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1. BASIC METHODS OF LINEAR ACCELERATION
1.1 Early days

In principle a linear accelerator isone in whichthe particles are accelerated on a linear
path. Then the most simple scheme is the onewhich uses an eectrogtatic field as shown in
Fig. 1. A high voltage is shared between a set of electrodes creating an electric accelerating
field between them. The disadvantage of such a scheme, asfar as high energiesare concerned,
isthat al the partial accelerating voltages add up at some point and that the generation of such
high electrostatic voltages will be rapidly limited (a few ten MV). This type of accelerator is
however currently used for low energy ion acceleration, and is better known as the Van De
Graaf accelerator.

High Voltage

glectrode

Fig. 1 Electrostatic accelerator scheme

In the late 1920's propositions were made, essentially by R. Wideroe, to avoid the
limitation of electrostatic devices due to voltage superposition. The proposed scheme, later on
(early 1930's) improved by E. Lawrence and D. Sloan at the Berkeley University, is shown on
Fig. 2
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Fig. 2 Wideroe-type accelerator

82



An oscillator (7 MHz at that time) feeds dternately a series of drift tubes in such a way
that particles see no fieldwhen travelling inside these tubes while they are accelerated in
between. Thelast statement istrueif the drift tube lengthL satisfies the synchronism condition:

L=
2

where v is the particle velocity (8c) and T the period of the a.c. field. This scheme does not
allow continuous accel eration of beams of particles.

1.2 Improved methods for non-relativistic particles

Consider a proton of 1 MeV kinetic energy entering the previous structure. At a

frequency of 7 MHz such aparticle, with 8 = v/ic = 4.6 102, will travel a distance of roughly
1 meter in half acycle. Clearly the length of the drift tubes will soon become prohibitive &
higher energies unless the input RF frequency is increased.

Higher-frequency power generators only became available after the second worldwar, as
a consequence of radar developments.

However at higher frequencies the system, which isamost capacitive, will radiate a large
amount of energy; as a matter of fact if one considersthe end faces of the drift tubes as the
plates of a capacitor, the displacement current flowing through it is given by

l=w CV
where C is the capacitance between the drift tubes, V the accelerating voltage and w the angular
frequency inuse. It istherefore convenient to enclose the gap existing between drift tubesin a
cavity which holds the eectromagnetic energy in the form of a magnetic field (inductive load)
and to make the resonant frequency of the cavity equa to that of the accelerating field (Fig. 3).
In that case the accelerator would consist of a series of such cavities fed individually with
power sources.
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Fig. 3 Single-gap accelerating structure

Such single-gap cavities could also be placed adjacent to each other as shown on Fig. 4.

In the 21 mode case, since the resulting wall current is zero, the common walls between
cavities become useless. Then a variant of that scheme consists of placing the drift tubes in a
single resonant tank such that the field has the same phase in dl gaps. Such a resonant
accelerating structure was invented by L. Alvarez in 1945 and was followed by the construction
of a 32 MeV proton drift tube linac (Fig. 5) powered by 200 MHz war surplus radar
equipment.
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Fig. 4 Adjacent single-gap cavities. a) tmode, b) 2t mode
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Fig. 5 Alvarez-type structure
In the 2rtmode of operation the synchronism conditioniis:
L =VvT =pBAg

where Aq is the free space wavelength at the operating frequency. Noticethat in Fig. 5the drift
tubes are maintained by metallic rods to the tank walls.

The Alvarez structure is still used for protons, as well as heavy ions, operating mostly a
200 MHz. Most of our present day proton linear accelerators are used as injectors for circular
machines such as synchrotrons and their energy lies from 50 MeV to 200 MeV. At 200 MeV

protons are still weakly relativistic with 8= 0.566.

Note: Since the progress in methods of acceleration came from the use of resonant structures
which can provide high accelerating field with less power consumption, the new definition of a
linear accelerator or "Linac" implied machinesin which particles are accelerated on a linear path
by radio frequency fields. Then electrostatic devices no more appear in this definition, but it is
worthwhile mentioning that they are used as front-end proton linacs.

