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1. Introduction

At hadron colliders, the Drell–Yan (DY) process [1],
proceeding at tree level via the s-channel exchange of
a virtual photon or Z boson, can produce e+e− pairs
over a wide range of invariant mass, mee. The differ-
ential cross-section dσ/dmee is described by perturbative
QCD (pQCD) calculations at next-to-next-to-leading or-
der (NNLO). Given the simple experimental signature and
the low backgrounds, a small experimental uncertainty can
be achieved on the measured mee distribution that allows
for a precision test of pQCD. The mass spectrum is also
sensitive to the parton distribution functions (PDFs), in
particular to the poorly known distribution of antiquarks
at large x [2], where x can be interpreted, at leading or-
der, as the fraction of the proton momentum carried by
the interacting parton. Additionally, the production of
DY e+e− pairs is a source of background for other Stan-
dard Model (SM) measurements, and the mass spectrum
may be modified by new physics phenomena.

The differential cross-section for DY e+e− pair produc-
tion in the high-mass range has been reported previously
by the CMS [3], CDF [4] and D0 [5] collaborations. With
the ATLAS detector, total and differential cross-sections
in a mass window of 66 < mee < 116 GeV have been mea-
sured using the 2010 dataset [6]. In addition, searches for
new physics in the high-mass range of the mee distribu-
tion have been performed [7, 8, 9] and no deviations from
the SM expectation were observed. This Letter reports an
extension of these previous analyses by providing a mea-
surement of the DY cross-section, fully corrected for detec-
tor effects, as a function of the e+e− invariant mass up to
1500 GeV. The cross-section is reported in a phase space
slightly extended with respect to the fiducial acceptance of
the e+ and e−. The results are compared to NNLO pQCD

calculations with next-to-leading-order (NLO) electroweak
corrections from the FEWZ 3.1 [10, 11] framework and to
the predictions from three event generators.

2. The ATLAS detector

The ATLAS detector is described in detail in Ref. [12].
The two systems most relevant to this analysis are the
inner tracking detector, surrounded by a superconduct-
ing solenoid providing a 2 T axial magnetic field, and the
calorimeter. Charged-particle tracks and vertices are re-
constructed with silicon pixel and microstrip detectors cov-
ering the pseudorapidity1 range |η| < 2.5 and a straw-tube
transition-radiation tracker covering |η| < 2.0. Within the
region |η| < 3.2, electromagnetic calorimetry is provided
by barrel and endcap detectors consisting of lead absorbers
and liquid argon (LAr) as the active material, with fine lat-
eral and longitudinal segmentation within |η| < 2.5. The
hadronic calorimeter is based on steel/scintillator tiles in
the central region (|η| < 1.7) while the hadronic endcap
calorimeters (1.5 < |η| < 3.2) use copper/LAr.
A three-level trigger system is used to select events. The

first level is implemented in custom electronics and is fol-
lowed by two software-based trigger levels. In 2011 the
total output rate of events recorded for physics analysis
was 200–300 Hz.

1ATLAS uses a right-handed coordinate system with its origin
at the nominal interaction point in the centre of the detector and
the z-axis coinciding with the axis of the beam pipe. The x-axis
points from the interaction point to the centre of the LHC ring, and
the y-axis points upward. The pseudorapidity is defined in terms
of the polar angle θ as η = −ln tan(θ/2), and φ is the azimuthal
angle around the beam pipe with respect to the x-axis. The angular
distance is defined as ∆R =

√

(∆η)2 + (∆φ)2. Transverse momen-
tum and energy are defined as pT = p × sin θ and ET = E × sin θ,
respectively.

Preprint submitted to Physics Letters B May 23, 2013



3. Simulated samples

Simulated data samples were generated in order to esti-
mate backgrounds and correct the signal for the detec-
tor resolution, efficiency and acceptance. The PYTHIA

6.426 [13] and MC@NLO 4.02 [14] Monte Carlo (MC) gen-
erators were used to model the DY signal. In addition,
SHERPA 1.3.1 [15] was used to produce signal samples
with up to three additional partons, and the final result of
the analysis is compared to the generator-level predictions
from all three programs. MC@NLO was also used to simu-
late the tt̄ background, while HERWIG 6.520 [16] was used
for the diboson (WW , WZ or ZZ) backgrounds. MC@NLO
was interfaced to HERWIG to model parton showers and
fragmentation processes, and to JIMMY 4.31 [17] for un-
derlying event simulation. All event generators were in-
terfaced to PHOTOS 3.0 [18] to simulate QED final-state
radiation (FSR), except for SHERPA which uses the method
of Ref. [19].

