbbar
- h0 decaying to Long-Lived Particles
- Indirect search: $B_s \rightarrow \mu\mu$
- Conclusion

Limits on Higgs → ττ

- Goal: set limits on Higgs production in the forward region
- Data sample used: 1 fb⁻¹ @ \sqrt{s} = 7 TeV
- Channels and selection:

$$H \rightarrow \tau_{\mu} \tau_{\mu}, \tau_{\mu} \tau_{e}, \tau_{e} \tau_{\mu}$$
 (2l) and $H \rightarrow \tau_{\mu} \tau_{h}, \tau_{e} \tau_{h}$ (l + 1-prong)

$$p_{T}(e/\mu) > 20 \text{ GeV/c} | p_{T}(e/\mu/h) > 5 \text{ GeV/c}$$

$$2 < \eta(e/\mu) < 4.5$$
; $2.25 < \eta(h) < 3.75$
 $60 < M(\tau\tau) < 120 \text{ GeV/c}^2$

Isolated

back-to-back

τ lifetime

p_ asymmetry

Limits on Higgs → ττ

- Signal: SM and MSSM Higgs cases considered
- MSSM Higgs cross-sections with HIGLU, GGH@NNLO, BBH@NNLO
- Branching ratio with FeynHiggs 2.7.4
- All efficiencies obtained from data-driven methods

- The signal yield is obtained from a fit of the tau pair mass distribution using template shapes for signal and backgrounds
 - Signal: Higgs → ττ
 - Main backgrounds: Z→ ττ, QCD

Limits on Higgs → ττ

- Upper limits:
 - obtained from extended likelihood using mass shape and taking into account the systematics as nuisance parameters (method in arXiv: 1007.1727)
 - Given at CLs = 95%

LHCb can test models with enhanced BR($H \rightarrow \tau \tau$) and forward production

- $H \rightarrow \tau \tau$
- Towards H → bbbar
- h0 decaying to Long-Lived Particles
- Indirect searches in $B_s \rightarrow \mu\mu$
- Conclusion

Towards H → bbbar at LHCb

- Towards WH and ZH analyses
- The fraction of Higgs decaying into 2 b's in LHCb acceptance is:
 - 5% at √s = 7 TeV
 - 11% at √s = 14 TeV
- W/ZH analysis ongoing on the 2011/12 LHCb dataset

On this path:

- New tools developped: jet reconstruction at LHCb and B-jet tagging
- Benchmark analyses done:
 - Measurement of the central forward bbbar asymmetry (LHCb-CONF-2013-001)
 - Measurement of σ(bbbar) with inclusive final states (LHCb-CONF-2013-002)

Inclusive bbbar cross section measurement

Efficiencies:

- B seeding:

 - data (other side $B \rightarrow D\pi$)
- Overall efficiency: 0.08 %

Measurement of σ(bbbar):

- Fit of the shape of a Gradient Boosted Decision Tree BDTG response built to isolate bbbar events
- bbbar and ccbar template shapes obtained from simulation checked with data
- Result for $2.5 < \eta < 4$ and $p_{-} > 5$ GeV: $\sigma(bb) = 7.7 \pm 0.12 \text{ (stat)} \pm 0.84 \text{ (sys)} \mu b$ (PowHeg-extrapolated to full space: 364 μb)

- $H \rightarrow \tau \tau$
- Towards H → bbbar
- h⁰ decaying to Long-Lived Particles
- Indirect searches in $B_s \to \mu\mu$
- Conclusion

Many BSM theories predict Long Lived massive Particles (LLP):

- SUSY with RPV through Baryon number Violation:
 - Carpenter, Kaplan and Rhee, Phys. Rev. Lett. 99 (2007) 211801
 - $h^0 \rightarrow X^0 X^0$, with X^0 neutralino long-lived, $X^0 \rightarrow 3$ quarks : **6 displaced jets**!
 - For m(h0) = 125 GeV, m(X⁰)= 48 GeV and $\tau(X^0)$ = 10 ps (BV48):
 - 25% of the events have a X⁰ decay vertex inside LHCb.
 - X⁰ mass and lifetime range tested at LHCb:
 - 20 < m(X⁰) < 60 GeV and 1 < τ(X⁰) < 25 ps

- Some Hidden Valley (HV) models:
 - Strassler, Zurek, Phys. Lett. B651 (2007) 374
 - $h^0 \rightarrow \pi^0_{\nu} \pi^0_{\nu} \rightarrow 4 \text{ b quarks} (\pi^0_{\nu} \text{ is the LLP (HV10)})$

- Strategy: Reconstruct the two X⁰ decay vertices inside LHCb and combine to form the H0 mother
- Dataset used: 36 pb⁻¹ at $\sqrt{s} = 7$ TeV
- Event selection:
 - X⁰ reconstruction:
 - Matter veto
 - R > 0.4 mm, N(tracks) > 5
 - Mass (trks only) > 6 GeV
 - 2 X⁰ reconstructed, back-to-back in φ
 - Efficiency obtained from simulation

LHCb Trigger:

- 2 displaced vertices (R > 0.4 mm) with > 3 trks and mass (trks only) > 1.5 GeV
- Efficiency on selected "BV48" signal events: 65%
- LHCb is only LHC experiment testing $h^0 \rightarrow X^0 X^0 \rightarrow 6q$ with vertex at very small distance from beam axis and low mass

- Loosen selection for control region:
 - LLP vertex outside matter, m(trks) > 4 GeV , R > 0.4 mm, N(tracks) > 3
 - Shapes well compatible with pure bbbar (see 3 figs)
 - Yields also compatible with pure bbbar events

Results:

- No candidate found in 36 pb⁻¹ dataset
- Upper limits on σ(h⁰) x BR(h⁰ → X⁰X⁰)
 in these 2 tables (in pb)
 - For the BV48 point:
 σ(h°) x BR(h° → X°X°) < 32 pb
 @ 95% CL

In progress:

- include jet reconstruction
- 80 times more data on pipe
- Extend to single LLP search.

