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Abstract

The first observation of the decay B0
s → χc1φ and a study of B0 → χc1,2K

∗0 decays
are presented. The analysis is performed using a dataset, corresponding to an
integrated luminosity of 1.0 fb−1, collected by the LHCb experiment in pp collisions
at a centre-of-mass energy of 7 TeV. The following ratios of branching fractions are
measured:

B(B0
s → χc1φ)

B(B0
s → J/ψφ)

= (18.9 ± 1.8 (stat)± 1.3 (syst)± 0.8 (B))× 10−2,

B(B0 → χc1K
∗0)

B(B0 → J/ψK∗0)
= (19.8 ± 1.1 (stat)± 1.2 (syst)± 0.9 (B))× 10−2,

B(B0 → χc2K
∗0)

B(B0 → χc1K∗0)
= (17.1 ± 5.0 (stat)± 1.7 (syst)± 1.1 (B))× 10−2,

where the third uncertainty is due to the limited knowledge of the branching fractions
of χc → J/ψγ modes.
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C. Göbel59, D. Golubkov30, A. Golutvin52,30,37, A. Gomes2, H. Gordon54,
M. Grabalosa Gándara5, R. Graciani Diaz35, L.A. Granado Cardoso37, E. Graugés35,
G. Graziani17, A. Grecu28, E. Greening54, S. Gregson46, P. Griffith44, O. Grünberg60, B. Gui58,
E. Gushchin32, Yu. Guz34,37, T. Gys37, C. Hadjivasiliou58, G. Haefeli38, C. Haen37,
S.C. Haines46, S. Hall52, B. Hamilton57, T. Hampson45, S. Hansmann-Menzemer11, N. Harnew54,
S.T. Harnew45, J. Harrison53, T. Hartmann60, J. He37, T. Head37, V. Heijne40, K. Hennessy51,
P. Henrard5, J.A. Hernando Morata36, E. van Herwijnen37, A. Hicheur1, E. Hicks51, D. Hill54,
M. Hoballah5, M. Holtrop40, C. Hombach53, P. Hopchev4, W. Hulsbergen40, P. Hunt54,
T. Huse51, N. Hussain54, D. Hutchcroft51, D. Hynds50, V. Iakovenko43, M. Idzik26, P. Ilten12,

iii



R. Jacobsson37, A. Jaeger11, E. Jans40, P. Jaton38, A. Jawahery57, F. Jing3, M. John54,
D. Johnson54, C.R. Jones46, C. Joram37, B. Jost37, M. Kaballo9, S. Kandybei42, W. Kanso6,
M. Karacson37, T.M. Karbach37, I.R. Kenyon44, T. Ketel41, A. Keune38, B. Khanji20,
O. Kochebina7, I. Komarov38, R.F. Koopman41, P. Koppenburg40, M. Korolev31,
A. Kozlinskiy40, L. Kravchuk32, K. Kreplin11, M. Kreps47, G. Krocker11, P. Krokovny33,
F. Kruse9, M. Kucharczyk20,25,j , V. Kudryavtsev33, T. Kvaratskheliya30,37, V.N. La Thi38,
D. Lacarrere37, G. Lafferty53, A. Lai15, D. Lambert49, R.W. Lambert41, E. Lanciotti37,
G. Lanfranchi18, C. Langenbruch37, T. Latham47, C. Lazzeroni44, R. Le Gac6, J. van Leerdam40,
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kUniversità di Roma Tor Vergata, Roma, Italy
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1 Introduction

Two-body B-meson decays into a final states containing charmonium meson have played a
crucial role in the observation of CP violation in the B-meson system. These decay modes
also provide a sensitive laboratory for studying the effects of the strong interaction. Such
decays are expected to proceed predominantly via the colour-suppressed tree diagram
involving b → ccs transition shown in Fig. 1. Under the factorization hypothesis the
branching ratios of the B0

(s) → χc0,2X decays, where X denotes a K∗0 or a φ meson, are

expected to be small in comparison to B0
(s) → χc1X decays [1]. However, non-factorizable

contributions may be large [1]; the branching fraction for the B0 → χc0K
∗0 decay was

measured by the BaBar collaboration to be (1.7± 0.3± 0.2)× 10−4 [2] while the branching
fraction for the B0 → χc1K