1.3 The case of ultra-relativistic particles

While Bis getting close to unity for protons of 10 GeV kinetic energy, [ is amost unity
for electrons of 10 MeV. Hence above these energies the particles will have a constant velocity
v = ¢ and the length of the drift tubes will remain constant as well. The higher velocity needs
higher frequencies. However triode and tetrode tubes could not handle high RF power at high
frequency. The invention of theklystron in 1937 and its successful development during the
war led tohigh power sources a 3000 MHz. At this frequency the free-space wavelength is

10 cm, smdl enough that the perspective of accelerating electrons to high energies soon
became an aim.
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At the same time emerged the idea that ultrarelativistic particles could be accelerated by
travelling guided waves. It is a matter of fact that in a resonant structure the standing wave
pattern can be expanded into two travelling waves, one which travels in synchronism with the
particle and the backward wave which has no mean effect on the particle energy.

However TM modes (with an electric field in the direction of propagation) in rectangular
or cylindrical guides have phase velocities bigger than c. Then it was necessary to bring the
phase velocity at the level of the particle velocity (vp ~ ¢) and to do so the simplest method
consists of loading the structure with disks as shown on Fig. 6, where the size of theholes
determines the degree of coupling and so determines the relative phase shift from one cavity to
the next. When the dimensions (2a, 2b) have been tailored correctly the phase changes from
cavity to cavity adong the accelerator to give an overal phase velocity corresponding to the

particle velocity.
AR
2a @ 2b .
U

Fig. 6 Disk-loaded structure

This type of structure will continuously accelerate particles as compare to the drift tube
structure which gives a discontinuous accel eration corresponding to the successive gaps.

Figure 7 is a more complete drawing of such a travelling-wave structure showing both,
the input coupler which matches the source to the structure and the output coupler which
matches the structure to an externa load (resistive load for instance) to avoid the backward
wave.
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Fig. 7 Travelling-wave accelerating structure

These structures generally operate in the1v/2 mode or the 2173 mode. For the former the

height of each cell isequal toA/4 whileit is equal toA/3 for the latter. Thisisimportant, as will
be seen later, for the electromagnetic energy to propagate. The interesting thing with travelling-
wave structures, in which the energy propagates relatively fast, is that the RF power source can
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be pulsed during a short period corresponding to the filling time of the structure. In this pulsed
mode of operation much higher peak power pulses can feed thestructure, increasing the
accelerating field. Asaconsequence only pulsed beams can be accelerated leading to small duty
cycles.

Standing-wave structures can also be used for ultrarelativistic particles. Inthat case thett
mode of operation is efficient, where the field has opposite phase in two adjacent cells. This
type of structure as shown on Fig. 8, often caled "nose cone structure”, is very similar to the
drift tube one in which the length of thetubes has been made very small. A variant of this
scheme is used in the high energy proton linac (E = 800 MeV) a Los Alamos, where the
coupling between cavities has been improved by adding side coupled resonant cavities as
sketched on Fig. 9.
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Fig. 9 Side-coupled structure

1.4 Induction linac

Resonant structures as described previously cannot handle very high beam currents. The
reason is that the beam induces a voltage proportional to the circulating current and with a phase
oppositeto that of the RF accelerating voltage. This effect known as "beam loading" disturbs
the beam characteristics and can even destroy the beam by some instability mechanism.

A cure for such an effect in the case of very high currents consists of producing an
accelerating field with avery low Q resonator. This is obtained with an induction accelerator
module (Fig. 10) in which a pulsed magnetic field produces an dectric field component,
according to Maxwell equations, just similar to the betatron principle.

The accelerator will consist of an array of such modules triggered a a rate compatible
with the particle velocity, and fed by high power short pulse generators.
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Fig. 10 Linear induction accelerator module

1.5 Radio frequency quadrupole (RFQ)

At quite low [ values (for example low energy protons) it is hard tomaintain high
currents due to the space charge forces of the beam which have a defocusing effect.

