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ABSTRACT: Beam studies of thin single- and double-stage THGEM-baseddetectors are presented.
Several 10×10cm2 configurations with a total thickness of 5–6 mm (excluding readout electron-
ics), with 1×1cm2 pads inductively coupled through a resistive layer to APV-SRS readout elec-
tronics, were investigated with muons and pions. Detectionefficiencies in the 98% range were
recorded with an average pad-multiplicity of∼ 1.1. The resistive anode resulted in efficient dis-
charge damping, with few-volt potential drops; discharge probabilities were∼ 10−7 for muons and
10−6 for pions in the double-stage configuration, at rates of a fewkHz

cm2 . These results, together with
the robustness of THGEM electrodes against spark damage andtheir suitability for economic pro-
duction over large areas, make THGEM-based detectors highly competitive compared to the other
technologies considered for the SiD-DHCAL.
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1 Introduction

The Thick Gas Electron Multiplier (THGEM) [1] is a simple, robust and economic detector ele-
ment; it can be industrially produced over large areas usingstandard Printed Circuit Board (PCB)
technologies. Its properties and potential applications are reviewed in [2, 3]; for recent works on
THGEM properties in normal operation conditions see [4–7]. In the last few years, a considerable
R&D effort was undertaken to evaluate the applicability of THGEM-based detectors as thin sam-
pling elements in Digital Hadronic Calorimeters (DHCAL). The effort focused, in particular, on
the DHCAL of the Silicon Detector (SiD) [8]. However, since THGEM detectors provide propor-
tional response, they are also applicable in the semi-DHCALconcept [9]; in the latter, different
threshold levels applied to the deposited-charge signals should permit reducing hadronic-response
non-linearities.

SiD is one of the two detector concepts studied for future linear collider, either the International
Linear Collider (ILC) [9] or the Compact Linear Collider (CLIC) [10]. In its present design, the
SiD DHCAL will require a total active area of a few thousand square meters of a few-millimetres
thick sampling elements [8]. The expected average particle rates at the DHCAL are of∼ 1 kHz

cm2 .
The ambitious physics program of both the ILC and CLIC requires excellent, 3–4%, jet energy

resolution (defined asσE
E , where E is the true jet energy andσE is the resolution of the energy

measurement). In order to achieve this resolution, the SiD DHCAL is designed to employ Particle
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Figure 1. Schematic description of Segmented Resistive Well THGEM (SRWELL) coupled to a readout
pad array.

Flow Algorithms (PFAs) [11], and is thus highly segmented in both the longitudinal and transverse
directions. Its baseline design comprises of 40–50 layers of absorber plates (either stainless steel
or tungsten) separated by 8 mm gaps, which should incorporate the active sampling elements with
their 1× 1cm2 pixels and readout electronics [8]. High single-particle detection efficiency and
low average pad-multiplicity (number of pads activated percrossing particle) are essential in this
application.

Active elements utilizing 3–5 mm thick Resistive Plate Chambers (RPCs), excluding readout
electronics, are the baseline technology for the SiD hadronic calorimeter [12, 13]. They were al-
ready tested at the level of a 1m3 instrumented block with digital readout electronics and yielded
so far an average pad multiplicity of∼ 1.6 at 94% efficiency with muons [14]. Detection ele-
ments based on the MICRO MEsh GAseous Structure (MICROMEGAS), tested with muons at
1m2 units, displayed superior properties (with a thickness of∼ 3.1 mm, excluding the MICRO-
ROC electronics [15]): 97% efficiency with a 1.1 average multiplicity [16]. Detector prototype
using 30× 30cm2 double Gas Electron Multipliers (double-GEMs) of 5 mm thickness excluding
the KPiX readout electronics [17], yielded a multiplicity of 1.3 at 95% efficiency with muons [18].