∗0 decay was measured by the BaBar and Belle collaborations
to be (2.5± 0.2± 0.2)× 10−4 [3] and (1.73+0.15+0.34

−0.12−0.22)× 10−4 [4], respectively. The branching
fraction for the decay B0 → χc2K

∗0 has been measured by the BaBar collaboration to be
(6.6± 1.8± 0.5)× 10−5 [3] and, unlike the branching fraction for the B0 → χc0K

∗0 decay,
can still be explained in the factorization approach [5]. Therefore, future measurements
of the branching fractions of both B0 → χc1K

∗0 and B0 → χc2K
∗0 decays can provide

valuable information for the understanding of the production of χc states in B meson
decays, where χc denotes χc1 and χc2 states. The decay modes B0

s → χcφ have not been
observed previously.

W+B0
(s)



b

d(s)

c
c

}
χc

s
d(s)

}
K∗0(φ)

Figure 1: Leading-order tree level diagram for the B0
(s) → χcX decays.

In this paper, the first observation of the decay B0
s → χc1φ and a study of the

B0 → χc1,2K
∗0 decays are presented. The analysis is based on a data sample, corresponding

to an integrated luminosity of 1.0 fb−1, collected with the LHCb detector in pp collisions
at a centre-of-mass energy of 7 TeV.

2 LHCb detector

The LHCb detector [6] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector
includes a high precision tracking system consisting of a silicon-strip vertex detector
surrounding the pp interaction region, a large-area silicon-strip detector located upstream
of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip
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detectors and straw drift tubes placed downstream. The combined tracking system has
momentum resolution ∆p/p that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and
impact parameter resolution of 20µm for tracks with high transverse momentum (pT).
Charged hadrons are identified using two ring-imaging Cherenkov detectors [7]. Photon,
electron and hadron candidates are identified by a calorimeter system consisting of
scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic
calorimeter. Muons are identified by a system composed of alternating layers of iron and
multiwire proportional chambers [8].

The trigger [9] consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage where a full event reconstruction is applied.
Candidate events are first required to pass a hardware trigger which selects muons with
pT > 1.48 GeV/c. In the subsequent software trigger, at least one of the muons is required
to have both pT > 0.8 GeV/c and impact parameter larger than 100µm with respect to
all of the primary pp interaction vertices (PVs) in the event. Finally, the two final state
muons are required to form a vertex that is significantly displaced from the PVs.

The analysis technique reported below has been validated using simulated events. The
pp collisions are generated using Pythia 6.4 [10] with a specific LHCb configuration [11].
Decays of hadronic particles are described by EvtGen [12] in which final state radiation
is generated using Photos [13]. The interaction of the generated particles with the
detector and its response are implemented using the Geant4 toolkit [14, 15] as described
in Ref. [16].

3 Event selection

The decays B0 → χcK
∗0 and B0

s → χcφ (the inclusion of charged conjugate processes is
implied throughout) are reconstructed using the χc → J/ψγ decay mode. The decays
B0 → J/ψK∗0 and B0

s → J/ψφ are used as normalization channels. The intermediate
resonances are reconstructed in the J/ψ → µ+µ−, K∗0 → K+π− and φ→ K+K− final
states.

As in Refs. [17–19], pairs of oppositely-charged tracks identified as muons, each having
pT > 0.55 GeV/c and originating from a common vertex, are combined to form J/ψ → µ+µ−

candidates. Track quality is ensured by requiring the χ2 per number of degrees of freedom
(χ2/ndf) provided by the track fit to be less than 5. Well identified muons are selected by
requiring that the difference in logarithms of the likelihood of the muon hypothesis with
respect to the hadron hypothesis is larger than zero [8]. The fit of the common two-prong
vertex is required to satisfy χ2/ndf < 20. The vertex is required to be well separated
from the reconstructed primary vertex of any of the pp interactions by requiring the decay
length to be at least three times its uncertainty. Finally, the invariant mass of the dimuon
combination is required to be between 3.020 and 3.135 GeV/c2.