The PYTHIA and HERWIG samples were generated using
the modified leading-order (LO**) PDF set MRSTMCal [20]
following the recommendations of Ref. [21], while the
MC@NLO samples used the NLO CT10 [22] set. The SHERPA

samples used the default CTEQ6L1 [23] PDF set of the gen-
erator.

All MC events were generated at
√
s = 7 TeV and in-

clude the full ATLAS detector simulation [24] based on
GEANT4 [25]. Settings of MC parameters that describe
properties of minimum bias events and the underlying
event were chosen based on results from previous AT-
LAS measurements [26]. The effects of having on average
nine interactions per bunch crossing (“pile-up”) were ac-
counted for by overlaying simulated minimum bias events.
To match the measured instantaneous luminosity profile
of the LHC, MC events were reweighted to yield the same
distribution of the mean number of interactions per bunch
crossing as measured in data.

Several corrections were applied to the simulated sam-
ples. The electron2 energy resolution was corrected to
match that observed in data, following Ref. [27]. In addi-
tion, the efficiencies for electrons to pass requirements on
the trigger, the reconstruction, and the particle identifica-
tion in the MC simulation were corrected by scale factors,
defined as the ratio of the measured efficiency in data to
that in the simulation. The PYTHIA signal MC sample was
reweighted at generator-level to a version that used an AT-
LAS tune found to yield a good agreement with the trans-
verse momentum distribution of the Z boson observed in
data [28]. This procedure gives an adequate description of
the transverse momentum distribution for the highmee re-
gion studied in this analysis.

The PYTHIA and MC@NLO signal predictions were
reweighted to a NNLO pQCD calculation with mee-
dependent K-factors obtained from a modified version

2In the following electron can mean either electron or positron.

of PHOZPR [29]. Additionally, NLO electroweak correc-
tions, calculated using HORACE 3.1 [30], were applied to
the PYTHIA MC sample. The tt̄ sample was rescaled to
its inclusive near-NNLO cross-section prediction [31, 32]
and the diboson samples were normalised to NLO cross-
sections calculated using MCFM [33].

4. Event selection

The analysis is based on the full 2011 data sample col-
lected at

√
s = 7 TeV. The data were selected online by a

trigger that required two electromagnetic (EM) energy de-
posits each with a transverse energy greater than 20 GeV.
Applying trigger and data-quality requirements yields an
integrated luminosity of 4.9± 0.1 fb−1. Events from these
pp collisions are selected by requiring a collision vertex
with at least three associated tracks, each with transverse
momentum greater than 400 MeV. Events are then re-
quired to have at least two electron candidates as defined
below.
Electron candidates are reconstructed from the energy

deposits in the calorimeter matched to inner-detector
tracks. An energy scale correction obtained from an in

situ calibration, using W/Z boson and J/ψ meson decays,
following the recipe of Ref. [27], is applied to the data.
The electron candidates are required to have a transverse
energy ET > 25 GeV and pseudorapidity |η| < 2.47, ex-
cluding the transition regions between the barrel and end-
cap calorimeters at 1.37 < |η| < 1.52. They must sat-
isfy the “medium” identification criteria based on shower
shape and track-quality variables [27] to provide rejection
against jets, and have a hit in the innermost pixel layer to
suppress background from photon conversions.
If an event contains more than two electron candidates

passing the above selection, the two with highest ET are
chosen. To further reduce the background from jet pro-
duction, the leading (highest ET) electron is required to be
isolated by demanding that the sum of the transverse en-
ergy in the calorimeter cells in a cone of ∆R = 0.2 around
the electron direction is less than 7 GeV. This sum ex-
cludes the core of the electron energy deposition and is
corrected for the ET-dependent transverse shower leakage
from the core, as well as for pile-up contributions.
After all selection requirements, a total of 26 844 candi-

