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Abstract

A measurement of W+W− production in pp collisions at
√

s = 7 TeV is presented.
The data were collected with the CMS detector at the LHC, and correspond to an in-
tegrated luminosity of 4.92± 0.11 fb−1. The W+W− candidates consist of two oppo-
sitely charged leptons, electrons or muons, accompanied by large missing transverse
energy. The W+W− production cross section is measured to be 52.4 ± 2.0 (stat.) ±
4.5 (syst.) ± 1.2 (lum.) pb. This measurement is consistent with the standard model
prediction of 47.0± 2.0 pb at next-to-leading order. Stringent limits on the WWγ and
WWZ anomalous triple gauge-boson couplings are set.
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1 Introduction
The standard model (SM) description of electroweak and strong interactions can be tested
through measurements of the W+W− production cross section at a hadron collider. The s-
channel and t-channel qq annihilation diagrams, shown in Fig. 1, correspond to the dominant
process in the SM, at present energies. The gluon-gluon diagrams, which contain a loop at
lowest order, contribute only 3% of the total cross section [1] at

√
s = 7 TeV. WWγ and WWZ

triple gauge-boson couplings (TGCs) [2], responsible for s-channel W+W− production, are sen-
sitive to possible new physics processes at a higher mass scale. Anomalous values of the TGCs
would change the W+W− production rate and potentially certain kinematic distributions from
the SM prediction. Aside from tests of the SM, W+W− production represents an important
background source for new particle searches, e.g. for Higgs boson searches [3–5]. Next-to-
leading-order (NLO) calculations of W+W− production in pp collisions at

√
s = 7 TeV predict

a cross section of σNLO(pp→W+W−) = 47.0± 2.0 pb [1].
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Figure 1: Leading order Feynman diagrams for qq annihilation, for s-channel (left) and t-
channel (right) production of W pairs. The triple gauge-boson vertex corresponds to the
WWγ(Z) interaction in the first diagram.

This paper reports a measurement of the W+W− cross section in the W+W− → `+ν`−ν final
state in pp collisions at

√
s = 7 TeV and constraints on anomalous triple gauge-boson couplings.

The measurement is performed with the Compact Muon Solenoid (CMS) detector at the Large
Hadron Collider (LHC) using the full 2011 data sample, corresponding to an integrated lumi-
nosity of 4.92± 0.11 fb−1, more than two orders of magnitude larger than data used in the first
measurements with the CMS [6] and ATLAS [7] experiments at the LHC, and comparable in
size to the data sets more recently analysed by ATLAS [8, 9].

2 The CMS detector and simulations
The CMS detector is described in detail elsewhere [10] so only the key components for this anal-
ysis are summarised here. A superconducting solenoid occupies the central region of the CMS
detector, providing an axial magnetic field of 3.8 T parallel to the beam direction. A silicon
pixel and strip tracker, a crystal electromagnetic calorimeter, and a brass/scintillator hadron
calorimeter are located within the solenoid. A quartz-fiber Cherenkov calorimeter extends the
coverage to |η| < 5.0, where pseudorapidity is defined as η = − ln[tan (θ/2)], and θ is the po-
lar angle of the particle trajectory with respect to the anticlockwise-beam direction. Muons are
measured in gas-ionization detectors embedded in the steel magnetic-flux-return yoke outside
the solenoid. The first level of the CMS trigger system, composed of custom hardware proces-
sors, is designed to select the most interesting events in less than 3 µs using information from
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the calorimeters and muon detectors. The high-level trigger processor farm further decreases
the rate of stored events to a few hundred hertz for subsequent analysis.

This measurement exploits W+W− pairs in which both bosons decay leptonically, yielding an
experimental signature of two isolated, high transverse momentum (pT), oppositely charged
leptons (electrons or muons) and large missing transverse energy (Emiss

T ) due to the undetected
neutrinos. The Emiss

T is defined as the modulus of the vectorial sum of the transverse momenta
of all reconstructed particles, charged and neutral, in the event. This variable, together with
the full event selection, is explained in detail in Section 3.

Several SM processes constitute backgrounds for the W+W− sample. These include W + jets
and quantum chromodynamics (QCD) multijet events where at least one of the jets is misiden-
tified as a lepton, top-quark production (tt and tW), Drell–Yan Z/γ∗ → `+`−, and diboson
production (Wγ(∗), WZ, and ZZ) processes.