THGEM-based structures were proposed as potential DHCAL sampling elements in 2010 and
have since been thoroughly investigated in laboratory and beam settings. The results of previous
beam studies, performed at the RD51 test-beam facility of CERN-SPS, are summarized in [19].
They focused primarily on single- and double-THGEM detector structures of 10× 10cm2, oper-
ated in Ne/5%CH4; the avalanche charge was recorded on 1×1cm2 anode readout pads following
a 2 mm induction gap and directly coupled to KPiX readout electronics [17]. These preliminary
studies demonstrated the potential value of such detectorsfor DHCAL, with an average pad mul-
tiplicity of ∼ 1.1–1.2 at a muon detection efficiency of∼ 95% for a∼ 6 mm thick single-stage
detector, in which charges were deposited in a 4 mm thick drift gap. These encouraging results
left, however, room for optimization, in terms of detector thickness and stability in harsh hadronic
environment.

A promising step forward for THGEM-based detectors can relyon configurations based on the
Segmented Resistive Well THGEM (SRWELL), first suggested in[19]. The SRWELL (figure1) is
a composite structure, comprising of a single-faced THGEM electrode (copper-clad on its top side
only) coupled directly to a resistive anode in a WELL configuration (‘WELL’ being a THGEM with
closed bottom electrode); an avalanche-induced inductivecharge appears on a pad array separated
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from the resistive layer by a thin (100µm) insulating sheet. The absence of the induction gap leads
to a significantly thinner geometry, while the resistive layer serves to effectively quench the energy
of occasional discharges. Compared to THGEM configurationswith an induction gap, higher gains
are obtained for lower THGEM voltages, due to the stronger field within the closed holes [19].
Charge spreading across the resistive layer may result in delayed inductive signals on neighboring
pads and, consequently, in high pad multiplicity. This is prevented by adding a matching grid of
thin copper lines below the resistive layer that allows for rapid clearance of the electrons diffusing
over its surface. The SRWELL has a square-hole pattern, with‘blind’ copper strips above the pad
boundaries, designed to prevent discharges in holes residing directly above the metal grid lines.

We present here recent results of SRWELL-detector evaluation with 150 GeV/c muon and
pion beams, conducted at the CERN SPS/H4 RD51 beam-line. Twodetector configurations were
studied: a 5.8–5.9 mm thick single-stage SRWELL detector and a 4.8–6.3 mm thick double-stage
multiplier with a standard THGEM followed by an SRWELL. The detectors were investigated
with the new Scalable Readout System (SRS) developed withinCERN-RD51 [20]. Results are
presented on detection efficiency, pad multiplicity and discharge probability; future plans are dis-
cussed in brief.

2 Experimental setup and methodology

2.1 The THGEM detectors

The THGEM electrodes used in this work were 10×10cm2 in size, manufactured by 0.5 mm diam-
eter hole-drilling in either 0.4 or 0.8 mm thick FR4 plates, copper-clad on one or two sides [21]; the
holes of the double-sided THGEM electrodes were arranged inan hexagonal lattice with a pitch of
1 mm while the holes of the single-sided WELL-THGEM electrode (for the SRWELL configura-
tion) were arranged in a square lattice with a pitch of 0.96 mm; 0.1 mm wide rims were chemically
etched around the holes in both cases. The width of the ‘blind’ copper strips above the grid lines in
the SRWELL electrodes (see figure1) was 0.68 mm. Anodes with surface-resistivity in the range
10–20 MΩ/square were used. They were produced by spraying a mixture of graphite powder and
epoxy binder on a 100µm thick FR4 sheet, patterned with a square grid of 100µm wide copper
lines, defining an array of 10× 10cm2 squares (figure1); the array corresponded to that of the
8×8cm2 readout pads, patterned on a 3.2 mm thick FR4 plate. The hole-diameter, electrode thick-
ness and rim width were chosen based on previous optimization studies [22]. In view of previous
experience with neon mixtures, offering high attainable gains at relatively low operation poten-
tials [6, 23], the detectors were operated in Ne/5%CH4; at normal conditions, 150 GeV muons and
pions (referred to in the text as minimally ionizing particles — MIPs) deposit on the average a total
number of 60 electrons per cm along their track [24].