date events are found in the mee range considered. The
dominant background contributions (6–16% depending on
mee) are from dijet and W+jets production, in which one
or more jets pass the electron selection criteria. The former
includes multi-jet, heavy-flavour quark and γ + jet produc-
tion. The latter includes pair-produced top quarks and
single-top-quark production, where at least one electron
comes from the misidentification of a jet or a heavy quark.
A data-driven method is used to evaluate the sum of these
backgrounds. The probability of a jet to be misidenti-
fied as an electron (the fake rate) is determined in an
ET- and η-dependent way from background-enriched sam-
ples recorded by nine different inclusive jet triggers, with

2
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Figure 1: Distribution of mee in data compared to the summed
signal and background predictions, where the bin width is constant in
log(mee). The Drell-Yan signal is predicted from PYTHIA simulation
and the combined dijet and W+jets contribution is estimated from
data as described in the text. The dashed vertical lines indicate the
mass range used for the differential cross-section measurement.

ET thresholds in the range 20–240 GeV. In each of these
jet-triggered samples, the fake rate is calculated as the
fraction of electron candidates passing the “loose” identi-
fication requirement that also pass the “medium” require-
ment. Events containing electron candidates fromW or Z
boson decays are first removed by dedicated cuts in order
to avoid bias from real electron contamination: W can-
didates are rejected by requiring low missing transverse
energy and low transverse mass; and Z candidates are re-
jected if they contain two “medium” electrons. A weighted
average of the fake rates obtained from the nine jet samples
is then calculated. To estimate the total dijet plusW+jets
background, a factor derived from the averaged fake rate
is applied to events that pass the signal selection but with
one or both electron candidates passing the “loose” iden-
tification requirement and failing the “medium” require-
ment.
The only other significant backgrounds arise from the

dileptonic decays of pair-produced top quarks (tt̄) and
from diboson production processes. These contributions
account for up to 5% and 9% of the selected events, respec-
tively, and are estimated from MC simulation. The overall
level of agreement between data and the sum of the MC
signal and background predictions (scaled to 4.9 fb−1) and
the data-driven background component is shown in Fig. 1.

5. Cross-section measurement

The differential cross-section, dσ/dmee, is measured in
13 bins of mee from 116 GeV to 1500 GeV in a fiducial
region in which both electrons have transverse momentum
pT > 25 GeV and lie within |η| < 2.5. The cross-section

and fiducial region are determined for two conventions re-
garding QED FSR corrections. For the Born-level result,
the true (meaning without detector simulation) mee and
electron kinematics are defined by the electrons originat-
ing from the Z/γ∗ decay before FSR. At the dressed level,
true final-state electrons after FSR are recombined with
radiated photons within a cone of ∆R = 0.1.
The cross-section is calculated from

dσ

dmee

=
Ndata −Nbkg

CDY Lint

1

Γbin
, (1)

where Ndata is the number of candidate events observed
in a given bin of mee (of width Γbin), Nbkg is the total
background in that bin and Lint is the integrated lumi-
nosity. The correction factor, CDY, takes into account
the efficiency of the signal selection and bin migration ef-
fects. It also includes the small extrapolation (about 10%
to 13%) over the small region in |η| that is excluded for
reconstructed electron candidates (1.37 < |η| < 1.52 and
2.47 < |η| < 2.5). The correction factor is defined as
the number of MC-generated events that pass the signal
selection in a bin of reconstructed mee, divided by the
total number of generated events within the fiducial re-
gion, at the Born or dressed level, in the corresponding
bin of true mee. It is obtained from the PYTHIA MC signal
sample and corrected for differences in the reconstruction,
identification and trigger efficiencies between data and MC
simulation. The value of CDY varies from 0.55 (0.57) in
the lowest bin to 0.70 (0.73) in the highest bin at the Born
(dressed) level.
Themee resolution varies from approximately 3% at low

mee to 1% at high mee. The purity, defined as the fraction
of simulated events reconstructed in a given mee bin that
have true mee in the same bin, ranges from 79% (82%) to
98% (98%) at the Born (dressed) level.