A number of Monte Carlo (MC) event generators are used to simulate the signal and back-
grounds. The qq→W+W− signal, W + jets, WZ, and Wγ(∗) processes are generated using the
MADGRAPH 5.1.3 [11] event generator. The gg→W+W− signal component is simulated using
GG2WW [12]. The POWHEG 2.0 program [13] provides event samples for the Drell–Yan, tt, and
tW processes. The remaining background processes are simulated using PYTHIA 6.424 [14].

The default set of parton distribution functions (PDFs) used to produce the LO MC samples
is CTEQ6L [15], while CT10 [16] is used for NLO generators. The NLO calculations are used
for background cross sections. For all processes, the detector response is simulated using a
detailed description of the CMS detector, based on the GEANT4 package [17].

The simulated samples include the effects of multiple pp interactions in each beam crossing
(pileup), and are reweighted to match the pileup distribution as measured in data.

3 Event selection
This measurement considers signal candidates in three final states: e+e−, µ+µ−, and e±µ∓. The
W → `ν` (` = e or µ) decays are the main signal components; W → τντ events with leptonic
τ decays are included, although the analysis is not optimised for this final state. The trigger
requires the presence of one or two high-pT electrons or muons. For single lepton triggers the
pT threshold for the selection is 27 (15) GeV for electrons (muons). For double lepton triggers,
the pT thresholds, for pairs of leptons of the same flavour, are lowered to 18 and 8 GeV for the
first and second electrons respectively, and to 7 GeV for the each of the two muons. Different
flavour lepton triggers are also used. The overall trigger efficiency for signal events is measured
to be approximately 98% using data.

Two oppositely charged lepton candidates are required, both with pT > 20 GeV. Electron can-
didates are selected using a multivariate approach that exploits correlations between the selec-
tion variables described in Ref. [18] to improve identification performance, while muon candi-
dates [19] are identified using a selection close to that described in Ref. [6]. Charged leptons
from W boson decays are expected to be isolated from any other activity in the event. The lep-
ton candidates are required to be consistent with originating at the primary vertex of the event,
which is chosen as the vertex with the highest ∑ p2

T of its associated tracks. This criterion pro-
vides the correct assignment for the primary vertex in more than 99% of events for the pileup
distribution observed in the data. The efficiency is measured by checking how often a primary
vertex with the highest ∑ P2

T of the constituent tracks is consistent with the vertex formed by
the two primary leptons. This is done in MC and checked in data.
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The particle-flow (PF) technique [20] that combines the information from all CMS subdetectors
to reconstruct each individual particle is used to calculate the isolation variable. For each lep-
ton candidate, a cone around the lepton direction at the event vertex is reconstructed, defined
as ∆R =

√
(∆η)2 + (∆φ)2, where ∆η and ∆φ are the distances from the lepton track in η and

azimuthal angle, φ (in radians), respectively; ∆R takes a value of 0.4 (0.3) for electrons (muons).
The scalar sum of the transverse momentum is calculated for the particles reconstructed with
the PF algorithm that are contained within the cone, excluding the contribution from the lep-
ton candidate itself. If this sum exceeds approximately 10% of the candidate pT, the lepton is
rejected; the exact requirement depends on the lepton flavour and on η.

Jets are reconstructed from calorimeter and tracker information using the PF technique [21].
The anti-kT clustering algorithm [22] with a distance parameter of 0.5, as implemented in the
FASTJET package [23, 24], is used. To correct for the contribution to the jet energy from pileup,
a median energy density ρ, or energy per area of jet, is determined event by event. The pileup
contribution to the jet energy is estimated as the product of ρ and the area of the jet and sub-
sequently subtracted [25] from the jet transverse energy ET. Jet energy corrections are also
applied as a function of the jet ET and η [26]. To reduce the background from top-quark decays,
a jet veto is applied: events with one or more jets with corrected ET > 30 GeV and |η| < 5.0 are
rejected.

To further suppress the top-quark background, two top-quark tagging techniques based on
soft-muon and b-jet tagging [27, 28] are applied. The first method vetoes events containing
muons from b-quark decays, which can be either low-pT muons or nonisolated high-pT muons.
The second method uses information from tracks with large impact parameter within jets, and
applies a veto on those with the b-jet tagging value above the selected veto threshold. The
combined rejection efficiency for these tagging techniques, in the case of tt events, is about a
factor of two, once the full event selection is applied.