The two basic configurations investigated, with different geometrical parameters, are shown
in figure2. The single-stage SRWELL detector was investigated with 0.4 and 0.8 mm thick WELL
electrodes; the double-stage detector, with a THGEM preceding the SRWELL, was operated with
0.4 mm thick electrodes only. Table1 summarizes the geometrical parameters of both configura-
tions and the nominal anode-resistivity values. The drift field was maintained by setting a potential
difference between the multiplier’s top electrode and an additional copper-plated drift electrode
(e.g. a passive THGEM) placed a few mm above.

– 3 –
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Figure 2. Schematic views of the SRWELL detector (a) and the double-stage THGEM+SRWELL (b) con-
figurations. Avalanche charges induce signals through a resistive anode, onto pads located behind a 100µm
thick insulator. The copper-grid below the resistive film evacuates the electrons diffusing across it surface.

Table 1. Parameters of the single- and double-stage SRWELL detectors (of figure 2) investigated in
this work.

Configuration Thickness Transfer gap Drift gap Total thickness Resistivity
[mm] [mm] [mm] [mm] MΩ/square

Single1 0.4 − 5.5 5.9 10

Single2 0.8 − 5 5.8 10

Double1 0.4/0.4 1.5 4 6.3 20

Double2 0.4/0.4 1.5 3 5.3 20

Double3 0.4/0.4 1.5 2.5 4.8 10

The electrodes were polarized with individual HV power-supply CAEN A1833P and A1821N
boards, remotely controlled with a CAEN SY2527 unit. The voltage and current on each channel
were monitored and stored. All inputs were connected through low-pass filters.

2.2 External trigger, tracking and beam parameters

The external trigger system used for event selection is shown in figure3 [25]; it comprised three
10× 10cm2 scintillators arranged in coincidence. The tracking system, covering a total area of
6× 6cm2, was based on position measurement with three MICROMEGAS detectors, equipped
with an SRS readout system [20] recording signals through APV front-end hybrid electronics [26]
similar to the one employed in our test detectors. Two chambers were tested in parallel, containing
different detector configurations: one was located betweenthe two downstream trackers and the
other between the third tracker and the second scintillator(figure3). The chambers were operated
independently, but shared the same trigger and tracking system.

The experiments were performed with 150 GeV/c muons and pions. The muon beam was
broad, covering the entire detector area, with a typical rate of ∼ 10–20 Hz

cm2 . The pion beam had
a narrow central peak (∼ 1cm2 width) with wide, low-rate wings. Its rate was varied between
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Figure 3. Schematic description of the test-beam setup, incorporating the two SRWELL detectors, three
scintillators and three MICROMEGAS tracking detectors.

∼ 0.5 kHz
cm2 and∼ 70 kHz

cm2 to investigate the detector stability and performance under different irradi-
ation conditions.

2.3 Readout and data acquisition

A crucial point in the measurements was the synchronizationbetween the data acquired with the
detectors under investigation and that of the tracker. The latter was used to measure the local
detection efficiency and evaluate the level of cross-talk between neighboring pads as function of
the particle impact location. This was effectively achieved employing the RD51 Scalable Readout
System (SRS) [20].

Like the detectors of the tracker, the 64 readout pads of our detectors were coupled to APV25
chips [26]. The APV25, originally designed for the silicon tracking detectors in CMS, has high
rate capability and low noise (equivalent of∼ 200 electrons for a few tenth pF typical input capac-
itance). Due to the low noise level and high sensitivity of the chip, gas gains of the order of several
1000 were sufficient for efficient operation of our detectors.

The data acquisition of both systems was triggered by the same scintillator signals and per-
formed with a single SRS front-end card (FEC). For each triggered event, the charge accumulated
by all channels was stored. For each channel, the charge was sampled in 25 bins of 25 ns each.
The mmDAQ1 online data acquisition software was used to store the synchronized data on a PC
for further analysis.