In 1970 I.M. Kapchinski and V.A. Teplyakov from the Soviet Union proposed a device
in which the RF fieldswhich are used for acceleration can serve as well for transverse
focusing. The schematic drawing of an RFQ is shown on Fig. 11. The vanes which have a
quadrupole symmetry in the transverse plane have a sinusoida shape variation in the
longitudinal direction. In recent years these devices have been built successfully in many
laboratories making it possible to lower the gun accelerating voltage for protons and heavy ions

to less than 100 kV ascompared to voltages above 500 kV which could only be produced
earlier by large Cockcroft-Walton electrostatic generators.

Fig. 11 Schematic drawing of an RFQ resonator
1.6 Other methods and future prospects

Among the other methods of acceleration one can at least distinguish between two classes:
collective accelerators and laser accelerators. In both casesthe idea is to reach much higher

gradients in order to produce higher energies keeping the overdl length of the accelerator at a
reasonable level.

Collective accelerators are aready in use for ion acceleration but up to now they never
reached the desirable high gradients. The oldest idea of collective acceleration is the Electron
Ring Accelerator (ERA) where an intense electron beam of compact size is produced in a
compressor (Fig. 12). The electronring is then accelerated either by an eectric field or by a

87



pulse magnetic field (induction acceleration) and loaded withions. Through the space charge
effect the electrons (hollow beam) will take the ions along.

accelerated nng

electron ring before
compression

electron ring
after compression
and ion loading

Fig. 12 Principle of the Electron Ring Accelerator (ERA)

Laser accelerators hold out the promise of reachinghigh energies with a technology
which is new to accelerator physicists. Plasmamedia can be used to lower the velocity of the
laser wave.

It is aso worthwhile to mention that extensions of conventional techniques are aso
studied extensively for very high energy electron linacs.

2. FUNDAMENTAL PARAMETERS OF ACCELERATING STRUCTURES
2.1 Transit time factor
Consider a series of accelerating gaps as in the Alvarez structure (Fig. 13a) and assume

the corresponding field in the gap to be independant of the longitudinal coordinatez (Fig. 13 b).
If Visthe maximum voltage in the gap, the accelerating field is:

E,= Y cosut
g

_ If the particle passes through the center of the gap att = O with avelocity v, its coordinate
is.

and itstotal energy gainis:




9/2 0 .9/2
Fig. 13 Approximate field pattern in a drift tube accelerator
where
o=
Vv
iscalled thetransit angle and T is the transit-time factor:

=sin9/2

T
0/2

For a standing-wave structure operating in the 2rtmode and where the gap length is equa
to the drift tube length:

9= A, 12
one gets:

T=0.637.

To improve upon this situation, for agiven V it is advantageous to reduce the gap length g
which leads to larger drift tubes as in the Alvarez design. However atoo large reduction ing
will lead to sparking, for a given input power per meter, due to an excessive loca field
gradient. Usual valuesof T lie around 0.8. In the more general casewhere the instantaneous
field is not homogeneous through the gap, the transit-time factor is given by:

E,(2)e/“'dz
I E,(2)dz
Thetrangit time factor generally shows the amount of energy which is not gained due to

the fact that the particle travels with a finite velocity in an eectric field which has a sinusoidal
time variation. However this factor may become meaningless, for instance if the mode is such
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that the denominator is equal to zero while the numerator remains finite as would be the case for
a TMo11 mode in a pill-box cavity (see Fig. 14). So one has to be careful when using this
concept.

Fig. 14 TMg11 modein apill-box cavity

Exercise. Energy gain when thefield E; in the gap varieswith z

One has:

9 :

AE=e Lef E,(2)e!“'dz

[0}

with
wt = wz — L:Up
v

where Y, is the phase of the particle, relative to the RF, when entering the gap. Hence

0, ° w? O
AE =ellere “Ilg(z)e vdz
U 0 U

D_-w . 9 Ja)E |:|
=elere ""e¥|[E,(2)e vdzO
= o =

By introducing ¢= (), - ¢4 onefinaly gets:

g wa
AW =¢e[E,(z)e Vdz
(o]

which has a maximum value for ¢=0.

cos @

Now ¢ appears as the phase of the particlereferred to the particular phase which would
yield the maximum energy.
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2.2 Shunt impedance

The shunt impedance Rs for an RF cavity operating in the standing wave mode is a figure
of merit which relates the accelerating voltageV to the power Py dissipated in the cavity walls:

Pd:E.