6. Systematic uncertainties

The main contributions to the systematic uncertainties
are given in Table 1 and described below.

Background estimation. In the estimation of the dominant
dijet andW+jets background, a systematic uncertainty of
11% is assigned to the ET- and η-dependent fake rate, cor-
responding to the spread of this quantity as measured in
the nine independent jet samples, in order to cover any
possible bias introduced in the triggering of these back-
ground events. A further uncertainty on the fake rate of
up to 11% arises due to the presence of remaining signal
contamination in the background-enriched sample.
The total systematic uncertainty on the fake rate com-

bines with a smaller effect (around 5%) from signal con-
tamination in the sample where the fake rate is applied,
to give a total uncertainty on the resulting background
estimate of up to 16%. An additional systematic uncer-
tainty can arise if the fake rate differs for different sources

3



of fake electrons and the relative contribution of the differ-
ent sources is not the same in the data sample where the
fake rate is measured and the sample of events to which
it is applied. It is found that b-jets have a higher fake
rate than jets initiated by gluons or light quarks, but that
the fraction of b-jets is small and similar in both samples.
Conservatively taking this additional source of uncertainty
into account, the overall uncertainty on the background is
enlarged to 20%.
This 20% is added in quadrature to the statistical un-

certainty of the sample to which the fake rate is applied;
the latter uncertainty dominates in the highest two mee

bins. The resulting overall uncertainty on the cross-section
varies between 1.3% and 7.9%, depending on mee.
Two alternative methods to estimate the dijet and

W+jets background are considered as cross-checks. The
first of these is similar to the baseline method but uses
fake rates derived from loosely selected electrons collected
by the EM signal trigger. Here the background-enriched
sample is derived by employing a tag-and-probe technique
selecting, among other requirements to suppress real elec-
tron contamination, a jet-like tag and a probe with the
same charge. This method, being correlated to the base-
line method due to the overlap of electron candidates pass-
ing the EM and jet triggers, yields very similar predictions
with comparable systematic uncertainties. In the third
method, the combined dijet plus W+jets background is
estimated by performing a template fit to the isolation of
the leading versus sub-leading electron. The background
templates are obtained from data by reversing some of the
identification requirements on one or both of the electrons,
and the signal templates are made from the PYTHIA DY
sample. No additional systematic uncertainty is assigned
from the two cross-checks, as their results are in agreement
with the baseline method.
The uncertainties on the diboson and tt̄ background ex-

pectations include the theoretical uncertainties on their
cross-sections, 5% for the dibosons [31] and 10% for tt̄ [32].
At high mee, the statistical uncertainties on the simulated
samples dominate, exceeding 50% in the highest bin for
both processes. The resulting uncertainty on the cross-
section is small compared to the data-driven dijet and
W+jets contributions, ranging from less than 0.3% at
low mee to 2.0% in the highest mee bin. The uncertainty
on the cross-section from the total background expectation
is between 1.3% and 8.2%.

Electron reconstruction and identification. The recon-
struction and identification efficiencies of electrons have
been determined previously from data for electrons with
ET up to 50 GeV, using tag-and-probe methods in vector-
boson decays, following the prescription of Ref. [27]. To
extend the measurement range of the identification effi-
ciency in ET, a dedicated tag-and-probe measurement is
made using Z → e+e− decays. It employs the isolation
method, developed in Ref. [27] for W → eν final states,
to estimate the background contamination. Here, η- and

Uncertainty [%] in mee bin
Source of uncertainty 116–130GeV 1000–1500 GeV
Total background estimate (Stat.) 0.1 7.6
Total background estimate (Syst.) 1.3 3.1
Electron energy scale & resolution 2.1 3.3
Electron identification 2.3 2.5
Electron reconstruction 1.6 1.7
Bin-by-bin correction 1.5 1.5
Trigger efficiency 0.8 0.8
MC statistics (CDY stat.) 0.7 0.4
MC modelling 0.2 0.3
Theoretical uncertainty 0.3 0.4
Total systematic uncertainty 4.2 9.8
Luminosity uncertainty 1.8 1.8
Data statistical uncertainty 1.1 50

Table 1: Summary of systematic uncertainties on the cross-section
measurement, shown for the lowest and highest bin in mee. For some
sources the lowest or highest uncertainty may lie in an intermediate
bin. The data statistical uncertainties are also given for comparison.