2.4 Analysis framework

The track reconstruction algorithm is described in [25]. Tracks were selected by setting a high
threshold on the MICROMEGAS, suppressing noise hits. Thesetracks formed the baseline objects

1Developed by M.Z.D. Byszewski (marcin.byszewski@cern.ch).
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of the analysis; the MIP trajectory through our SRWELL detectors was extrapolated from the
calculated track coordinates. The detector properties, namely pulse-height distribution, efficiency
and pad multiplicity (both global and local) were measured with respect to these trajectories.

Data analysis of the SRWELL detectors comprised the following two steps:

1. Noise suppression: dedicated pedestal runs, without beam, were used to determine the noise
level of the individual channels in each configuration. The pedestal of each channel was
defined as the mean value of the charge measured in the 25 ns time intervals. The noise
level of each channel was defined as the width of this distribution. Only pads with a charge
signal above a threshold relative to the individual channel’s noise were used in the analysis
of the physics runs. A change of any of the detector parameters (HV configuration, etc.) was
followed by a pedestal run.

2. Clusterization: neighboring pads with detected charge above the thresholdformed a cluster.
The cluster position was determined from the average of the pads position, weighted accord-
ing to their measured charge. The charge associated with a cluster was taken as the sum of
the charge of all pads in that cluster.

The detector efficiency was defined as the fraction of tracks where a corresponding cluster
was found with its calculated position not more than 10 mm away from the track trajectory. The
single-event multiplicity was defined as the number of pads in the cluster. The average pad mul-
tiplicity was defined as the average number of pads in events where a corresponding cluster was
found not more than 10 mm away from the track trajectory. Boththe detector efficiency and pad
multiplicity were measured during stable operation conditions. In particular, time intervals with de-
tected high-voltage drops were excluded. Therefore, external parameters such as the power supply
recovery time following eventual discharges did not bias the measurements. The effect of eventual
discharges on the detector efficiency is discussed below.

The discharge probability was defined here as the number of discharges divided by the number
of hits in the active region of the detector (i.e., in the total area covered by the crossing beam). The
number of discharges was extracted directly from the power supply log files by counting the result-
ing drops in the monitored voltage. Since the pion beam was narrower than both the acceptance of
the scintillators and the detectors, the number of pion hitsin the active region of the detector was
estimated as the number of triggers. For muons, where the beam was wider than the acceptance of
both the scintillators and the detectors, the number of muonhits in the active area of the detector
was estimated from the number of triggers, by correcting forthe difference between the acceptance
of the scintillators (6×6cm2) and that of the detector (10×10cm2).

2.5 Threshold optimization

Unlike the tracker, where a maximal threshold was set duringthe analysis to ensure that only good-
quality tracks are used, the threshold for the SRWELL detectors was set to optimize the detector
performance. Figure4 shows an example of global detector efficiency recorded withmuons, versus
the pad-multiplicity; the data were recorded with a single-stage 0.8 mm thick SRWELL detector
(figure 2a; Single2in table1) for different thresholds set during the analysis. The detector bias
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Figure 4. Global detection efficiency as a function of the pad-multiplicity for different charge thresholds set
in the analysis, as measured with a 0.8 thick SRWELL (figure2a) with muons. Ne/5%CH4;∆VDrift = 250 V.

voltage (∆VSRWELL) was scanned while the drift field was kept constant (∆VDrift = 250 V corre-
sponding to a drift field of approximately 0.5 kV/cm); as explained in section 2.4, the thresholds
were set relative to the noise level of the individual channels. As can be seen, relative thresholds of
0.7 or 0.9 were optimal in this case; they resulted in high detection efficiency and low pad multi-
plicity. A threshold of 0.7 was used throughout the analysissince it was found optimal also for the
other SRWELL detector configurations investigated here.