The shunt impedance is very often defined as a quantity per unit length. So, a more
general definition which takes also care of travelling-wave structuresis:

R

2
dP:—E Withr:T

dz~ r

where L is the cavity length, r the shunt impedance per unit length, E; the amplitude of the
accelerating field, and 2—: the fraction of the input power lost per unit length in the walls

(another fraction will go into the beam). The sign in the right hand side means that the power
flowing along atravelling-wave structure decreases due to the losses.

In the case of standing-wave cavities an uncorrected shunt impedance Z is sometimes
defined (computer codes for designing cavities) where V is the integral of the field envelope
along the gap. Then, to take care of the transit time factor the true shunt impedance becomes

R=Z T?.

Shunt impedances up to 35 MQ/m are reached in proton linacs operating a 200 MHz and

relatively low energy, while shunt impedances up to 100 MQ/m can be obtained at 3 GHz in
electron linacs. For the latter a peak power of 50 MW (for instance supplied by a high power
pulsed klystron) would give an accelerating gradient of 70 MV/m in a 1 meter-long structure.

However, most of the present eectron linacswork in the range of 10 to 20 MV/m with
less efficient structures and lower peak power from more conventiona pulsed klystrons.

If a standing-wave structure, with shunt impedance Rs, is used in the travelling-wave
mode then the shunt impedance is doubled. This comes from the fact that astanding wave can
be considered as the superposition of two travelling waves of opposite direction, each wave
leading to power lossesin the walls.

It is desirable to have a shunt impedance per unit lengthr ashigh as possible. Let's have
alook to the dependance of r upon the operating frequency:

- the RF power loss per unit length is proportional to the product of the square of the wall
current iy and the wall resistancer,y per unit length:

dp

12
e v

- the axial dectric field E, is proportional to the wall current divided by the radius b of the
cavity:

E, Oi, /b
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- the wall resistancery per unit length is equal to the resistivity p of the wall material divided by
the area of the surface through which the current is flowing:

rtw=p/2mb o
where disthe skin depth given by:
o= (2p/ouu)ﬂ2

and u is the permeability of the walls. Combining dl these expressions and knowing that
b1/ w yieldsthe result:

rdvew
which shows, from the viewpoint of RF power economy, that it is better to operate at higher
frequencies. But thereis however alimit in going to very high frequencies due tothe fact that
the aperture for the beam must be kept large enough.
2.3 Quality factor and stored energy

The quality factor Q is defined by:

where Ws is the stored energy. Clearly Q remains the sameif the structure is used either in the
standing-wave mode or the travelling-wave mode. It is also common to use the stored energy
per unit length of the structure ws = dWs/dz.

Then

WW

DAy

Another quantity of interest istheratior/Q:

2
r_ g
Q wwg

guantity which only depends on the cavity geometry at a givenfrequency, and which can be
measured directly by a perturbation method. The other quantities depend on other factorslike

the wall material, the quality of brazing etc. ... Q varieslike w ™2, hencer/Q varieslike w.
Exercise Fields, quality factor Q and ratio r/Q for a pill-box cavity

Note that pill-box cavities are very representative of single-cell accelerating structures in
most cases.

The field components for TMppg modesin cylindrical cavities are given by:
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E, =k5 coskz J;(kr) cosné
E, = —kiko sinkz J,(kor) cosn
Eg = nTklsin kiz Jn(kor) sinnd
H,=0
H, = -J 1K, (kor) sinng

r 7 n\"2

0

Hg = _%ksz (kor) cosné

0
= (1o / &)
satisfying the boundary conditions:
E =E;=0 for z=0 and z=/
E,=E;=0 for r=a
with

kl_%T In(ka) =0 Kk :V—;p

47'!2 EﬂT[DZ Dvnp

2 "0,0 HaHd

where vpp isthe p'[h root of Jn(X) = 0 and A the free-space wavelength.