The Drell–Yan background has a production cross section some orders of magnitude larger than
the W+W− process. To eliminate Drell–Yan events, two different Emiss

T vectors are used [29].
The first is reconstructed using the particle-flow algorithm, while the second uses only the
charged-particle candidates associated with the primary vertex and is therefore less sensitive
to pileup. The projected Emiss

T is defined as the component of Emiss
T transverse to the direction of

the nearest lepton, if it is closer than π/2 in azimuthal angle, and the full Emiss
T otherwise. A

lower cut on this observable efficiently rejects Z/γ∗ → τ+τ− background events, in which the
Emiss

T is preferentially aligned with leptons, as well as Z/γ∗ → `+`− events with mismeasured
Emiss

T associated with poorly reconstructed leptons or jets. The minimum of the projections of
the two Emiss

T vectors is used, exploiting the correlation between them in events with significant
genuine Emiss

T , as in the signal, and the lack of correlation otherwise, as in Drell–Yan events.
The requirement for this variable in the e+e− and µ+µ− final states is projected Emiss

T > (37 +
Nvtx/2)GeV, which depends on the number of reconstructed primary vertices (Nvtx). In this
way the dependence of the Drell–Yan background on pileup is minimised. For the e±µ∓ final
state, which has smaller contamination from Z/γ∗ → `+`− decays, the threshold is lowered
to 20 GeV. These requirements remove more than 99% of the Drell–Yan background, the actual
number of accepted background events is obtained from the data, as explained below.

Remaining Z/γ∗ → `+`− events in which the Z boson recoils against a jet are reduced by
requiring the angle in the transverse plane between the dilepton system and the most energetic
jet to be smaller than 165 degrees. This selection is applied only in the e+e− and µ+µ− final
states when the leading jet has ET > 15 GeV.

To further reduce the Drell–Yan background in the e+e− and µ+µ− final states, events with
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a dilepton mass within ±15 GeV of the Z mass are rejected. Events with dilepton masses be-
low 20 GeV are also rejected to suppress contributions from low-mass resonances. The same
requirement, where the threshold is lowered to 12 GeV, is also applied in the e±µ∓ final state.
Finally, the transverse momentum of the dilepton system (p``T ) is required to be above 45 GeV
to reduce both the Drell–Yan background and the contribution from misidentified leptons.

To reduce the background from other diboson processes, such as WZ or ZZ production, any
event that has an additional third lepton with pT > 10 GeV passing the identification and iso-
lation requirements is rejected. Wγ(∗) background, in which the photon is misidentified as an
electron, is suppressed by stringent γ conversion rejection requirements [18].

4 Estimation of backgrounds
A combination of techniques is used to determine the contributions from backgrounds that
remain after the W+W− selection. The major contribution at this level comes from the top-
quark processes, followed by the W + jets background.

The normalisation of the top-quark background is estimated from data by counting top-quark-
tagged events, with the requirements explained in Section 3, and applying the corresponding
tagging efficiency. The top-quark tagging efficiency (εtop tagged) is measured in a data sample,
dominated by tt and tW events, that is selected from a phase space close to that for W+W−

events, but instead requiring one jet with ET > 30 GeV. The residual number of top-quark
events (Nnot tagged) in the signal sample is given by

Nnot tagged = Ntagged × (1− εtop tagged)/εtop tagged,

where Ntagged is the number of tagged events. The total uncertainty on this background esti-
mation is about 18%. The main contribution comes from the statistical and systematic uncer-
tainties related to the measurement of εtop tagged.

The W + jets and QCD multijet background with jets misidentified as leptons are estimated by
counting the number of events containing one lepton that satisfies the nominal selection criteria
and another lepton that satisfies relaxed requirements on impact parameter and isolation but
not the nominal criteria. This sample, enriched in W + jets events, is extrapolated to the signal
region using the efficiencies for such loosely identified leptons to pass the tight selection. These
efficiencies are measured in data using multijet events and are parametrised as functions of the
pT and η of the lepton candidate. QCD backgrounds are found to be negligible. The systematic
uncertainties stemming from this efficiency determination dominate the overall uncertainty,
which is estimated to be about 36%. The main contribution to this uncertainty comes from the
differences in the pT spectrum of the jets in the measurement data sample, composed mainly
of QCD events, compared to the sample, primarily W + jets, from which the extrapolation is
performed.