To create χc candidates, the selected J/ψ candidates are combined with a photon
that has been reconstructed using clusters in the electromagnetic calorimeter that have
transverse energy greater than 0.7 GeV. To suppress the large combinatorial background
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from π0 → γγ decays, photons that can form part of a π0 → γγ candidate with invariant
mass within 10 MeV/c2 of the known π0 mass [20] are not used for reconstruction of χc
candidates. To be considered as a χc, the J/ψγ combination needs to have a transverse
momentum larger than 3 GeV/c and an invariant mass in the range 3.4 – 3.7 GeV/c2.

The selected χc and J/ψ candidates are then combined with K+π− or K+K− pairs to
create B0

(s) meson candidates. To identify kaons (pions), the difference in logarithm of the

likelihood of the kaon and pion hypotheses [7] is required to be greater than (less than) zero.
The track χ2/ndf provided by the track fit is required to be less than 5. The kaons and pions
are required to have transverse momentum larger than 0.8 GeV/c and to have an impact
parameter χ2, defined as the difference between the χ2 of the reconstructed pp collision
vertex formed with and without the considered track, larger than 4. The invariant mass of
the kaon and pion system, MK+π− , is required to be 0.675 < MK+π− < 1.215 GeV/c2 and the
invariant mass of the kaon pair, MK+K− , is required to be 0.999 < MK+K− < 1.051 GeV/c2.
In the reconstruction of K∗0 candidates, a possible background arises from φ→ K+K−

decays when a kaon is misidentified as a pion. To suppress this contribution, the invariant
mass of the kaon and pion system, calculated under the kaon mass hypothesis for the pion
track, is required to be outside the range from 1.01 to 1.03 GeV/c2.

In addition, the decay time of B candidates is required to be larger than 150µm/c
to reduce the large combinatorial background from particles produced in the primary
pp interaction. To improve the invariant mass resolution of the B0

(s) meson candidate

a kinematic fit [21] is performed. In this fit, constraints are applied to the masses of
the intermediate J/ψ and χc resonances [20] and it is also required that the B0

(s) meson

candidate momentum vector points to the primary vertex. The χ2/ndf for this fit is
required to be less than 5.

4 B0→χcK
∗0 and B0

s→χc1φ decays

The invariant mass distributions after selecting B0 → χcK
∗0 and B0

s → χc1φ candidates,
separately with a χc1 and χc2 mass constraints, are shown in Fig. 2. The signal is
modelled by a single Gaussian function and the combinatorial background is modelled by
an exponential function. In the B0 channel (Figs. 2(a) and (c)), the right peak in the mass
distributions corresponds to the χc1 mode and the left one to the χc2 mode. Owing to the
small χc0 → J/ψγ branching fraction [20] the contribution from the χc0 mode is negligible.
As the B0 candidate mass is calculated with the J/ψγ invariant mass constrained to the
χc1 (χc2) known mass, the signal peak corresponding to the χc2 (χc1) mode is shifted to a
lower (higher) value with respect to the B0 mass. The same effect is observed in simulation.
The ratio of the mass resolutions of these two signal peaks is fixed to the value obtained
from simulation. In the B0

s channel no significant contribution from the χc2 decay mode
is expected and therefore it is not considered in the fit. The statistical significance for

the observed signal is determined as S =
√
−2 ln LB

LS+B
, where LS+B and LB denote the

likelihood of the signal plus background hypothesis and the background only hypothesis,
respectively. The statistical significance of the B0

s → χc1φ signal is found to be larger than
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Figure 2: Invariant mass distributions for: (a) B0 → χcK
∗0 and (b) B0

s → χc1φ candidates with
χc1 mass constraint; (c) B0 → χcK

∗0 and (d) B0
s → χc1φ candidates with χc2 mass constraint.

The total fitted function (thick solid blue), signal for the χc1 and χc2 modes (thin green solid
and dotted, respectively) and the combinatorial background (dashed blue) are shown.

9 standard deviations.
The positions and resolutions of the signal peaks are consistent with the expectations

from simulation. To investigate the different signal yields obtained with the χc1 and
χc2 mass constraints, a simplified simulation study was performed, which accounts for
correlations, differences in selection efficiencies and background fluctuations. This study
demonstrates that the yields are in agreement within the statistical uncertainty.