K2=2"_

The most simple mode in acylindrical cavity isthe mode TMg1o. Thisis the fundamental
mode which however requires|/a < 2. This mode has only two components (Fig. 15):

Fig. 15 TMg10 modein apill-box cavity
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= J,(kr)
Hg = —Zial(kr)

(0]

(o=

The resonant frequency isgiven by vpp =2.4and A = 2ra/2.4 = 2.62 a.

For A =10 cmone getsa = 3.8 cm.
In aresonant RLC circuit, Q is expressed as follows:

1

=12
Lw . 1
onfl—— ==% \with w,=—— .
Q= ERIZ ° v LC
2

So, one can write for the definition of Q

Stored energy
Energy lost during one period

which can now be extended to a resonant cavity.

The stored energy in the cavity volumeis given by:

B2 = € e
== (|H| dV=—=[|Ef dV .
[ ev=2 1

For the power lossesin the walls, one notices that the magnetic field inducesinthe wall a
current i =fix H ori =H. Then thelosses are given by:

Py =7 [RyHZdS
25
where Ry is the surface resistance for alayer of unit area and width o (skin depth):

1

Jruot

and where oisthe material conductivity andf the RF frequency. So:

1 .
=—— with o=
Ru g

dPy = "“5\H2\f ds .
The energy lost during one period is:
W _?de = "7"5\H2\ ds
and for the total wall surface:

94



W, :WTéJJHZ\ ds .
Hence:

[IHFav
2% _2KV

_3I|H|2ds "5 S
S

Q

where K isthe form factor of the given geometry.

Considering again the TMg10 mode in a pill-box cavity one gets:
a
_[Hg dv = zJ'Jf(kzr)znrdr
\% o]

a
[H5 ds=2 3 (kyr)2mar +2mar}(koa)
S 0

:[Jf(kzr)rdr + a;Jf(kza)

a

IJf(kzr)rdr

(o]

9
(

Olr

From the rdation:

12 _a
% (k.1 )rdr = ?Jl (k.a)

(o]

one gets

a _
% g2
a+/

Q:

|~

and for example:
6=10°m a=3.8x10°m (=5x10°m
gives Q = 21590.
In addition one can a so get the quantity r/Q (r being the uncorrected shunt impedance)

2
TV 988y Dw
Q  WW,/

hence
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rdw’? .

2.4 Filling time

From the definition of Q one has for aresonant cavity:

If the cavity has been initidly filled, the rate a which the stored energy decreases is
related to the power dissipated in the walls:

dwW, _ _w
dt QV\é'
Hencethetimeit takesfor the electric field to decay to 1/fe of itsinitia vaueis:

tf = E

w
which isthefilling time of the cavity. In the case of atravelling-wave structure the definition of
thefilling timeis different

L
tf - —
Ve

where L isthe length of the structure and ve the velocity a which the energy propagates. In a
travelling-wave structure the stored energy exists but never adds up becauseit is dissipated in a
terminating load and does not reflect

2.5 Phase velocity and group velocity

These two concepts are of high importance in the case of particle acceleration by means of
travelling guided waves. As mentioned before such methods are mostly used for particles
whose velocity is either close or equal to the light velocity c.

Let'sfirst assume a cylindrical waveguide, and search for the smplest TM (or E) mode

which can propagate. Such a mode, with an axia eectric field component E, is the TMgz
mode which also has two transverse componentskE, and Hg :

£, = Endofler)e

£ =i Ea(lr)e
Ho =5 i1 Exti(kr)e ™

Z,= & =377 ohms

V&

where [ is the propagation factor of the wave travelling in the +z direction, satisfying the
relaion:
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with:
A c
Jo(k:a) =0 k.a=24
_2m_w
kc_ C

and where aisthe inner radius of the cylindrical waveguide, wthe excitation frequency, w: the
cut off frequency.

The wavelength Ag of the propagating wave is such that:

where vy is the velocity of the wave or phase velocity. In order for the wave to propagate Ag
must be real and positive which means:

or

In order to lower the phase velocity the waveguide is loaded by disks, equally spaced if
the particleis ultra-relativistic (v~ c). The disks act like capacitiveloads and reduce the speed
of propagation asin loaded transmission lines.