LLP lifetime = 10 ps

m_{LLP}	30	35	40	48	55
$ m m_{h^0}$	(pb)				
100	101	58	44	58	
105	100	75	44	39	
110	132	75	56	34	
114	128	91	47	32	46
120	148	93	58	34	31
125	179	90	61	41	29

Higgs mass = 114 GeV/c^2

m_{LLP}	30	35	40	48	55
$ au_{LLP}$	(pb)				
3	210	156	136	168	410
5	145	101	68	58	137
10	129	91	47	32	46
15	155	90	49	31	33
20	131	93	63	32	31
25	142	100	61	34	25

- $H \rightarrow \tau \tau$
- Towards H → bbbar
- h0 decaying to Long-Lived Particles
- Indirect searches in B_s → μμ
- Conclusion

Indirect searches in $B_s \rightarrow \mu\mu$

Helicity suppressed Flavor Changing Neutral Current => Very rare decay

Higgs bosons from BSM physics can replace the ewk bosons in the diagrams and lead to largely increased B $_{_{S}} \to ~\mu\mu$ coupling

Indirect searches in B_s → µµ

- First (3.5 σ) evidence of the decay $B_s^0 \rightarrow \mu\mu$
- BR(B⁰_s $\rightarrow \mu\mu$) = (3.2^{+1.5}_{-1.2}) x 10⁻⁹ (in agreement with SM prediction)

 → Strong constraints on and no evidence for BSM physics

Outlook

- Due to its unique forward acceptance and trigger system, LHCb complements the LHC program on direct searches for NP
 - LHCb is only place to search for softer new physics signatures which don't pass ATLAS/CMS high p₊ trigger cuts
 - Direct searches relevant at LHCb are "off the beaten track" and therefore often have lower experimental constraints
- LHCb direct searches have not yet pointed to new physics but ...
- ... direct Higgs-like and NP searches at LHCb will greatly benefit from:
 - Update with full 3 fb⁻¹ dataset soon
 - 13 TeV collisions in 2015 (events more boosted forward + higher XS)
 - LHCb detector upgrade in 2019 that should enable to run with 5 times more instantaneous luminosity and an improved detector

"LHCb implications" workshop 14-16 October 2013

- Mixed Theorists/LHCb workshop
- A "Forward exotica" session:
 - An occasion for theorists to propose new ideas to complement LHC direct searches using LHCb detector's unique viewpoint :
 - Test softer new physics signals (below ATLAS/CMS trigger $p_{_{\rm T}}$ thresholds)
 - Detector optimized to see displaced vertices
 - High brandwith trigger
 - Low pile-up
 - Superior particle identification (eg. Pi⁺/K⁺ with Cherenkov)
 - Looking forward
- Contact us: http://indico.cern.ch/conferenceDisplay.py?confld=255380

Theoretical references

- "Asymptotic formulae for likelihood-based tests of new physics", Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells, Eur.Phys.J.C71:1554,2011
- "Proposal for Higgs and Superpartner Searches at the LHCb Experiment", David E. Kaplan, Keith Rehermann, JHEP 0710:056,2007
- "Reduced Fine-Tuning in Supersymmetry with R-parity violation", Linda M. Carpenter, David E. Kaplan, Eun-Jung Rhee, Phys. Rev. Lett. 99 (2007) 211801
- "Echoes of a Hidden Valley at Hadron Colliders", Matthew J. Strassler, Kathryn M. Zurek, JHEP 0710:056,2007

Backup

Typical resolutions at LHCb

Detector resolution:

- Tracking: σp/p = 0.4% at 5 GeV/c and 0.6% at 100 GeV/c
- ECAL: σ E/E = 10%/√E+1%, HCAL: σ E/E = 70%/√E+10%
- Vertex detector: 20 μ m IP resolution at p_{T} =2 GeV/c

$Z \rightarrow \tau \tau$

Trigger:

$$p_{T}(\mu) > 10 \text{ GeV/c or } p_{T}(e) > 15 \text{ GeV/c}$$

Channels and selection:

$$Z \rightarrow \tau_{\mu} \tau_{\mu}, \tau_{\mu} \tau_{e}, \tau_{e} \tau_{\mu}$$
 $Z \rightarrow \tau_{\mu} \tau_{h}, \tau_{e} \tau_{h} (1-\text{prong})$

$$p_{T}(e/\mu) > 20 \text{ GeV/c}$$
 $p_{T}(e/\mu/h) > 5 \text{ GeV/c}$

$$p_T(e/\mu/h) > 5 \text{ GeV/c}$$

$$2 < \eta(e/\mu) < 4.5$$
; $2.25 < \eta(h) < 3.75$
 $60 < M(\tau\tau) < 120 \text{ GeV/c}^2$

- Main backgrounds:
 - QCD and W+jet: from same sign ττ data
 - Z/γ*→μμ : from Z→μμ resonance and low impact parameter sidebands
- Purity: 65-70% in all channels
- Analysis extended to H→ ττ search