ET-dependent background template distributions of the
isolation are obtained from data by reversing some of the
requirements applied in the electron identification criteria.
The isolation quantity is defined in a similar way to that
used in the selection of the leading electron in the signal
sample. The background isolation templates are then nor-
malised to data in the tail of the distributions where no
contribution from signal is expected, both before and after
applying the identification requirements, in order to esti-
mate the background fraction in the probe sample. The
identification efficiencies are found to be consistent with
those obtained by the method of Ref. [27] in the common
measurement range, and are stable for electrons with ET

up to 500 GeV.
The differences between the measured reconstruction

and identification efficiencies and their values in MC sim-
ulation are taken as η- and ET-dependent scale factors
with which the MC-derived CDY is corrected. An ad-
ditional scale factor for the isolation requirement on the
leading electron is also applied. Varying the scale factors
for the electron reconstruction (identification) within their
systematic uncertainties results in a change in the cross-
section of up to 1.7% (2.6%).

Energy scale and resolution. Both the scale and resolution
corrections, estimated from Z → e+e− events, are varied
in the simulation within their uncertainties. The overall
effect on the cross-section is between 1.0% and 3.3%.

Bin-by-bin correction. The results obtained from the bin-
by-bin correction are cross-checked using an iterative
Bayesian approach [34] and found to be consistent. In
addition, a consistency test is performed by correcting the
MC@NLO signal sample using the PYTHIA-derived CDY fac-
tor. The discrepancy between the sample corrected in this
way and the true MC@NLO sample is about 1.5%. This is due
to the slightly different shapes of themee distribution from
the two generators, considered to represent the possible

4



mee [GeV] dσ

dmee

(Born) dσ

dmee

(dressed) Stat. err. [%] Syst. err. [%]

116–130 2.24 ×10−1 2.15 ×10−1 1.1 4.2

130–150 1.02 ×10−1 9.84 ×10−2 1.4 4.3

150–170 5.12 ×10−2 4.93 ×10−2 2.0 4.6

170–190 2.84 ×10−2 2.76 ×10−2 2.7 4.7

190–210 1.87 ×10−2 1.82 ×10−2 3.0 5.3

210–230 1.07 ×10−2 1.04 ×10−2 4.4 6.1

230–250 8.23 ×10−3 7.98 ×10−3 5.2 5.9

250–300 4.66 ×10−3 4.52 ×10−3 4.3 5.8

300–400 1.70 ×10−3 1.65 ×10−3 5.1 5.9

400–500 4.74 ×10−4 4.58 ×10−4 9.4 6.3

500–700 1.46 ×10−4 1.41 ×10−4 11 5.7

700–1000 2.21 ×10−5 2.13 ×10−5 24 7.5

1000–1500 2.88 ×10−6 2.76 ×10−6 50 9.8

Table 2: Measured differential cross-sections dσ

dmee

(in pb/GeV) at

the Born and dressed levels for DY production of e+e− pairs in the
fiducial region (electron pT > 25 GeV and |η| < 2.5) with statis-
tical (stat.) and systematic (syst.) uncertainties in %. The 1.8%
luminosity uncertainty is not included.

shape difference between data and the PYTHIA simulation.
This is conservatively added as a systematic uncertainty
on the cross-section in all mee bins.

Trigger efficiency. Scale factors to account for the dif-
ference in the EM signal-trigger efficiency between data
and simulation are obtained by measuring the efficiency in
data and MC events using a tag-and-probe method. The
Z → e+e− events are tagged by selecting events passing a
single-electron trigger, thus providing one electron probe
free of trigger bias to test against the signal-trigger re-
quirements. The scale factors are very close to unity, and
the effect on the cross-section of varying them within their
systematic uncertainties is approximately 1%.