The residual Drell–Yan contribution to the e+e− and µ+µ− final states outside of the Z boson
mass window (N``,exp

out ) is estimated by normalising the simulation to the observed number
of events inside the Z boson mass window in data (N``

in ). The contribution in this region from
other processes where the two leptons do not come from a Z boson (Nnon-Z

in ) is subtracted before
performing the normalisation. This contribution is estimated on the basis of the number of
e±µ∓ data events within the Z boson mass window. The WZ and ZZ contributions in the Z
mass window (NZV

in ) are also subtracted, using simulation, when leptons come from the same
Z boson as in the case of the Drell–Yan production. The residual background in the W+W−
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data outside the Z boson mass window is thus expressed as

N``, exp
out = R``

out/in(N``
in − Nnon-Z

in − NZV
in ), with R``

out/in = N``,MC
out /N``,MC

in .

The systematic uncertainty in the final Drell–Yan estimate is derived from the dependence of
R``

out/in on the value of the Emiss
T requirement.

Finally, a control sample with three reconstructed leptons is defined to rescale the estimate,
based on the simulation, of the background Wγ∗ contribution coming from asymmetric γ∗

decays, where one lepton escapes detection [30].

Other backgrounds are estimated from simulation. The Wγ background estimate is cross-
checked in data using the events passing all the selection requirements except that the two
leptons must have the same charge; this sample is dominated by W + jets and Wγ events. The
Z/γ∗ → τ+τ− contamination is also cross-checked using Z/γ∗ → e+e− and Z/γ∗ → µ+µ−

events selected in data, where the leptons are replaced with simulated τ-lepton decays, and the
results are consistent with the simulation. Other minor backgrounds are WZ and ZZ diboson
production where the two selected leptons come from different bosons.

The estimated event yields for all processes after the event selection are summarised in Table 1.
The distributions of the key analysis variables are shown in Fig. 2.

Table 1: Signal and background predictions, compared to the yield in data. The prediction for
the W+W− process assumes the SM cross section value.

Sample Yield ± stat. ± syst.
gg→W+W− 46± 1± 14
qq→W+W− 751± 4± 53

tt +tW 129± 13± 20
W + jets 60± 4± 21
WZ+ZZ 29.4± 0.4± 2.0

Z/γ∗ → e+e−/µ+µ− 11.0± 5.1± 2.6
Wγ(∗) 18.8± 2.8± 4.7

Z/γ∗ → ττ 0.0+1.0
−0.0

+0.1
−0.0

Total Background 247± 15± 30
Signal + Background 1044± 15± 62

Data 1134

5 Efficiencies and systematic uncertainties
The signal efficiency, which includes the acceptance of the detector, is estimated using simula-
tion and including both the qq→W+W− and gg→W+W− processes. Residual discrepancies
in the lepton reconstruction and identification efficiencies between data and simulation are cor-
rected by determining data-to-simulation scale factors measured using Z/γ∗ → `+`− events
in the Z peak region [31] that are recorded with unbiased triggers. These factors depend on
the lepton pT and |η| and are within 4% (2%) of unity for electrons (muons). Effects due to
W → τντ decays with τ leptons decaying into lower-energy electrons or muons are included
in the signal efficiency.

The experimental uncertainties in lepton reconstruction and identification efficiency, momen-
tum scale and resolution, Emiss

T modeling, and jet energy scale are applied to the reconstructed
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Figure 2: Distributions of the maximum lepton transverse momentum (pTmax), the minimum
lepton transverse momentum (pTmin), the dilepton transverse momentum (p``T ), and invariant
mass (M``) at the final selection level. Some of the backgrounds have been rescaled to the
estimates based on control samples in data, as described in the text. All leptonic channels are
combined, and the uncertainty band corresponds to the statistical and systematic uncertainties
in the predicted yield. The last bin includes the overflow. In the box below each distribution,
the ratio of the observed CMS event yield to the total SM prediction is shown.
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objects in simulated events by smearing and scaling the relevant observables and propagat-
ing the effects to the kinematic variables used in the analysis. A relative uncertainty of 2.3%
in the signal efficiency due to multiple collisions within a bunch crossing is taken from the
observed variation in the efficiency in a comparison of two different pileup scenarios in simu-
lation, reweighted to the observed data.

