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A search for non-resonant D+
(s) → π+μ+μ− and D+

(s) → π−μ+μ+ decays is performed using proton–

proton collision data, corresponding to an integrated luminosity of 1.0 fb−1, at
√

s = 7 TeV recorded by
the LHCb experiment in 2011. No signals are observed and the 90% (95%) confidence level (CL) limits on
the branching fractions are found to be

B
(

D+ → π+μ+μ−)
< 7.3 (8.3) × 10−8,

B
(

D+
s → π+μ+μ−)

< 4.1 (4.8) × 10−7,

B
(

D+ → π−μ+μ+)
< 2.2 (2.5) × 10−8,

B
(

D+
s → π−μ+μ+)

< 1.2 (1.4) × 10−7.

These limits are the most stringent to date.
© 2013 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

Flavour-changing neutral current (FCNC) processes are rare
within the Standard Model (SM) as they cannot occur at tree
level. At the loop level, they are suppressed by the GIM mecha-
nism [1] but are nevertheless well established in B+ → K +μ+μ−
and K + → π+μ+μ− decays with branching fractions of the or-
der 10−7 and 10−8, respectively [2,3]. In contrast to the B me-
son system, where the very high mass of the top quark in the
loop weakens the suppression, the GIM cancellation is almost ex-
act in D meson decays leading to expected branching fractions
for c → uμ+μ− processes in the (1–3) × 10−9 range [4–6]. This
suppression provides a unique opportunity to search for FCNC D
meson decays and to probe the coupling of up-type quarks in elec-
troweak processes, as illustrated in Fig. 1(a), (b).

The decay D+
s → π+μ+μ− , although not a FCNC process, pro-

ceeds via the weak annihilation diagram shown in Fig. 1(c). This
can be used to normalise a potential D+ → π+μ+μ− signal
where an analogous weak annihilation diagram proceeds, albeit
suppressed by a factor |V cd|2. Normalisation is needed in order
to distinguish between FCNC and weak annihilation contributions.
Note that, throughout this Letter, the inclusion of conjugate pro-
cesses is implied.

Many extensions of the SM, such as supersymmetric models
with R-parity violation or models involving a fourth quark gen-
eration, introduce additional diagrams that a priori need not be

✩ © CERN for the benefit of the LHCb Collaboration.

suppressed in the same manner as the SM contributions [5,7].
The most stringent limit published so far is B(D+ → π+μ+μ−) <

3.9 × 10−6 (90% CL) by the D0 Collaboration [8]. The FOCUS Col-
laboration places the most stringent limit on the D+

s weak annihi-
lation decay with B(D+

s → π+μ+μ−) < 2.6 × 10−5 [9].
Lepton number violating (LNV) processes such as D+ →

π−μ+μ+ (shown in Fig. 1(d)) are forbidden in the SM, because
they may only occur through lepton mixing facilitated by a non-SM
particle such as a Majorana neutrino [10]. The most stringent lim-
its on the analysed decays at 90% CL are B(D+ → π−μ+μ+) <

2 × 10−6 and B(D+
(s) → π−μ+μ+) < 1.4 × 10−5 set by the BaBar

Collaboration [11]. B meson decays set the most stringent limits
on LNV decays in general, with B(B+ → π−μ+μ+) < 1.3 × 10−8

at 95% CL set by the LHCb Collaboration [12].
This Letter presents the results of a search for D+

(s) → π+μ+μ−

and D+
(s) → π−μ+μ+ decays using pp collision data, correspond-

ing to an integrated luminosity of 1.0 fb−1, at
√

s = 7 TeV recorded
by the LHCb experiment. The signal channels are normalised
to the control channels D+

(s) → π+φ with φ → μ+μ− , which
have branching fraction products of B(D+ → π+(φ → μ+μ−)) =
(1.60 ± 0.13) × 10−6 and B(D+

s → π+(φ → μ+μ−)) = (1.29 ±
0.14) × 10−5 [13].

