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Abstract

The first observation of the decay B0
s → χc1φ and a study of B0 → χc1,2K∗0 decays are presented. The

analysis is performed using a dataset, corresponding to an integrated luminosity of 1.0 fb−1, collected by
the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. The following ratios of branching
fractions are measured:

B(B0
s → χc1φ)

B(B0
s → J/ψφ)

= (
18.9 ± 1.8 (stat) ± 1.3 (syst) ± 0.8(B)

) × 10−2,

B(B0 → χc1K∗0)

B(B0 → J/ψK∗0)
= (

19.8 ± 1.1 (stat) ± 1.2 (syst) ± 0.9(B)
) × 10−2,

B(B0 → χc2K∗0)

B(B0 → χc1K∗0)
= (

17.1 ± 5.0 (stat) ± 1.7 (syst) ± 1.1(B)
) × 10−2,

where the third uncertainty is due to the limited knowledge of the branching fractions of χc → J/ψγ modes.
© 2013 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

Two-body B-meson decays into a final states containing charmonium meson have played
a crucial role in the observation of CP violation in the B-meson system. These decay modes
also provide a sensitive laboratory for studying the effects of the strong interaction. Such de-
cays are expected to proceed predominantly via the colour-suppressed tree diagram involving
b → ccs transition shown in Fig. 1. Under the factorization hypothesis the branching ratios
of the B0

(s) → χc0,2X decays, where X denotes a K∗0 or a φ meson, are expected to be small
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Fig. 1. Leading-order tree level diagram for the B0
(s) → χcX decays.

in comparison to B0
(s) → χc1X decays [1]. However, non-factorizable contributions may be

large [1]; the branching fraction for the B0 → χc0K∗0 decay was measured by the BaBar Col-
laboration to be (1.7 ± 0.3 ± 0.2) × 10−4 [2] while the branching fraction for the B0 → χc1K∗0

decay was measured by the BaBar and Belle Collaborations to be (2.5 ± 0.2 ± 0.2) × 10−4 [3]
and (1.73+0.15+0.34

−0.12−0.22)×10−4 [4], respectively. The branching fraction for the decay B0 → χc2K∗0

has been measured by the BaBar Collaboration to be (6.6 ± 1.8 ± 0.5) × 10−5 [3] and, unlike
the branching fraction for the B0 → χc0K∗0 decay, can still be explained in the factorization ap-
proach [5]. Therefore, future measurements of the branching fractions of both B0 → χc1K∗0 and
B0 → χc2K∗0 decays can provide valuable information for the understanding of the production
of χc states in B meson decays, where χc denotes χc1 and χc2 states. The decay modes B0

s → χcφ

have not been observed previously.
In this paper, the first observation of the decay B0

s → χc1φ and a study of the B0 → χc1,2K∗0

decays are presented. The analysis is based on a data sample, corresponding to an integrated
luminosity of 1.0 fb−1, collected with the LHCb detector in pp collisions at a centre-of-mass
energy of 7 TeV.

2. LHCb detector

The LHCb detector [6] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector in-
cludes a high precision tracking system consisting of a silicon-strip vertex detector surrounding
the pp interaction region, a large-area silicon-strip detector located upstream of a dipole mag-
net with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw
drift tubes placed downstream. The combined tracking system has momentum resolution �p/p

that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and impact parameter resolution of
20 µm for tracks with high transverse momentum (pT). Charged hadrons are identified using two
ring-imaging Cherenkov detectors [7]. Photon, electron and hadron candidates are identified by
a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic
calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating
layers of iron and multiwire proportional chambers [8].

The trigger [9] consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage where a full event reconstruction is ap-
plied. Candidate events are first required to pass a hardware trigger which selects muons with
pT > 1.48 GeV/c. In the subsequent software trigger, at least one of the muons is required to
have both pT > 0.8 GeV/c and impact parameter larger than 100 µm with respect to all of the
primary pp interaction vertices (PVs) in the event. Finally, the two final state muons are required
to form a vertex that is significantly displaced from the PVs.

The analysis technique reported below has been validated using simulated events. The pp
collisions are generated using PYTHIA 6.4 [10] with a specific LHCb configuration [11]. Decays
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of hadronic particles are described by EVTGEN [12] in which final state radiation is generated
using PHOTOS [13]. The interaction of the generated particles with the detector and its response
are implemented using the GEANT4 toolkit [14,15] as described in Ref. [16].