The relative uncertainty in the signal efficiency due to variations in the PDFs and the value of
αs is 2.3% (0.8%) for qq (gg) production, following the PDF4LHC prescription [16, 32–36]. The
effect of higher-order corrections, studied using the MCFM program [1], is found to be 1.5%
(30%) for qq annihilation (gg) by varying the renormalisation (µR) and factorisation (µF) scales
in the range (µ0/2, 2µ0), with µ0 equal to the mass of the W boson, and setting µR = µF. The
W+W− jet veto efficiency in data is estimated from simulation and multiplied by a data-to-
simulation scale factor derived from Z/γ∗ → `+`− events in the Z peak,

εdata
W+W− = εMC

W+W− × εdata
Z /εMC

Z ,

where εdata
W+W− and εMC

W+W− (εdata
Z and εMC

Z ) are the efficiencies for the jet veto on the W+W−

(Z) process for data and MC, respectively. The uncertainty in this efficiency is factorised into
the uncertainty in the Z efficiency in data and the uncertainty in the ratio of the W+W− ef-
ficiency to the Z efficiency in simulation (εMC

W+W−/εMC
Z ). The former, which is dominated by

statistics, is 0.3%. Theoretical uncertainties due to higher-order corrections contribute most to
the εMC

W+W−/εMC
Z ratio uncertainty, which is 4.6%. The data-to-simulation correction factor is

close to unity, using the Z/γ∗ → `+`− events.

The uncertainties in the W + jets and top-quark background predictions are evaluated to be
36% and 18%, respectively, as described in Section 4. The total uncertainty in the Z/γ∗ → `+`−

normalisation is about 50%, including both statistical and systematic contributions.

The theoretical uncertainties in the diboson cross sections are calculated by varying the renor-
malisation and factorisation scales using the MCFM program [1]. The effect of variations in the
PDFs and the value of αs on the predicted cross section are derived by following the same pre-
scription as for the signal acceptance. Including the experimental uncertainties gives a system-
atic uncertainty of around 10% for WZ and ZZ processes. In the case of Wγ(∗) backgrounds, it
rises to 30%, due to the lack of knowledge of the overall normalisation. The total uncertainty in
the background estimates is about 15%, which is dominated by the systematic uncertainties in
the normalisation of the top-quark and W + jets backgrounds. A 2.2% uncertainty is assigned
to the integrated luminosity measurement [37]. A summary of the uncertainties is given in
Table 2. For simplicity, averages of the estimates for WZ and ZZ backgrounds are shown.

6 The WW cross section measurement
The number of events observed in the signal region is Ndata = 1134. The W+W− yield is
calculated by subtracting the expected contributions of the various SM background processes,
Nbkg = 247 ± 15 (stat.) ± 30 (syst.) events. The inclusive cross section is obtained from the
expression

σW+W− =
Ndata − Nbkg

Lint · ε · (3 · B(W→ `ν))2 , (1)

where the signal selection efficiency ε, including the detector acceptance and averaging over all
lepton flavours, is found to be (3.28± 0.02 (stat.)± 0.26 (syst.))% using simulation and taking
into account the two production modes. As shown in Eq. (1), the efficiency is corrected by
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Table 2: Relative systematic uncertainties in the estimated signal and background yields, in
units of percent.

qq gg tt + tW W + jets WZ Z/γ∗ W + γ W + γ∗ Z/γ∗

→W+W− →W+W− +ZZ → `` → ττ
Luminosity 2.2 2.2 – – 2.2 – 2.2 – –
Trigger efficiency 1.5 1.5 – – 1.5 – 1.5 – –
Lepton ID efficiency 2.0 2.0 – – 2.0 – 2.0 – –
Muon momentum scale 1.5 1.5 – – 1.5 – 1.5 – –
Electron energy scale 2.5 2.5 – – 1.9 – 2.0 – –
Emiss