2. The LHCb detector and trigger

The LHCb detector [14] is a single-arm forward spectrometer
covering the pseudorapidity range 2 < η < 5, designed for the
study of particles containing b or c quarks. The detector includes
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http://dx.doi.org/10.1016/j.physletb.2013.06.010

http://dx.doi.org/10.1016/j.physletb.2013.06.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://dx.doi.org/10.1016/j.physletb.2013.06.010
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.physletb.2013.06.010&domain=pdf


204 LHCb Collaboration / Physics Letters B 724 (2013) 203–212
Fig. 1. Feynman diagrams for (a), (b) the FCNC decay D+ → π+μ+μ− , (c) the weak annihilation of a D+
(s) meson and (d) a possible LNV D+

(s) meson decay mediated by a
Majorana neutrino.
a high precision tracking system consisting of a silicon-strip ver-
tex detector surrounding the pp interaction region, a large-area
silicon-strip detector located upstream of a dipole magnet with
a bending power of about 4 Tm, and three stations of silicon-
strip detectors and straw drift tubes placed downstream. The com-
bined tracking system has momentum (p) resolution �p/p that
varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and impact pa-
rameter (IP) resolution of 20 μm for tracks with high transverse
momentum (pT). The IP is defined as the perpendicular distance
between the path of a charged track and the primary pp interac-
tion vertex (PV) of the event. Charged hadrons are identified using
two ring-imaging Cherenkov detectors [15]. Photon, electron and
hadron candidates are identified by a calorimeter system consisting
of scintillating-pad and preshower detectors, an electromagnetic
calorimeter and a hadronic calorimeter. Muons are identified by a
system composed of alternating layers of iron and multiwire pro-
portional chambers. The trigger [16] consists of a hardware stage,
based on information from the calorimeter and muon systems, fol-
lowed by a software stage that applies a full event reconstruction.
It exploits the finite lifetime and relatively large mass of charm
and beauty hadrons to distinguish heavy flavour decays from the
dominant light quark processes.

The hardware trigger selects muons with pT exceeding
1.48 GeV/c, and dimuons whose product of pT values exceeds
(1.3 GeV/c)2. In the software trigger, at least one of the final
state muons is required to have p greater than 8 GeV/c, and an IP
greater than 100 μm. Alternatively, a dimuon trigger accepts candi-
dates where both oppositely-charged muon candidates have good
track quality, pT exceeding 0.5 GeV/c, and p exceeding 6 GeV/c.
In a second stage of the software trigger, two algorithms select
D+

(s) → π+μ+μ− and D+
(s) → π−μ+μ+ candidates. A generic

μ+μ− trigger requires oppositely-charged muons with summed
pT greater than 1.5 GeV/c and invariant mass, m(μ+μ−), greater
than 1 GeV/c2. A tailored trigger selects candidates with dimuon
combinations of either charge and with no invariant mass require-
ment on the dimuon pair. The ratio of signal to control mode
efficiencies varies between 0.8 and 1.0 across the m(μ+μ−) spec-
trum.

Simulated signal events are used to evaluate efficiencies and
to train the selection. For the signal simulation, pp collisions
are generated using Pythia 6.4 [17] with a specific LHCb con-
figuration [18]. Decays of hadronic particles are described by
EvtGen [19]. The interaction of the generated particles with the
detector and its response are implemented using the Geant4
toolkit [20] as described in Ref. [21].

3. Candidate selection

Candidate selection criteria are applied in order to maximise
the significance of D+

(s) → π+μ+μ− and D+
(s) → π−μ+μ+ signals.

The D+
(s) candidate is reconstructed from three charged tracks and

is required to have a decay vertex of good quality and to have orig-
inated close to the PV by requiring that the IP χ2 is less than 30.
The angle between the D+

(s) candidate’s momentum vector and the
direction from the PV to the decay vertex, θD, is required to be less
than 0.8◦ . The pion must have p exceeding 3000 MeV/c, pT ex-
ceeding 500 MeV/c, track fit χ2/ndf less than 8 (where ndf is the
number of degrees of freedom) and IP χ2 exceeding 4. Here IP
χ2 is defined as the difference between the χ2 of the PV recon-
structed with and without the track under consideration.