To examine the resonance structure of the B0 → χcK
∗0 and B0

s → χc1φ decays, the
sPlot technique [22] was used with weights determined from the B0

(s) candidate invariant
mass fits described above. The invariant mass distributions for each signal component are
obtained. For the J/ψγ invariant mass distributions the requirement on the invariant mass
of the K+π−(K+K−) system is tightened to be within 50(10) MeV/c2 around the known
K∗0(φ) mass to reduce background.

The resulting invariant mass distributions for J/ψγ, K+π− and K+K− from B0 → χcK
∗0

and B0
s → χc1φ candidates are shown in Fig. 3. The J/ψγ invariant mass distributions are

modelled with the sum of a constant and a Crystal Ball function [23] with tail parameters
fixed to simulation. In the χc2 mode the signal peak position is fixed to the sum of the χc1
peak position and the known difference between χc1 and χc2 masses [20]. The χc2 mass
resolution is fixed to the χc1 mass resolution multiplied by a scale factor determined using
simulation. The K+π− and K+K− invariant mass distributions are modelled with the sum
of a relativistic P-wave Breit-Wigner function with the natural width fixed to the known
value [20] and a non-resonant component modelled with the LASS parametrization [24].
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Figure 3: Background-subtracted invariant mass distributions for: (a) J/ψγ and (b) K+π−

final states from B0 → χc1K
∗0 decays obtained with the χc1 mass constraint applied to the B0

(s)

candidate invariant mass; (c) J/ψγ and (d) K+π− final states from B0 → χc2K∗0 decays obtained
with the χc2 mass constraint applied to the B0

(s) candidate invariant mass; (e) J/ψγ and (f)

K+K− final states from B0
s → χc1φ decays obtained with the χc1 mass constraint applied to the

B0
(s) candidate invariant mass. The total fitted function (solid) and the non-resonant contribution

(dotted) are shown.

For the K+K− case the relativistic P-wave Breit-Wigner function is convolved with a
Gaussian function for the detector resolution.

The signal peak positions are consistent with the known masses of the mesons while
the invariant mass resolutions are consistent with the expectation from simulation. In the
J/ψγ invariant mass distributions, the non-resonant contribution is consistent with zero.
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Figure 4: Invariant mass distributions for (a) B0 → J/ψK∗0 and (b) B0
s → J/ψφ. The total

fitted function (thick solid blue), signal (thin solid green), the B0
s → J/ψK∗0 (green dotted) and

the combinatorial background (dashed blue) are shown.

The resonant contributions for the B0 → χc1K
∗0 and B0

s → χc1φ decays are determined
with the χc1 mass constraint while the resonant contribution for the B0 → χc2K

∗0 decay is
determined with the χc2 mass constraint. The resulting resonant yields, obtained from the
fits to the background-subtracted K+π− and K+K− distributions, are shown in Table 1.

5 B0→J/ψK∗0 and B0
s→J/ψφ decays

The B0 → χcK
∗0 and B0

s → χc1φ branching fractions are measured with respect to the
B0 → J/ψK∗0 and B0

s → J/ψφ decays to reduce the systematic uncertainties. The invariant
mass distributions for the B0 → J/ψK∗0 and B0

s → J/ψφ candidates after selection
requirements are shown in Fig. 4. The signal and the B0

s → J/ψK∗0 invariant mass
distributions are modelled by a double-sided Crystal Ball function and the combinatorial
background is modelled by an exponential function. The parameters of the B0

s peak
are fixed to be the same as those of the B0 peak except the position and yield. The
difference between the B0 → J/ψK∗0 and B0

s → J/ψK∗0 peak positions is fixed to the
world average [20]. The positions of the signal peaks are consistent with the known masses
of the B0

(s) mesons [20] and the mass resolutions are consistent with expectations from
simulation.

Table 1: Signal yields for the B decays.