3. Event selection

The decays B0 → χcK∗0 and B0
s → χcφ (the inclusion of charged conjugate processes

is implied throughout) are reconstructed using the χc → J/ψγ decay mode. The decays
B0 → J/ψK∗0 and B0

s → J/ψφ are used as normalization channels. The intermediate resonances
are reconstructed in the J/ψ → μ+μ−, K∗0 → K+π− and φ → K+K− final states.

As in Refs. [17–19], pairs of oppositely-charged tracks identified as muons, each having
pT > 0.55 GeV/c and originating from a common vertex, are combined to form J/ψ → μ+μ−
candidates. Track quality is ensured by requiring the χ2 per number of degrees of freedom
(χ2/ndf) provided by the track fit to be less than 5. Well identified muons are selected by re-
quiring that the difference in logarithms of the likelihood of the muon hypothesis with respect to
the hadron hypothesis is larger than zero [8]. The fit of the common two-prong vertex is required
to satisfy χ2/ndf < 20. The vertex is required to be well separated from the reconstructed pri-
mary vertex of any of the pp interactions by requiring the decay length to be at least three times
its uncertainty. Finally, the invariant mass of the dimuon combination is required to be between
3.020 and 3.135 GeV/c2.

To create χc candidates, the selected J/ψ candidates are combined with a photon that has
been reconstructed using clusters in the electromagnetic calorimeter that have transverse energy
greater than 0.7 GeV. To suppress the large combinatorial background from π0 → γ γ decays,
photons that can form part of a π0 → γ γ candidate with invariant mass within 10 MeV/c2 of
the known π0 mass [20] are not used for reconstruction of χc candidates. To be considered as
a χc, the J/ψγ combination needs to have a transverse momentum larger than 3 GeV/c and an
invariant mass in the range 3.4–3.7 GeV/c2.

The selected χc and J/ψ candidates are then combined with K+π− or K+K− pairs to create
B0

(s) meson candidates. To identify kaons (pions), the difference in logarithm of the likelihood
of the kaon and pion hypotheses [7] is required to be greater than (less than) zero. The track
χ2/ndf provided by the track fit is required to be less than 5. The kaons and pions are required
to have transverse momentum larger than 0.8 GeV/c and to have an impact parameter χ2, de-
fined as the difference between the χ2 of the reconstructed pp collision vertex formed with and
without the considered track, larger than 4. The invariant mass of the kaon and pion system,
MK+π− , is required to be 0.675 < MK+π− < 1.215 GeV/c2 and the invariant mass of the kaon
pair, MK+K− , is required to be 0.999 < MK+K− < 1.051 GeV/c2. In the reconstruction of K∗0

candidates, a possible background arises from φ → K+K− decays when a kaon is misidentified
as a pion. To suppress this contribution, the invariant mass of the kaon and pion system, calcu-
lated under the kaon mass hypothesis for the pion track, is required to be outside the range from
1.01 to 1.03 GeV/c2.

In addition, the decay time of B candidates is required to be larger than 150 µm/c to reduce
the large combinatorial background from particles produced in the primary pp interaction. To im-
prove the invariant mass resolution of the B0

(s) meson candidate a kinematic fit [21] is performed.
In this fit, constraints are applied to the masses of the intermediate J/ψ and χc resonances [20]
and it is also required that the B0

(s) meson candidate momentum vector points to the primary

vertex. The χ2/ndf for this fit is required to be less than 5.
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Fig. 2. Invariant mass distributions for: (a) B0 → χcK∗0 and (b) B0
s → χc1φ candidates with χc1 mass constraint;

(c) B0 → χcK∗0 and (d) B0
s → χc1φ candidates with χc2 mass constraint. The total fitted function (thick solid blue),

signal for the χc1 and χc2 modes (thin green solid and dotted, respectively) and the combinatorial background (dashed
blue) are shown.

4. B0 → χcK∗0 and B0
s → χc1φ decays

The invariant mass distributions after selecting B0 → χcK∗0 and B0
s → χc1φ candidates, sep-

arately with a χc1 and χc2 mass constraints, are shown in Fig. 2. The signal is modelled by a
single Gaussian function and the combinatorial background is modelled by an exponential func-
tion. In the B0 channel (Figs. 2(a) and (c)), the right peak in the mass distributions corresponds
to the χc1 mode and the left one to the χc2 mode. Owing to the small χc0 → J/ψγ branching
fraction [20] the contribution from the χc0 mode is negligible. As the B0 candidate mass is cal-
culated with the J/ψγ invariant mass constrained to the χc1 (χc2) known mass, the signal peak
corresponding to the χc2 (χc1) mode is shifted to a lower (higher) value with respect to the B0

mass. The same effect is observed in simulation. The ratio of the mass resolutions of these two
signal peaks is fixed to the value obtained from simulation. In the B0

s channel no significant con-
tribution from the χc2 decay mode is expected and therefore it is not considered in the fit. The

statistical significance for the observed signal is determined as S =
√

−2 ln LB
LS+B

, where LS+B

and LB denote the likelihood of the signal plus background hypothesis and the background only
hypothesis, respectively. The statistical significance of the B0

s → χc1φ signal is found to be larger
than 9 standard deviations.