A boosted decision tree (BDT) [22] with the GradBoost algo-
rithm [23] distinguishes between signal-like and background-like
candidates. This multivariate analysis algorithm is trained using
simulated D+ → π+μ+μ− signal events and a background sam-
ple taken from sidebands around the D+

(s) → π+μ+μ− peaks in

an independent data sample of 36 pb−1 collected in 2010. These
data are not used further in the analysis. The BDT uses the follow-
ing variables: θD; χ2 of both the decay vertex and flight distance
of the D+

(s) candidate; p and pT of the D+
(s) candidate as well as

of each of the three daughter tracks; IP χ2 of the D+
(s) candidate

and the daughter particles; and the maximum distance of closest
approach between all pairs of tracks in the candidate D+

(s) decay.
Information from the rest of the event is also employed via

an isolation variable, ApT , that considers the imbalance of pT of
nearby tracks compared to that of the D+

(s) candidate

ApT = pT(D+
(s)) − (

∑ �p)T

pT(D+
(s)) + (

∑ �p)T
, (1)

where pT(D+
(s)) is the pT of the D+

(s) meson and (
∑ �p)T is the

transverse component of the vector sum momenta of all charged
particles within a cone around the candidate, excluding the three
signal tracks. The cone is defined by a circle of radius 1.5 in the
plane of pseudorapidity and azimuthal angle, measured in radians
around the D+

(s) candidate direction. The signal D+
(s) decay tends to

be more isolated with a greater pT asymmetry than combinatorial
background.

The trained BDT is then used to classify each candidate. An op-
timisation study is performed to choose the combined BDT and
particle identification (PID) selection criteria that maximise the
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Table 1
Signal yields for the D+

(s) → π+μ+μ− fits. The φ region yields differ due to the different trigger conditions.

Trigger conditions Bin description m(μ+μ−) range [MeV/c2] D+ yield D+
s yield

Triggers without m(μ+μ−) > 1.0 GeV/c2 low-m(μ+μ−) 250–525 −3±11 1±6
η 525–565 29 ±7 22 ±5
ρ/ω 565–850 96 ±15 87 ±12
φ 850–1250 2745 ±67 3855 ±86

All triggers φ 850–1250 3683 ±90 4857 ±90
high-m(μ+μ−) 1250–2000 16 ±16 −17±16
expected statistical significance assuming a branching fraction of
1 × 10−9. The PID information is quantified as the difference in
the log-likelihood under different particle mass hypotheses (DLL).
The optimal cuts are found to be a BDT selection exceeding 0.9
and DLLμπ (the difference between the muon–pion hypotheses)
exceeding 1 for each μ candidate.

In addition, the pion candidate is required to have both DLLμπ

and DLLKπ less than 0 and the two muon candidates must not
share hits in the muon stations with each other or any other
muon candidates. Remaining multiple candidates in an event are
arbitrated by choosing the candidate with the smallest vertex χ2

(needed in 0.1% of events).
Candidates from the kinematically similar D+

(s) → π+π+π− de-
cay form an important peaking background. A representative sam-
ple of this hadronic background is retained with a selection that
is identical to that applied to the signal except for the require-
ment that two of the tracks have hits in the muon system. Since
the yield of this background is sizeable, a 1% prescale is applied.
The remaining D+

(s) → π+π+π− candidates are reconstructed un-

der the D+
(s) → π+μ+μ− and D+

(s) → π−μ+μ+ hypotheses and
define the probability density function (PDF) of this peaking back-
ground in the fit to the signal samples.