T resolution 2.0 2.0 – – 2.0 – 2.0 – –
Jet veto efficiency 4.7 4.7 – – 4.7 – 4.7 – –
Pileup 2.3 2.3 – – 2.3 – 2.3 – –
tt+tW normalisation – – 18 – – – – – –
W + jets normalisation – – – 36 – – – – –
Z/γ∗ → `+`− normalisation – – – – – 50 – – –
W + γ normalisation – – – – – – 30 – –
W + γ∗ normalisation – – – – – – – 30 –
Z/γ∗ → τ+τ− normalisation – – – – – – – – 10
PDFs 2.3 0.8 – – 5.9 – – – –
Higher-order corrections 1.5 30 – – 3.3 – – – –

the branching fraction for a W boson decaying to each lepton family, B(W → `ν) = (10.80±
0.09)% [38], to estimate the final inclusive efficiency for the signal.

The W+W− production cross section in pp collision data at
√

s = 7 TeV is measured to be

σW+W− = 52.4± 2.0 (stat.)± 4.5 (syst.)± 1.2 (lum.) pb.

The statistical uncertainty is due to the total number of observed events. The systematic uncer-
tainty includes both the statistical component from the limited number of events and systematic
uncertainties in the background prediction, as well as the uncertainty in the signal efficiency.

This measurement is consistent with the SM expectation of 47.0± 2.0 pb, based on qq annihi-
lation and gluon-gluon fusion. For the event selection used in the analysis, the expected theo-
retical cross section may be larger by as much as 5% because of additional W+W− production
processes, such as diffractive production [39], double parton scattering, QED exclusive pro-
duction [40], and Higgs boson production with decay to W+W−. The dominant contribution
of about 4% would come from SM Higgs production, assuming its mass to be near 125 GeV [4].

The measured W+W− cross section can be presented in terms of a ratio to the Z boson produc-
tion cross section in the same data set. The W+W− to Z cross section ratio, σW+W−/σZ, provides
a good cross-check of this W+W− cross section measurement, using the precisely known Z bo-
son production cross section as a reference. This ratio has the advantage that some systematic
effects cancel. More precise comparisons between measurements from different data-taking
periods are possible because the ratio is independent of the integrated luminosity. The PDF
uncertainty in the theoretical cross section prediction is also largely cancelled in this ratio,
since both W+W− and the Z boson are produced mainly via qq annihilation. The estimated
theoretical value for this ratio is [1.63± 0.07 (theor.)] × 10−3 [31], where the scale uncertainty
between both processes is considered uncorrelated, while the PDF uncertainty is assumed fully
correlated.

The Z boson production process is measured in the e+e−/µ+µ− final states using events pass-
ing the same lepton selection as in the W+W− measurement and lying within the Z mass win-
dow, where the purity of the sample is about 99.8% [31]. Nonresonant backgrounds (including
Z/γ∗ → τ+τ−) are estimated from eµ data, while the resonant component of WZ and ZZ pro-
cesses is normalised to NLO cross sections using MC samples. Correlation of theoretical and
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experimental uncertainties between the two processes is taken into account. An additional 2%
uncertainty in the shape of the Z resonance due to final-state radiation and higher-order effects
is assigned. The latter is based on the difference between the next-to-next-to-leading-order pre-
diction from FEWZ 2.0 [41] simulation code and the MC generator used in the analysis, and on
the renormalisation and factorisation scale variation given by FEWZ.

The ratio of the inclusive W+W− cross section to the Z cross section in the dilepton mass range
between 60 and 120 GeV is measured to be

σW+W−/σZ = [1.79± 0.16(stat.⊕syst.)]× 10−3,

in agreement with the theoretical expectation. The Z cross section resulting from this ratio,
assuming the standard model value for the W+W− cross section, is 1.1% higher than the inclu-
sive Z cross section measurement in CMS using the 2010 data set [31], which had an integrated
luminosity of 36 pb−1, but well within the systematic uncertainties of both measurements.

7 Limits on the anomalous triple gauge-boson couplings
A search for anomalous TGCs is done using the effective Lagrangian approach with the LEP
parametrisation [2] without form factors. The most general form of such a Lagrangian has 14
complex couplings (7 for WWZ and 7 for WWγ). Assuming electromagnetic gauge invariance
and charge and parity symmetry conservation, that number is reduced to five real couplings:
∆κZ, ∆gZ

1 , ∆κγ, λZ, and λγ. Applying gauge invariance constraints leads to

∆κZ =∆gZ
1 − ∆κγtan2(θW),

λZ =λγ,

which reduces the number of independent couplings to three. In the SM, all five couplings are
zero. The coupling constants ∆gZ

1 and ∆κγ parametrise the differences from the standard model
values of 1 for both gZ

1 and κγ, which are measures of the WWZ and WWγ coupling strengths,
respectively.