Decay Yield
B0 → χc1K

∗0 566± 31
B0 → χc2K

∗0 66± 19
B0

s → χc1φ 146± 14
B0 → J/ψK∗0 56,707± 279
B0

s → J/ψφ 15,027± 139
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Figure 5: Background-subtracted invariant mass distributions for (a) K+π− combinations from
B0 → J/ψK∗0 decays and (b) K+K− combination from B0

s → J/ψφ decays. The total fitted
function (solid) and the non-resonant contribution (dotted) are shown.

The resonant contributions in the B0 → J/ψK∗0 and B0
s → J/ψφ decays are determined

using the sPlot technique with the same method as that used for the B0 → χcK
∗0 and

B0
s → χcφ decays. The resulting K+π− and K+K− invariant mass distributions from

B0 → J/ψK∗0 and B0
s → J/ψφ candidates are shown in Fig. 5. The resulting resonant

yields are summarized in Table 1. The S-wave contributions are consistent with those
considered in other analyses [17,25,26].

6 Efficiencies and systematic uncertainties

The branching fraction ratios are calculated using the formulas

B(B→ χc1X)
B(B→ J/ψX)

=
NB→χc1X
NB→J/ψX

× εB→J/ψX
εB→χc1X

× 1
B(χc1 → J/ψγ)

,

B(B→ χc2X)
B(B→ χc1X)

=
NB→χc2X
NB→χc1X

× εB→χc1XεB→χc2X
× B(χc1 → J/ψγ)
B(χc2 → J/ψγ)

,

(1)

where N represents the measured yield and ε represents the total efficiency. The total
efficiency is the product of the geometrical acceptance, the detection, reconstruction,
selection and trigger efficiencies. The efficiencies are derived using simulation and are
presented in Table 2.

Most potential sources of systematic uncertainty cancel in the ratio, in particular, those
related to the muon and J/ψ reconstruction and identification. The remaining systematic
uncertainties are summarized in Table 3 and each is now discussed in turn.

Systematic uncertainties related to the signal determination procedure are estimated
using a number of alternative options. For each of the alternatives the ratio of event yields
is calculated and the systematic uncertainty is then determined as the maximum deviation
of this ratio from the ratio obtained with the baseline model. For the B0

(s) meson decays a
fit with a second-order polynomial for the combinatorial background description, a fit with
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a Crystal Ball [23] function for the signal peaks and fit over different ranges of invariant
mass are used. In the B0

s channel a fit including the χc2 decay mode is also performed. For
the K+π− and K+K− combinations the fits are repeated, modelling the background with
an S-wave two-body phase-space function or an S-wave two-body phase-space function
multiplied by a linear function. The K+π− and K+K− invariant mass ranges and the bin size
are also varied. The resulting uncertainties are 3% on B(B0 → χc1K

∗0)/B(B0 → J/ψK∗0),
5% on B(B0

s → χc1φ)/B(B0
s → J/ψφ), and 9% on B(B0 → χc2K

∗0)/B(B0 → χc1K
∗0).

Another important source of systematic uncertainty arises from the potential disagree-
ment between data and simulation in the estimation of efficiencies. To study this source
of uncertainty, the selection criteria are varied in ranges corresponding to as much as 30%
change in the signal yields and the ratios of the selection and reconstruction efficiencies
are compared between data and simulation. The largest difference (3%) is assigned as a
systematic uncertainty in each mode.

A further source of possible disagreement between data and simulation is the photon
reconstruction efficiency. As in Ref. [18], the photon reconstruction efficiency has been
studied using B+ → J/ψK∗+, followed by K∗+ → K+π0 and π0 → γγ decays. For
photons with transverse momentum greater than 0.7 GeV/c the agreement between data
and simulation is at the level of 4%, which is assigned as a systematic uncertainty to
the ratios B(B0 → χc1K

∗0)/B(B0 → J/ψK∗0) and B(B0
s → χc1φ)/B(B0

s → J/ψφ). As the
transverse momentum spectra of photons are similar in B0 → χc1K

∗0 and B0 → χc2K
∗0

decays, this systematic uncertainty cancels in the ratio B(B0 → χc2K
∗0)/B(B0 → χc1K

∗0).
The systematic uncertainty related to the trigger efficiency has been obtained by

comparing the trigger efficiency ratios in data and simulation for the high yield decay
modes B+ → J/ψK+ and B+ → ψ(2S)K+ which have similar kinematics and the same
trigger requirements as the channels under study in this analysis [17]. An agreement
within 1% is found, which is assigned as systematic uncertainty.