4. Invariant mass fit

The shapes and yields of the signal and background contri-
butions are determined using a binned maximum likelihood fit
to the invariant mass distributions of the D+

(s) → π+μ+μ− and

D+
(s) → π−μ+μ+ candidates in the range 1810–2040 MeV/c2. This

range is chosen to fully contain the PDFs of the correctly identified
D+ and D+

s candidates as well as those of D+
(s) → π+π+π− de-

cays misidentified as D+
(s) → π+μ+μ− or D+

(s) → π−μ+μ+ .

The D+
(s) → π+μ+μ− and D+

(s) → π−μ+μ+ signals are de-
scribed by the function

f (x) ∝ exp

( −(x − μ)2

2σ 2 + (x − μ)2αL,R

)
, (2)

which is a Gaussian-like peak of mean μ, width σ and where
αL (x < μ) and αR (x > μ) parameterise the tails. The parame-
ters of this shape are determined simultaneously across all bins
(discussed below) of a given fit including the bin containing the
control mode.

The D+
(s) → π+π+π− peaking background data are also split

into the predefined regions and fitted with Eq. (2). This provides a
high-statistics, well-defined shape for this prominent background,
which is simultaneously fitted in the corresponding subsample sig-
nal fit. The misidentification rate (the ratio of the yield in the
signal data sample to that in the π+π+π− sample) is allowed to
vary but is assumed to be constant across all bins in the fit. A sys-
tematic uncertainty is assigned to account for this assumption.

A second-order polynomial function is used to describe the PDF
of all other combinatorial or partially reconstructed backgrounds

Table 2
Signal yields for the D+

(s) → π−μ+μ+ fit. The φ region from the D+
(s) → π+μ+μ−

channel is used for normalisation. The particle ‘x’ is a π when referring to D+
(s) →

π−μ+μ+ data and a μ for D+
(s) → π+μ+μ− data.

Bin description m(μ+x−) range [MeV/c2] D+ yield D+
s yield

φ 850–1250 2771 ±65 3885 ±85
bin 1 250–1140 7 ±6 4±4
bin 2 1140–1340 −3±6 3±5
bin 3 1340–1550 −1±6 6±6
bin 4 1540–2000 0±4 4±5

that vary smoothly across the fit range. The coefficients of the
polynomial are permitted to vary independently in each bin.

The D+
(s) → π+μ+μ− and D+

(s) → π−μ+μ+ data are split
into bins of m(μ+μ−) and m(π−μ+), respectively. The bins are
chosen such that the resonances present in m(μ+μ−) in the
case of D+

(s) → π+μ+μ− are separate from the regions sensi-

tive to the signal, which are in the ranges 250–525 MeV/c2 and
1250–2000 MeV/c2. For the D+

(s) → π−μ+μ+ search, the bins of
m(π−μ+) improve the statistical significance of any signal ob-
served, as it is assumed that a Majorana neutrino would only
appear in one subsample. The definitions of these subsamples are
provided in Tables 1 and 2. Cross-feed between the bins is found
to be negligible from simulation studies.

The D+
(s) → π+μ+μ− and D+

(s) → π−μ+μ+ data are fitted in-

dependently, with the D+
(s) → π+μ+μ− sample being fitted in two

parts due to the requirement of some of the software triggers that
m(μ+μ−) exceeds 1.0 GeV/c2. A D+

(s) → π+μ+μ− fit excluding
these trigger lines simultaneously fits the low-m(μ+μ−), η, ρ/ω
and φ bins. Another fit to the D+

(s) → π+μ+μ− data, including
these trigger lines, is applied to the high-m(μ+μ−) and φ bins.
The φ bin is needed as it provides a signal shape and normalises
any signal yield. A simultaneous fit to the D+

(s) → π−μ+μ+ data

is done in all four m(π−μ+) bins. The φ bin from the D+
(s) →

π+μ+μ− data is again used to provide a signal shape and to nor-
malise any signal yield.