3 Results

3.1 Detection efficiency and pad multiplicity with muons

The detector efficiency as a function of the applied voltage is shown in figure5 for the
THGEM+SRWELL in aDouble1configuration (table1). In figure 5a the same potentials were
applied across the THGEM and the SRWELL (∆VTHGEM = ∆VSRWELL). This potential was var-
ied keeping a constant transfer potential:∆VTransfer= 200 V (corresponding to a transfer field of
approximately 1.3 kV/cm); in figure5b the transfer field was varied, keeping a constant potential
differences across both multipliers:∆VSRWELL = ∆VTHGEM = 560 V. Conditions were found for
reaching close-to-unity efficiencies in a stable operationmode.

The results of the measured detection efficiency with muons as a function of the pad multiplic-
ity for the five configurations investigated (table1) are summarized in figure6. All measurements
were done under stable operation conditions. For both theSingle1andSingle2configurations, the
measurements were done by increasing the SRWELL voltage; for Double1andDouble3config-
urations the transfer voltage was kept constant (∆VTransfer= 300 V and∆VTransfer= 50 V respec-
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Figure 5. The detection efficiency with muons of the THGEM+SRWELL in aDouble1configuration (fig-
ure2b; table1) as a function of applied potential. (a) Efficiency as a function of the voltage across both mul-
tipliers (∆VSRWELL = ∆VTHGEM) at constnt∆VTransfer= 200 V; (b) efficiency as a function of the∆VTransfer

at constant∆VSRWELL = ∆VTHGEM = 560 V.

Figure 6. Detection efficiency with muons as a function of the pad multiplicity measured with the single-
SRWELL and the double THGEM+SRWELL configurations listed intable1. The total detector thickness,
excluding readout electronics, is provided for each case inthe figure. The optimal voltages and resulting
efficiency, multiplicity and gain values are given in table2.

tively, or a transfer fields of approximately 2 kV/cm and 0.3 kV/cm) while the bias voltages of the
THGEM and SRWELL were increased symmetrically (keeping∆VSRWELL = ∆VTHGEM); for Dou-
ble2 the transfer voltage was kept constant (∆VTransfer= 225 V, or approximately transfer field of

– 8 –
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Table 2. The applied potentials and resulting effective gain at theoptimal detection conditions (lowest pad
multiplicity at detection efficiency plateau) of all of the tested configurations.

Configuration ∆VSRWELL ∆VTransfer ∆VTHGEM Efficiency Multiplicity Effective
[V] [V] [V] [mm] gain

Single1 610 − − 0.97 1.2 1200

Single2 780 − − 0.98 1.1 2000

Double1 530 300 530 0.98 1.2 6500

Double2 540 225 540 0.95 1.2 8200

Double3 540 50 540 0.98 1.3 4000

1.5 kV/cm) while the bias voltages of the THGEM and SRWELL were scanned asymmetrically.
High detection efficiencies (> 95%) and low pad multiplicity values (< 1.3) were recorded with
all configurations. Note that over 98% efficiency at multiplicity values below 1.2 were measured
with theSingle2andDouble1detector configurations. The applied voltages and resulting gains at
optimal detection conditions (lowest pad multiplicity at the efficiency plateau) are summarized for
all configurations in table2.

3.2 Local characteristics (muons)

The accurate tracking allowed for studying the local characteristics of the detector. For each con-
figuration, an optimal working point (lowest multiplicity at the efficiency plateau) was selected. At
these conditions, the local efficiency and multiplicity were measured as a function of the particle
impact distance from the edge of the pad. The local efficiencyand multiplicity plots of theSingle2
andDouble1detector configurations are shown in figure7. As expected, close to the edge of the
pad the charge is shared between two neighboring pads. Similar behavior was measured with the
other three configurations.

As discussed in our previous work [19] the charge sharing also depends on the detector con-
figuration, the anode type and its resistivity; in the SRWELL, the metal strips below the resistive
layer prevent charge propagation to neighboring pads and the charge sharing is due mostly to the
event induced avalanche size. By definition, the charge sharing between neighboring pads results in
higher average pad multiplicity. This suggests that the padmultiplicity provides indeed additional
information concerning the track position, which could be exploited. Since in such events, less
charge is induced on each pad, the signal-to-noise separation is worse, resulting in slightly lower
detection efficiency.