The presence of anomalous TGCs would enhance the production rate for diboson processes at
high boson pT and high invariant mass. The effect of these couplings is ascertained by evalu-
ating the expected distribution of pTmax, the transverse momentum of the leading (highest-pT)
lepton, and by comparing it to the measured distribution, using a maximum-likelihood fit. The
pTmax is a very sensitive observable for these searches, and it is widely used in the fully leptonic
final states, since the total mass of the event cannot be fully reconstructed. The likelihood L is
defined as a product of Poisson probability distribution functions for the observed number of
events (Nobs) and the combined one for each event, P(pT):

L = e−Nexp(Nexp)
Nobs

Nobs

∏
i=1

P(pT), (2)

where Nexp is the expected number of signal and background events. The leading lepton pT
distributions with anomalous couplings are simulated using the MCFM NLO generator, taking
into account the detector effects. The distributions are corrected for the acceptance and lepton
reconstruction efficiency, as described in Section 5. The uncertainties in the quoted integrated
luminosity, signal selection, and background fraction are assumed to be Gaussian. These un-
certainties are incorporated in the likelihood function in Eq. (2) by introducing nuisance pa-
rameters with Gaussian constraints. A set of points with nonzero anomalous couplings is used
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and distributions between the points are extrapolated assuming a quadratic dependence of the
differential cross section as a function of the anomalous couplings.

Figure 3 shows the measured leading lepton pT distributions in data and the predictions for
the SM W+W− signal and background processes, as well as the expected distributions with
non-negative anomalous couplings, in the two-dimensional model λZ-∆gZ
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Figure 3: Leading lepton pT distribution in data (points with error bars) overlaid with the best
fit using a two-dimensional λZ-∆gZ

1 model (solid histogram) and two expected distributions
with anomalous coupling value, λZ 6= 0 (dashed and dotted histograms). In the SM, λZ = 0.
The last bin includes the overflow.

No evidence for anomalous couplings is found. The 95% confidence level (CL) intervals of
allowed anomalous couplings values, setting the other two couplings to their SM expected
values, are

−0.048 ≤ λZ ≤ 0.048,

−0.095 ≤ ∆gZ
1 ≤ 0.095,

−0.21 ≤ ∆κγ ≤ 0.22.

The results presented here are comparable with the measurements performed by the ATLAS
Collaboration [8] using the LEP parametrisation. These results are also comparable upon those
obtained at the Tevatron [42, 43], which are based on the HISZ parametrisation [44] and LEP
parametrisation with form factors, but they are not as precise as the combination of the LEP
experiments [45–47]. Recently, CMS has set limits on these couplings [48], using different final
state channel. Our measurements clearly demonstrate that both the WWZ and WWγ couplings
exist, as predicted in the standard model (gZ

1 = 1, κγ = 1). Figure 4 displays the contour plots
at the 68% and 95% CL for the ∆κγ = 0 and ∆gZ

1 = 0 scenarios.

8 Summary
This paper reports a measurement of the W+W− cross section in the W+W− → `+ν`−ν decay
channel in proton-proton collisions at a centre of mass energy of 7 TeV, using the full CMS
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Figure 4: The 68% (solid line) and 95% CL (dashed line) limit contours, as well as the central
value (point) of the fit results using unbinned fits, for ∆κγ = 0 (left) and ∆gZ

1 = 0 (right). The
one-dimensional 95% CL limit for each coupling is also shown.

data set of 2011. The W+W− cross section is measured to be 52.4 ± 2.0 (stat.) ± 4.5 (syst.) ±
1.2 (lum.) pb, consistent with the NLO theoretical prediction, σNLO(pp → W+W−) = 47.0±
2.0 pb. No evidence for anomalous WWZ and WWγ triple gauge-boson couplings is found,
and stringent limits on their magnitude are set.
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Université Libre de Bruxelles, Bruxelles, Belgium
B. Clerbaux, G. De Lentdecker, L. Favart, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage,
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