The invariant mass spectra together with the results are shown
in Figs. 2 and 3. Background-subtracted m(μ+μ−) distributions
are obtained using the sPlot technique [24] and shown in Fig. 4.
The signal yields are shown in Table 1 for D+

(s) → π+μ+μ− de-

cays, and in Table 2 for D+
(s) → π−μ+μ+ decays. The statistical

significances of the two observed peaks are found by performing
the fit again with the background-only hypothesis. Significances
of 6.1 and 6.2 σ are found for D+ → π+(η → μ+μ−) and D+

s →
π+(η → μ+μ−) decays, respectively. In comparison to D+

(s) →
π+(φ → μ+μ−), B(D+ → π+(η → μ+μ−)) = (2.2 ± 0.6) × 10−8

and B(D+
s → π+(η → μ+μ−)) = (6.8 ± 2.1) × 10−8 for the D+

and D+
s decays, respectively, and match those expected based on

the D+
(s) → ηπ+ and η → μ+μ− branching fractions [13]. No sig-

nificant excess of candidates is seen in any of the signal search
windows.
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Fig. 2. Invariant mass distributions for D+
(s) → π+μ+μ− candidates in the five m(μ+μ−) bins. Shown are the (a) low-m(μ+μ−), (b) η, (c) ρ/ω, (d) φ (including trigger

lines with m(μ+μ−) > 1.0 GeV/c2), and (e) high-m(μ+μ−) regions. The data are shown as points (black) and the total PDF (dark blue line) is overlaid. The components of
the fit are also shown: the signal (light green line), the peaking background (solid area) and the non-peaking background (dashed line). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this Letter.)

Fig. 3. Invariant mass distributions for D+
(s) → π−μ+μ+ in the four m(π−μ+) regions. Shown are (a) bin 1, (b) bin 2, (c) bin 3, and (d) bin 4. The data are shown as black

points and the total PDF (dark blue line) is overlaid. The components of the fit are also shown: the signal (light green line), the peaking background (solid area) and the
non-peaking background (dashed line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)
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Fig. 4. Background-subtracted m(μ+μ−) spectrum of (a) D+ → π+μ+μ− and (b) D+
s → π+μ+μ− candidates that pass the final selection. The inset shows the φ contribu-

tion, and the main figure shows the η and the ρ/ω contributions. The non-peaking structure of the low and high-m(μ+μ−) regions is also visible.
5. Branching fraction determination

The D+
(s) → π+μ+μ− and D+

(s) → π−μ+μ+ branching frac-
tions are calculated using

B
(

D+
(s) → πμμ

) =
ND+

(s)→πμμ

ND+
(s)→π+(φ→μ+μ−)

×
εD+

(s)→π+(φ→μ+μ−)

εD+
(s)→πμμ

× B
(

D+
(s) → π+(

φ → μ+μ−))
, (3)

where D+
(s) → πμμ represents either D+

(s) → π+μ+μ− or D+
(s) →

π−μ+μ+ . The relevant signal yield and efficiency are given by
ND+

(s)→πμμ and εD+
(s)→πμμ , respectively, and the relevant control

mode yield and efficiency are given by ND+
(s)→π+(φ→μ+μ−) and

εD+
(s)→π+(φ→μ+μ−) , respectively.

The efficiency of the signal decay mode and the control mode
include the efficiencies of the geometrical acceptance of the detec-
tor, track reconstruction, muon identification, selection, and trigger.
The accuracy with which the simulation reproduces the track re-
construction and identification is limited. For that reason, the cor-
responding efficiencies are also studied in real data. A tag and
probe technique applied to B → J/ψ X decays provides a large
sample of unambiguous muons to determine the tracking and
muon identification efficiencies. The pion identification is studied
using D∗+ → π+(D0 → K −π+) decays. The efficiencies observed
as a function of the particle momentum and pseudorapidity and of
the track multiplicity in the event are used to correct the efficien-
cies determined by the simulation. The correction to the efficiency
ratio is typically of the order of 2% in each m(μ+μ−) or m(π−μ+)

region. Small relative corrections are expected since the signal and
control modes share almost identical final states.