The uncertainty due to the finite simulation sample size is included in the statistical
uncertainty of the result by adding it in quadrature to the statistical uncertainty on the
ratio of yields.

Table 2: Total efficiencies for all decay modes. Uncertainties are statistical only and reflect the
size of the simulation sample.

Decay Efficiency [10−4]
B0 → χc1K

∗0 7.89± 0.12
B0 → χc2K

∗0 9.45± 0.13
B0

s → χc1φ 12.7 ± 0.2
B0 → J/ψK∗0 53.9 ± 0.3
B0

s → J/ψφ 85.1 ± 0.4
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Table 3: Relative systematic uncertainties (in %) on the ratio of branching fractions.

Source B(B0
s→χc1φ)

B(B0
s→J/ψφ)

B(B0→χc1K∗0)
B(B0→J/ψK∗0)

B(B0→χc2K∗0)
B(B0→χc1K∗0)

Signal determination 5 3 9
Efficiencies from simulation 3 3 3
Photon reconstruction 4 4 −
Trigger 1 1 1
Sum in quadrature 7 6 10

7 Results and summary

The first observation of the B0
s → χc1φ decay has been made with a data sample,

corresponding to an integrated luminosity of 1.0 fb−1 of pp collisions at a centre-of-mass
energy of 7 TeV, collected with the LHCb detector. Its branching fraction, normalized
to that of the B0

s → J/ψφ decay and using the known value B(χc1 → J/ψγ) = (34.4 ±
1.5)% [20], is measured to be

B(B0
s → χc1φ)

B(B0
s → J/ψφ)

= (6.51 ± 0.64 (stat)± 0.46 (syst))× 10−2 × 1

B(χc1 → J/ψγ)
=

= (18.9 ± 1.8 (stat)± 1.3 (syst)± 0.8 (B))× 10−2,

where the third uncertainty corresponds to the uncertainty on the branching fraction of
the χc1 → J/ψγ decay. Using the same dataset, the ratio of the branching fractions of
the B0 → χc1K

∗0 and B0 → J/ψK∗0 modes and the ratio of the branching fractions of the
B0 → χc2K

∗0 and B0 → χc1K
∗0 modes have been measured. The ratios are determined

using Eq. 1 and the known value B(χc1→J/ψγ)
B(χc2→J/ψγ)

= (34.4±1.5)%
(19.5±0.8)% = 1.76± 0.11 [20] and are

B(B0 → χc1K
∗0)

B(B0 → J/ψK∗0)
= (6.82 ± 0.39 (stat)± 0.41 (syst))× 10−2 × 1

B(χc1 → J/ψγ)
=

= (19.8 ± 1.1 (stat)± 1.2 (syst)± 0.9 (B))× 10−2,

B(B0 → χc2K
∗0)

B(B0 → χc1K∗0)
= (9.74 ± 2.86 (stat)± 0.97 (syst))× 10−2 × B(χc1 → J/ψγ)

B(χc2 → J/ψγ)
=

= (17.1 ± 5.0 (stat)± 1.7 (syst)± 1.1 (B))× 10−2,

where the third uncertainty is due to the uncertainty on the branching fractions of the
χc → J/ψγ modes.

The ratio B(B0 → χc1K
∗0)/B(B0 → J/ψK∗0) obtained in this paper is compatible with,

but more precise than, the previous best value of (17.2+3.6
−3.0)×10−2 determined from the

world average value B(B0 → χc1K
∗0) = (2.22+0.40

−0.31)× 10−4 [20] and the branching fraction
B(B0 → J/ψK∗0) = (1.29± 0.05± 0.13)× 10−3 measured by the Belle collaboration [27].
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Other measurements of B(B0 → J/ψK∗0) are not considered as they do not take into account
the K+π− S-wave component. The ratio B(B0 → χc2K

∗0)/B(B0 → χc1K
∗0) obtained in

this paper is compatible with the value derived from BaBar measurements, (26±7(stat))×
10−2 [3], taking only the statistical uncertainties into account.
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