The positions and resolutions of the signal peaks are consistent with the expectations from
simulation. To investigate the different signal yields obtained with the χc1 and χc2 mass con-
straints, a simplified simulation study was performed, which accounts for correlations, differ-
ences in selection efficiencies and background fluctuations. This study demonstrates that the
yields are in agreement within the statistical uncertainty.

To examine the resonance structure of the B0 → χcK∗0 and B0
s → χc1φ decays, the sPlot

technique [22] was used with weights determined from the B0
(s) candidate invariant mass fits de-

scribed above. The invariant mass distributions for each signal component are obtained. For the
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Fig. 3. Background-subtracted invariant mass distributions for: (a) J/ψγ and (b) K+π− final states from B0 → χc1K∗0

decays obtained with the χc1 mass constraint applied to the B0
(s) candidate invariant mass; (c) J/ψγ and (d) K+π− final

states from B0 → χc2K∗0 decays obtained with the χc2 mass constraint applied to the B0
(s) candidate invariant mass;

(e) J/ψγ and (f) K+K− final states from B0
s → χc1φ decays obtained with the χc1 mass constraint applied to the B0

(s)
candidate invariant mass. The total fitted function (solid) and the non-resonant contribution (dotted) are shown.

J/ψγ invariant mass distributions the requirement on the invariant mass of the K+π−(K+K−)
system is tightened to be within 50(10) MeV/c2 around the known K∗0(φ) mass to reduce back-
ground.

The resulting invariant mass distributions for J/ψγ , K+π− and K+K− from B0 → χcK∗0

and B0
s → χc1φ candidates are shown in Fig. 3. The J/ψγ invariant mass distributions are mod-

elled with the sum of a constant and a Crystal Ball function [23] with tail parameters fixed to
simulation. In the χc2 mode the signal peak position is fixed to the sum of the χc1 peak po-
sition and the known difference between χc1 and χc2 masses [20]. The χc2 mass resolution is
fixed to the χc1 mass resolution multiplied by a scale factor determined using simulation. The
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Table 1
Signal yields for the B decays.

Decay Yield

B0 → χc1K∗0 566±31
B0 → χc2K∗0 66±19
B0

s → χc1φ 146±14
B0 → J/ψK∗0 56,707±279
B0

s → J/ψφ 15,027±139

Fig. 4. Invariant mass distributions for (a) B0 → J/ψK∗0 and (b) B0
s → J/ψφ. The total fitted function (thick solid blue),

signal (thin solid green), the B0
s → J/ψK∗0 (green dotted) and the combinatorial background (dashed blue) are shown.

K+π− and K+K− invariant mass distributions are modelled with the sum of a relativistic P-wave
Breit–Wigner function with the natural width fixed to the known value [20] and a non-resonant
component modelled with the LASS parametrization [24]. For the K+K− case the relativistic
P-wave Breit–Wigner function is convolved with a Gaussian function for the detector resolution.

The signal peak positions are consistent with the known masses of the mesons while the invari-
ant mass resolutions are consistent with the expectation from simulation. In the J/ψγ invariant
mass distributions, the non-resonant contribution is consistent with zero. The resonant contribu-
tions for the B0 → χc1K∗0 and B0

s → χc1φ decays are determined with the χc1 mass constraint
while the resonant contribution for the B0 → χc2K∗0 decay is determined with the χc2 mass con-
straint. The resulting resonant yields, obtained from the fits to the background-subtracted K+π−
and K+K− distributions, are shown in Table 1.