6. Systematic uncertainties

Systematic uncertainties in the calculation of the signal branch-
ing fractions arise due to imperfect knowledge of the control mode
branching fraction, the efficiency ratio, and the yield ratio.

A systematic uncertainty of the order 10% accompanies the
branching fraction of the control mode D+

(s) → π+(φ → μ+μ−)

and is the dominant source of the systematic uncertainty on the
branching fraction measurement.

A systematic uncertainty affecting the efficiency ratio is due
to the geometrical acceptance of the detector, which depends on
the angular distributions of the final state particles, and thus on
the decay model. By default, signal decays are simulated with a
phase-space model. A conservative 1% uncertainty is determined
by recalculating the acceptance assuming a flat m(μ+μ−) distri-
bution.

The uncertainties on the tracking and particle identification
corrections also affect the efficiency ratio and involve statistical

Table 3
Relative systematic uncertainties averaged over all bins and de-
cay modes for the control mode branching fraction and efficiency
ratio. The number in parentheses refers to the D+

s decay.

Source Uncertainty (%)

Geometric acceptance 1.0
Track reconstruction and PID 4.2
Stripping and BDT efficiency 4.0
Trigger efficiency 3.0
B(D+

(s) → π+φ(μ+μ−)) uncertainty 8.1 (10.9)

Table 4
Total systematic uncertainty in each m(μ+μ−) and m(π−μ+) bin with the uncer-
tainty on the control mode branching fraction, the efficiency ratio and the statistical
uncertainty stemming from the size of the simulated samples added in quadrature.
The numbers in parentheses refer to the D+

s decay.

Bin description D+
(s) → π+μ+μ− (%) D+

(s) → π−μ+μ+ (%)

low-m(μ+μ−) 11.8 (16.9)
high-m(μ+μ−) 11.2 (15.5)
bin 1 11.1 (17.0)
bin 2 10.9 (16.4)
bin 3 11.1 (16.0)
bin 4 11.3 (16.0)

components due to the size of the data samples and systematic
uncertainties inherent in the techniques employed to determine
the corrections. The corrections depend upon the choice of con-
trol sample, the selection and trigger requirements applied to this
sample, and the precise definition of the probe tracks. The bin-
ning used to weight the efficiency as a function of the momentum,
pseudorapidity and multiplicity is varied to evaluate the uncer-
tainty. The uncertainty in the choice of phase-space model is ac-
counted for by comparing the efficiency corrections in the extreme
bins of the m(μ+μ−) or m(π−μ+) distributions. In total, the un-
certainty due to particle reconstruction and identification is found
to be 4.2% across all bins.

Also affecting the efficiency ratio is the fact that the offline
selection is not perfectly described by simulation. The systematic
uncertainty is estimated by smearing track properties to reproduce
the distributions observed in data, using D+

(s) → π+(φ → μ+μ−)

decays as a reference. The corresponding variation in the efficiency
ratio indicates an uncertainty of 4%. Also, the trigger requirements
imposed to select the signal are varied in order to test the imper-
fect simulation of the online reconstruction and 3% uncertainty is
deduced. The sources of uncertainty discussed so far are given in
Table 3.

Final uncertainty on the efficiency ratio arises due to the finite
size of the simulated samples. It is calculated separately in each
m(μ+μ−) and m(π−μ+) bin. These contributions are included in
the systematic uncertainties shown in Table 4.

The systematic uncertainties affecting the yield ratio are taken
into account when the branching fraction limits are calculated.
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Fig. 5. Observed (solid curve) and expected (dashed curve) CLs values as a function
of B(D+ → π+μ+μ−). The green (yellow) shaded area contains the ±1σ (±2σ )
interval of possible results compatible with the expected value if only background is
observed. The upper limits at the 90% (95%) CL are indicated by the dashed (solid)
line. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this Letter.)