3.3 Operation with pions

Experiments were carried out with 150 GeV/c pions, to investigate the detectors’ behavior under
higher event rate and in the presence of potential higher-ionization hadron-induced background.
Examples of cluster charge distributions (defined in section 2.4) measured with both muons and
pions in theSingle2andDouble1configurations are shown in figure8 and figure9 respectively.
For each configuration the measurements were carried out with the same high-voltage configura-
tion for both beam types;∆VSRWELL = 800 V for Single2. ∆VSRWELL = ∆VTHGEM = 560 V and
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Figure 7. Local efficiency and multiplicity data measured with the Single2 SRWELL and the Double1
THGEM+SRWELL, using the tracking system. (a) Detection efficiency as a function of distance from the
edge of the pad. (b) Pad multiplicity as a function of distance from the edge of the pad. The operation
potentials are depicted in table2.

Figure 8. Cluster charge distributions measured with theSingle2configuration (table1) at an operation
voltage∆VSRWELL = 800 V (a) muons, 10–20Hz

cm2 ; (b) pions, 0.5kHz
cm2 . The measured data (blue histograms)

are fitted to Landau distributions.

∆VTransfer= 50 V for Double1. The measured data (blue histograms) are fitted to Landau dis-
tributions (red curves). As can be seen, the measured cluster charge distribution of the double-
stage configuration (figure2b) remained practically unchanged in the transition from muons to
pions; however, the operation of the single-stage configuration (figure2a) with pions resulted in
an average-gain drop of over 50%, as indicated by the drop of the Landau Most Probable Value
(MPV) from 6.6 fC to 3.1 fC.

– 10 –
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Figure 9. Cluster charge distributions measured with theDouble1configuration (table1) at operation volt-
ages∆VSRWELL = 560 V, ∆VTHGEM = 560 V and∆VTransfer = 50 V. (a) Muons, 10–20Hz

cm2 ; (b) pions,

0.5 kHz
cm2 . The measured data (blue histograms) are fitted to Landau distributions.

The substantial drop of the MPV in the single-SRWELL irradiated with pions (figure8b) is yet
unclear, requiring further investigations. The possibility of rate-dependence of the gain is ruled out,
since this gain drop is not reproduced in the lab when irradiating the detector with an X-ray source
at the same rates. Note that some high-voltage fluctuations that appeared at the much higher rates
in the single-stage configuration operated with pions couldhave also caused this effect. Careful
studies are in course.

4 Discharge analysis

In previous laboratory studies, occasional-discharge rates and amplitudes measured with a resistive
(but not segmented) WELL were considerably lower compared to that of THGEM and WELL
configurations coupled to metal pads [19]. In the present beam study, two beam-related types of
discharges were observed. Large voltage drops of 50–150 V ateither one or more of the detector
electrodes, characterized the first type; a few volts drop characterized the second type, referred in
the text as micro-discharges.

The probability of large discharges was low,< 10−6, for all of the investigated configurations.
They depended on the detector configuration, on the applied voltage and on the particle flux. In
particular, no large discharges of the SRWELL electrode were observed with the double-stage
configurations. Large discharges were followed by long recovery times of the power supply and
possibly of the detector. In some cases, the SRS readout electronics had to be reconfigured or
power-cycled.

4.1 The effect of micro-discharges

Typical high-voltage variations in time, measured on the different electrodes of a double-stage
configuration (Double3) operated in a pion beam, are shown in figure10. In order to study the
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Figure 10. TheDouble3THGEM+SRWELL detector configuration. High-voltage variation in time overlaid
on the spill structure, as measured in a pion beam at a rate of 3kHz

cm2 . No high voltage variations were measured
on the mesh (magenta curve). The small variations (shown as dots) measured on the THGEM top electrode,
THGEM bottom electrode and WELL electrode are shown in black, green and red curves respectively.

correlation between the occasional voltage drops and the beam flux, the variations are overlaid on
the number of tracks measured every ten seconds (the beam consisted of 10 seconds spills every
50 seconds). As can be seen, the THGEM top and SRWELL electrodes are those with the highest
activity. The THGEM top displays 50–100 V discharges, whilethe SRWELL shows only micro-
discharges (∼ 3 V drops). Discharges are mainly, but not exclusively, correlated with the beam.
Discharges on the THGEM top and micro-discharges on the SRWELL are partially correlated.