5. B0 → J/ψK∗0 and B0
s → J/ψφ decays

The B0 → χcK∗0 and B0
s → χc1φ branching fractions are measured with respect to the

B0 → J/ψK∗0 and B0
s → J/ψφ decays to reduce the systematic uncertainties. The invariant mass

distributions for the B0 → J/ψK∗0 and B0
s → J/ψφ candidates after selection requirements are

shown in Fig. 4. The signal and the B0
s → J/ψK∗0 invariant mass distributions are modelled by

a double-sided Crystal Ball function and the combinatorial background is modelled by an ex-
ponential function. The parameters of the B0

s peak are fixed to be the same as those of the B0

peak except the position and yield. The difference between the B0 → J/ψK∗0 and B0
s → J/ψK∗0

peak positions is fixed to the world average [20]. The positions of the signal peaks are consis-
tent with the known masses of the B0

(s) mesons [20] and the mass resolutions are consistent with
expectations from simulation.

The resonant contributions in the B0 → J/ψK∗0 and B0
s → J/ψφ decays are determined us-

ing the sPlot technique with the same method as that used for the B0 → χcK∗0 and B0
s → χcφ
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Fig. 5. Background-subtracted invariant mass distributions for (a) K+π− combinations from B0 → J/ψK∗0 decays and
(b) K+K− combination from B0

s → J/ψφ decays. The total fitted function (solid) and the non-resonant contribution
(dotted) are shown.

Table 2
Total efficiencies for all decay modes. Uncertainties
are statistical only and reflect the size of the simula-
tion sample.

Decay Efficiency [10−4]
B0 → χc1K∗0 7.89±0.12
B0 → χc2K∗0 9.45±0.13
B0

s → χc1φ 12.7±0.2
B0 → J/ψK∗0 53.9±0.3
B0

s → J/ψφ 85.1±0.4

decays. The resulting K+π− and K+K− invariant mass distributions from B0 → J/ψK∗0 and
B0

s → J/ψφ candidates are shown in Fig. 5. The resulting resonant yields are summarized in Ta-
ble 1. The S-wave contributions are consistent with those considered in other analyses [17,25,26].

6. Efficiencies and systematic uncertainties

The branching fraction ratios are calculated using the formulas

B(B → χc1X)

B(B → J/ψX)
= NB→χc1X

NB→J/ψX
× εB→J/ψX

εB→χc1X
× 1

B(χc1 → J/ψγ )
,

B(B → χc2X)

B(B → χc1X)
= NB→χc2X

NB→χc1X
× εB→χc1X

εB→χc2X
× B(χc1 → J/ψγ )

B(χc2 → J/ψγ )
, (1)

where N represents the measured yield and ε represents the total efficiency. The total efficiency
is the product of the geometrical acceptance, the detection, reconstruction, selection and trigger
efficiencies. The efficiencies are derived using simulation and are presented in Table 2.

Most potential sources of systematic uncertainty cancel in the ratio, in particular, those related
to the muon and J/ψ reconstruction and identification. The remaining systematic uncertainties
are summarized in Table 3 and each is now discussed in turn.

Systematic uncertainties related to the signal determination procedure are estimated using a
number of alternative options. For each of the alternatives the ratio of event yields is calculated
and the systematic uncertainty is then determined as the maximum deviation of this ratio from
the ratio obtained with the baseline model. For the B0 meson decays a fit with a second-order
(s)
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Table 3
Relative systematic uncertainties (in %) on the ratio of branching fractions.

Source B(B0
s →χc1φ)

B(B0
s →J/ψφ)

B(B0→χc1K∗0)

B(B0→J/ψK∗0)

B(B0→χc2K∗0)

B(B0→χc1K∗0)

Signal determination 5 3 9
Efficiencies from simulation 3 3 3
Photon reconstruction 4 4 –
Trigger 1 1 1

Sum in quadrature 7 6 10

polynomial for the combinatorial background description, a fit with a Crystal Ball [23] function
for the signal peaks and fit over different ranges of invariant mass are used. In the B0

s channel
a fit including the χc2 decay mode is also performed. For the K+π− and K+K− combinations
the fits are repeated, modelling the background with an S-wave two-body phase-space function
or an S-wave two-body phase-space function multiplied by a linear function. The K+π− and
K+K− invariant mass ranges and the bin size are also varied. The resulting uncertainties are
3% on B(B0 → χc1K∗0)/B(B0 → J/ψK∗0), 5% on B(B0

s → χc1φ)/B(B0
s → J/ψφ), and 9% on

B(B0 → χc2K∗0)/B(B0 → χc1K∗0).
Another important source of systematic uncertainty arises from the potential disagreement

between data and simulation in the estimation of efficiencies. To study this source of uncertainty,
the selection criteria are varied in ranges corresponding to as much as 30% change in the signal
yields and the ratios of the selection and reconstruction efficiencies are compared between data
and simulation. The largest difference (3%) is assigned as a systematic uncertainty in each mode.