The shapes of the signal peaks are assumed to be the same in
all m(μ+μ−) and m(π−μ+) bins. A 10% variation of the width
of the Gaussian-like PDF, seen in simulation, is taken into ac-
count for variation across the bins. In each bin, the shape of the
D+

(s) → π+π+π− peaking background is taken from a simultane-
ous fit to a larger sample to which looser DLLμπ criteria is applied.
As simulation shows the shape of the PDF is altered by a DLLμπ

requirement. A variation in the peaking background’s fitted width
equal to 20% is applied as a systematic uncertainty. The pion-
to-muon misidentification rate is assumed to be the same in all
bins. Simulation suggests that a systematic variation of 20% in this
quantity is conservative. Contributions to the yield ratio systematic
uncertainty are found to increase the upper limit on the branching
fraction by around 10%.

7. Results

The compatibility of the observed distribution of candidates
with a signal plus background or background-only hypothesis is
evaluated using the CLs method [25,26]. The method provides two
estimators: CLs , a measure of the compatibility of the observed
distribution with the signal hypothesis, and CLb , a measure of the
compatibility with the background-only hypothesis. The systematic
uncertainties are included in the CLs method using the techniques
described in Ref. [25,26].

Upper limits on the D+ → π+μ+μ− and D+ → π−μ+μ+
branching fractions are determined using the observed distribution
of CLs as a function of the branching fraction in each m(μ+μ−) or
m(π−μ+) bin. Total branching fractions are found using the same
method and by considering the fraction of simulated signal candi-
dates in each m(μ+μ−) or m(π−μ+) bin. The simulated signal
assumes a phase-space model for the non-resonant decays. The
observed distribution of CLs as a function of the total branching
fraction for D+ → π+μ+μ− is shown in Fig. 5. The upper limits
at 90% and 95% CL and the p-values (1 − CLb) for the background-
only hypothesis are shown in Table 5.

8. Conclusions

A search for the D+
(s) → π+μ+μ− and D+

(s) → π−μ+μ+ de-
cays has been conducted using proton–proton collision data, cor-
responding to an integrated luminosity of 1.0 fb−1, at

√
s = 7 TeV

recorded by the LHCb experiment. Limits are set on branching frac-
tions in several m(μ+μ−) and m(π−μ+) bins and on the total

Table 5
Upper limits in each m(μ+μ−) and m(π−μ+) bin and total branching fractions at
the 90% and 95% CL and p-values for the background-only hypothesis.

Decay Bin 90% [×10−8] 95% [×10−8] p-value

D+ → π+μ+μ− low-m(μ+μ−) 2.0 2.5 0.74
high-m(μ+μ−) 2.6 2.9 0.42
Total 7.3 8.3 0.42

D+
s → π+μ+μ− low-m(μ+μ−) 6.9 7.7 0.78

high-m(μ+μ−) 16.0 18.6 0.41
Total 41.0 47.7 0.42

D+ → π−μ+μ+ bin 1 1.4 1.7 0.32
bin 2 1.1 1.3 0.61
bin 3 1.3 1.5 0.94
bin 4 1.3 1.5 0.97
Total 2.2 2.5 0.86

D+
s → π−μ+μ+ bin 1 6.2 7.6 0.34

bin 2 4.4 5.3 0.51
bin 3 6.0 7.3 0.32
bin 4 7.5 8.7 0.41
Total 12.0 14.1 0.12

branching fraction excluding the resonant contributions assuming
a phase-space model. These results are the most stringent to date
and represent an improvement by a factor of fifty compared to pre-
vious results. The observed data, away from resonant structures,
is compatible with the background-only hypothesis, and no en-
hancement is observed. The 90% (95%) CL limits on the branching
fractions are

B
(

D+ → π+μ+μ−)
< 7.3 (8.3) × 10−8,

B
(

D+
s → π+μ+μ−)

< 4.1 (4.8) × 10−7,

B
(

D+ → π−μ+μ+)
< 2.2 (2.5) × 10−8,

B
(

D+
s → π−μ+μ+)

< 1.2 (1.4) × 10−7.
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