The performance of the double-stage configuration (Double3) was measured during pion-beam
spills, with and without the appearance of micro-discharges. Similar (within statistical fluctuation)
efficiencies were measured in both cases. The very similar cluster-charge distributions recorded
in both conditions are shown in figure11. We conclude that the effect of micro-discharges on the
performance of the double-stage detector is negligible. Similar analysis could not be made with the
single-stage detectors since it was difficult to find spills with and without high-voltage drops at the
same high-voltage configuration.

5 Summary and discussion

This work focused on the test-beam results with our thinnest(< 6.3 mm) THGEM/SRWELL de-
tectors, as possible candidates for Digital Hadron Calorimetery applications. A total of five config-
urations were investigated; two single-stage SRWELL and three double-stage THGEM+SRWELL
configurations. All the detectors were operated in stable conditions at typical effective gains in the
range 1000–8000; signals were processed with frontend APV chips and SRS electronics. Detailed
results of systematic studies of processes in the differentdetector configurations discussed here will
be the subject of forthcoming publications.
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Figure 11. Cluster charge distributions recorded in theDouble3THGEM+SRWELL detector (of figure10)
with pions at a rate of 3kHz

cm2 . The distributions were measured during spills with (red) and without (blue)
micro-discharges in the same operation conditions:∆VSRWELL = 550 V,∆VTHGEM = 550 V and∆VTransfer=

50 V resulting in an effective gain of∼ 2500.

High detection efficiencies (over 95%) and low average pad-multiplicity values (less than 1.2)
were recorded with all the configurations investigated here. In particular, efficiencies above 98%
with an average pad-multiplicity below 1.2 were recorded with both theSingle2andDouble1con-
figurations, with a total thickness of 5.8 and 6.3 mm respectively. In the transition from low-rate
muon-beam to high-rate pion beam a significant, yet unclear,gain drop was observed with the
single-stage configuration, at the same operation voltage;the effect is being investigated. No gain
drop was observed with the double-stage configurations.

Two types of occasional discharges were observed; large discharges, characterized by a voltage
drops of 50–150 V, were observed with the single-stage configurations at low appearance rates
(< 10−6), and very rarely on the top THGEM electrode of the double-stage configurations. Micro-
discharges, characterized by a voltage drop smaller than 10V, were recorded in all configurations;
these did not affect the cluster-charge distributions and the detection efficiency of the double-stage
configurations. Further studies are required in order to understand the effect of micro-discharges
on the single-stage configuration.

Compared to the technologies already explored as potentialsampling-elements for future Dig-
ital Hadron Calorimeters, the performance of the 10× 10cm2 THGEM-based detectors reported
in this work is better than that of 1× 1m2 RPCs and 30× 30cm2 GEM detectors and similar to
that of 1×1m2 MICROMEGAS. The detector thickness can be further reduced by optimizing the
different gaps. The thinner single-stage configuration hasadditional advantages in term of cost and
complexity of the detector.

The proportional response of our THGEM-based sampling elements makes them attractive
also for the semi-DHCAL concept. Note that preliminary investigations of a single-THGEM and
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SRWELL yielded satisfactory results, in terms of efficiencyand pad multiplicity,2 employing the
MICROROC readout electronics; the latter (developed for DHCAL applications [15]) can be oper-
ated also in dual-threshold semi-digital mode.

The challenging task of developing a large-scale thin single-stage detector also requires re-
solving the observed gain-drop effect. It will be the focus of our future work. The assembly of
larger 30×30cm2 SRWELL-detector prototypes is in course.
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