A further source of possible disagreement between data and simulation is the photon re-
construction efficiency. As in Ref. [18], the photon reconstruction efficiency has been stud-
ied using B+ → J/ψK∗+, followed by K∗+ → K+π0 and π0 → γ γ decays. For photons
with transverse momentum greater than 0.7 GeV/c the agreement between data and sim-
ulation is at the level of 4%, which is assigned as a systematic uncertainty to the ratios
B(B0 → χc1K∗0)/B(B0 → J/ψK∗0) and B(B0

s → χc1φ)/B(B0
s → J/ψφ). As the transverse mo-

mentum spectra of photons are similar in B0 → χc1K∗0 and B0 → χc2K∗0 decays, this systematic
uncertainty cancels in the ratio B(B0 → χc2K∗0)/B(B0 → χc1K∗0).

The systematic uncertainty related to the trigger efficiency has been obtained by comparing
the trigger efficiency ratios in data and simulation for the high yield decay modes B+ → J/ψK+
and B+ → ψ(2S)K+ which have similar kinematics and the same trigger requirements as the
channels under study in this analysis [17]. An agreement within 1% is found, which is assigned
as systematic uncertainty.

The uncertainty due to the finite simulation sample size is included in the statistical uncer-
tainty of the result by adding it in quadrature to the statistical uncertainty on the ratio of yields.

7. Results and summary

The first observation of the B0
s → χc1φ decay has been made with a data sample, correspond-

ing to an integrated luminosity of 1.0 fb−1 of pp collisions at a centre-of-mass energy of 7 TeV,
collected with the LHCb detector. Its branching fraction, normalized to that of the B0

s → J/ψφ

decay and using the known value B(χc1 → J/ψγ ) = (34.4 ± 1.5)% [20], is measured to be
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B(B0
s → χc1φ)

B(B0
s → J/ψφ)

= (
6.51 ± 0.64 (stat) ± 0.46 (syst)

) × 10−2 × 1

B(χc1 → J/ψγ )

= (
18.9 ± 1.8 (stat) ± 1.3 (syst) ± 0.8 (B)

) × 10−2,

where the third uncertainty corresponds to the uncertainty on the branching fraction of the χc1 →
J/ψγ decay. Using the same dataset, the ratio of the branching fractions of the B0 → χc1K∗0

and B0 → J/ψK∗0 modes and the ratio of the branching fractions of the B0 → χc2K∗0 and
B0 → χc1K∗0 modes have been measured. The ratios are determined using Eq. (1) and the known
value B(χc1→J/ψγ )

B(χc2→J/ψγ )
= (34.4±1.5)%

(19.5±0.8)% = 1.76 ± 0.11 [20] and are

B(B0 → χc1K∗0)

B(B0 → J/ψK∗0)
= (

6.82 ± 0.39 (stat) ± 0.41 (syst)
) × 10−2 × 1

B(χc1 → J/ψγ )

= (
19.8 ± 1.1 (stat) ± 1.2 (syst) ± 0.9 (B)

) × 10−2,

B(B0 → χc2K∗0)

B(B0 → χc1K∗0)
= (

9.74 ± 2.86 (stat) ± 0.97 (syst)
) × 10−2 × B(χc1 → J/ψγ )

B(χc2 → J/ψγ )

= (
17.1 ± 5.0 (stat) ± 1.7 (syst) ± 1.1 (B)

) × 10−2,

where the third uncertainty is due to the uncertainty on the branching fractions of the χc → J/ψγ

modes.
The ratio B(B0 → χc1K∗0)/B(B0 → J/ψK∗0) obtained in this paper is compatible with, but

more precise than, the previous best value of (17.2+3.6
−3.0)×10−2 determined from the world av-

erage value B(B0 → χc1K∗0) = (2.22+0.40
−0.31) × 10−4 [20] and the branching fraction B(B0 →

J/ψK∗0) = (1.29 ± 0.05 ± 0.13) × 10−3 measured by the Belle Collaboration [27]. Other mea-
surements of B(B0 → J/ψK∗0) are not considered as they do not take into account the K+π−
S-wave component. The ratio B(B0 → χc2K∗0)/B(B0 → χc1K∗0) obtained in this paper is com-
patible with the value derived from BaBar measurements, (26 ± 7(stat)) × 10−2 [3], taking only
the statistical uncertainties into account.
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