MC statistics and MC modelling. The finite number of
events in the MC samples from which the CDY factor is
derived contribute an uncertainty of up to 2.4% on CDY

and the computed cross-section. Systematic uncertainties
are associated with the use of the K-factors and with the
reweighting of the PYTHIA signal MC events in order to
better match the transverse momentum distribution of the
Z bosons and the mean number of interactions per bunch
crossing in the data. The effect of a further reweighting of
the vertex position distribution in the z direction, not ap-
plied by default when calculating CDY, is also taken as an
uncertainty. These uncertainties enter into the calculation
of CDY and result in an overall uncertainty on the cross-
section of less than 1%. Excellent agreement in the FSR
predictions between PHOTOS and SANC [35, 36] has been
shown [37] and uncertainties related to the modelling of
the detector response to low-energy photons from FSR are
negligible.

Theoretical uncertainties. Several theoretical uncertain-
ties apply to the extrapolation of the cross-section in |η|

from the measured region to the fiducial region and thus
contribute to an additional uncertainty on CDY. To evalu-
ate the effect of the choice of PDF, the calculation of CDY

using PYTHIA with its default PDF (MRSTMCal) is com-
pared to that obtained after reweighting to CT10 (NLO)
and HERAPDF1.5 [38] (NLO). The largest difference be-
tween the reweighted results and the default is taken as
the systematic uncertainty, and amounts to 0.2%. A fur-
ther systematic uncertainty is calculated using the MC@NLO
sample reweighted to the 52 CT10 eigenvector error sets,
the result being 0.5% at most. Finally, comparisons are
made between PYTHIA reweighted to the CT10 PDF and
MC@NLO (which uses as default CT10), and cross-checked
using FEWZ 2.1 at NLO using the CT10 PDF. The effect
is at most 0.3%. These systematic uncertainties, which
each have a different dependence on mee, are added in
quadrature and together give a 0.2–0.5% uncertainty on
the cross-section.

The contributions from the above sources of system-
atic uncertainty to the uncertainty on the measured cross-
section are summarised in Table 1 for the lowest and high-
est bin in the mee range considered. The overall system-
atic uncertainty, excluding the luminosity uncertainty of
1.8% [39], rises from 4.2% in the lowest mee bin to 9.8%
in the highest mee bin. The data statistical uncertainties
increase from 1.1% to 50%.

7. Results and comparison to theory

The cross-sections obtained in the fiducial region (elec-
tron pT > 25 GeV and |η| < 2.5) at the Born and dressed
levels are given in Table 2. The difference between the two
results is at most 4%. The precision of the measurement
is limited by the statistical uncertainty on the data for
mee > 400 GeV.
Fig. 2 shows the results at the dressed level, where they

are compared to the predictions from PYTHIA, MC@NLO and
SHERPA. No corrections have been applied to the generator-
level predictions; instead, the prediction of each genera-
tor has been scaled globally to match the total number of
events observed in data. The resulting scale factors are
1.23 for PYTHIA, 1.08 for MC@NLO and 1.39 for SHERPA. As
expected, the only prediction at NLO in pQCD, from the
MC@NLO generator, yields the scale factor closest to unity.
The overall shape of the mee distribution from all three
generators is consistent with the data.
Fig. 3 shows the differential cross-section at the Born

level compared to calculations in the FEWZ 3.1 framework
using various recent NNLO PDFs. The FEWZ 3.1 frame-
work allows the (N)NLO QCD corrections to lepton pair
production to be combined with the NLO electroweak cor-
rections. It has been verified at NLO in QCD that the
choice of electroweak scheme, Gµ or α(mZ) as introduced
in Ref. [40], has an effect of at most 0.4% on the calcu-
lated cross-section after applying NLO electroweak cor-
rections. The electroweak-corrected NNLO QCD predic-
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Figure 2: Measured differential cross-section at the dressed level
within the fiducial region (electron pT > 25 GeV and |η| < 2.5) with
statistical, systematic, and combined statistical and systematic (to-
tal) uncertainties, excluding the 1.8% uncertainty on the luminosity.
In the lower panel, the measurement is compared to the predictions
of the PYTHIA, MC@NLO and SHERPA MC generators including their
statistical uncertainties. No corrections have been applied to the
cross-section predictions of the generators. Instead, the predictions
of each generator have been scaled by a global factor as indicated on
the ratio plots to match the total number of events observed in data.

tions shown are calculated using the Gµ scheme. The elec-
troweak corrections include a positive contribution from
the irreducible, non-resonant photon-induced background,
i.e., γγ → e+e−. This contribution is estimated at leading
order (LO) using the MRST2004qed [41] PDF, currently
the only set available that includes QED corrections to
the proton PDF, by taking the average of the predic-
tions obtained under the current and constituent quark
mass schemes. The symmetric difference between the av-
erage and either scheme is assigned as the correspond-
ing uncertainty on this additive correction, being approx-
imately 50% and representing a 3% uncertainty on the
cross-section prediction in the highest mee bin. The elec-
troweak and photon-induced corrections were verified by
SANC [35, 36]. An additional small correction arises from
single-boson production in which the final-state charged
lepton radiates a real W or Z boson [42]. This is esti-
mated using MADGRAPH 5 [43], following the prescription
outlined in Ref. [42], to be at most 2%, in the highest mee

bin.

It can be seen in Fig. 3 that the deviations between
the MSTW2008 [2] and the CT10 [22], HERAPDF1.5 [38] and
NNPDF2.3 [44] predictions are covered by the total uncer-
tainty band assigned to the MSTW2008 prediction, which

is dominated by the combined 68% confidence level (CL)
PDF and αs variation. At low meethe ABM11 [45] predic-
tion lies above this theoretical uncertainty band, in part
due to the ABM11 PDF set using a value of αs outside of
the 68% CL variation. The renormalisation and factori-
sation scale uncertainties contribute at most 1% to the
theoretical uncertainty band in the highest mee bin, hav-
ing been evaluated by varying both scales up or down to-
gether by a factor of two, using VRAP [46]. The size of the
photon-induced contribution is similar to the sum of the
PDF, αs and scale uncertainties as can be seen in the lower
panel of Fig. 3 (left), where the nominal calculation using
the MSTW2008 PDF set is compared to the case where this
contribution is not taken into account.
In the region where the precision of the measurement is

limited by systematic uncertainties, mee < 400 GeV, the
data generally lie above the FEWZ calculations. However,
assuming that all systematic uncertainties, except those
of statistical origin on the background and on CDY (Ta-
ble 1), are fully correlated bin-to-bin, the comparison be-
tween data and the different predictions over the full mass
range yields chi-squared values of 13.9 for MSTW2008, 18.9
for CT10, 13.5 for HERAPDF1.5, 14.7 for ABM11 and 14.8 for
NNPDF2.3, for the 13 data points, indicating compatibility
between the theory and data.

8. Summary

Using 4.9 fb−1 of data from pp collisions at a centre-of-
mass energy of

√
s = 7 TeV, the invariant mass distribu-

tion of e+e− pairs from DY production has been measured
at ATLAS in the range 116 < mee < 1500 GeV, for elec-
trons with pT > 25 GeV and |η| < 2.5. Comparisons
have been made to the predictions of the PYTHIA, MC@NLO
and SHERPA MC generators, after scaling them globally
to match the total number of events observed in data.
The MC predictions are consistent with the shape of the
measured mee distribution. The predictions of the FEWZ

3.1 framework using five PDF sets at NNLO have also
been studied. The framework combines calculations at
NNLO QCD with NLO electroweak corrections, to which
LO photon-induced corrections and real W and Z boson
emission in single-boson production have been added. The
resulting predictions for all PDFs are consistent with the
measured differential cross-section, although the data are
systematically above the theory. The data have the po-
tential to constrain PDFs, in particular for antiquarks at
large x, in the context of a PDF fit involving the world
data sensitive to the proton structure.
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Figure 3: Measured differential cross-section at the Born level within the fiducial region (electron pT > 25 GeV and |η| < 2.5) with statistical,
systematic, and combined statistical and systematic (total) uncertainties, excluding the 1.8% uncertainty on the luminosity. The measurement
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