It is usual to draw the Brillouin diagram for the type of propagatingwave under
consideration. Thisdiagram relates the frequency to the propagation factor (Fig. 16).

4 W/C

Vp =C

®/C o W<t
¢
C
o 0
0 B'vp

Fig. 16 Brillouin diagram
The straight line v = ¢ separates the two domains corresponding respectively to siow and
fast waves. For the latter, as obtained in anormal guide, the relation
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W’ W oucz
2 T2 2
Vo

gives ahyperbolafor agiven .

For aslow wave it will exit an operating point P in the diagram and the corresponding

phase velocity isgiven by tga = vp/c. If w varies, P moves on a certain curve; the slope of
thiscurve at point Pis:

where vg = (dBMw)1is called the group velocity and happens to be equal to thevelocity of the
energy flow in the waveguide:

= Ve
Exercise: Calculation of the energy flow velocity

The average power which flows through a transverse cross-section of a waveguide is
given by theintegral of the Poynting vector:

1
P= ERe-L'(ET x Hy)dS

where only the transverse components of the field have to be considered. For a TM mode the
relation between Et and H is:

The energy stored in the magnetic field (purely transverse component) per unit length is:

_ _H1K 2
Wep = = [ |He[dS=E = = [|E[ ds
al iz2p?]

The energy stored in the eectric fieldper unit length is equal tothat of the magnetic field.
Hence the total stored energy per unit lengthiis:

Wg = Wge + Wgr = 2Wgp,

The velocity of the energy flow isthen given by:

98



Since:

one gets:

=P 2%B _1,B_1 lB
©ws g1k opk plegk
272
_B
==c
Ve K
_ 2, 2 2\v2t
N TE L . L
9 OdewO dg O dw 5
B’ _Bc
V.= —="—z=V
9 w kO

2.6 Space harmonics in loaded waveguides

In an infinite periodic structure (Fig. 17) the wave equation must satisfy the periodic

boundary condition imposed by the disks. Thisis obtained by choosing a solution of the form:

E(r,0,2) =e *E(r,6,2)

H(r,6,2)=¢e

YZH,(r,6,2)

where E; and H1 are periodic functions. Ej(r, 8, z + d) = Ex(r, 6, z). Considering two
similar terminal planesin two consecutive cells, that means the fields will repeat except for the

multiplication factor e V9 which can be related to the propagation time from one cdl to the

next.

fe— d —»

2b 2a

— e ———— — e E—— s —

N——— — — ———— —

— — T — T
Z+d
Fig. 17 Periodic loaded structure
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The possibility of expressing the field in the above form is often referred to as Floquet's
theorem (the origind Floquet's theorem dedt with differential equations with periodic
coefficients, the case of periodic boundary conditionsis an extension of that work).

Any periodic function such as E;(r,0,z) can be expanded into an infinite Fourier series;
thus

+o00 .
E(r,0,2) = Z Ein(r,6) g-i2nmz/d
n=—oo
Considering alossless structure, the propagation requiresy to be imaginary:
y=iB,
Hence the field becomes:

+o00 .
E(r6.2)= Y Eyn(r.6) e

n=—oo
with
B.=pB,+2nm/d

Bo is the propagation factor of the fundamental space harmonic.

In addition the field has to satisfy the usual transverse boundary conditions of cylindrical
waveguides. Thus, if one concentrates only on the lowest TM type modethe field components
in a periodic disk-loaded structure are:

with the more genera relation

Notice that al the space harmonics exist a a given frequency w. Once 3, is known dl
Bn's are known. Moreover each space harmonic has a different phase velocity given by:

v = w
pn — 27N
+
B, e

The group velocity of the nth harmonicis:
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o =G0 _odf, 0" _odpdt
N dp, Odwd OdwO

g

It isthe samefor al harmonics.

The Brillouin diagram for aloaded structure (or slow wave structure) is represented on
Fig. 18. At agiven frequency there is an infinite number of points P corresponding to the

propagation factors 3, . If the frequency changes, the points move on curves which have dl
the same slope, corresponding to the group velocity. Hence one gets pieces of curve which can

all be deduced by a smple trandation of 2r7d . Since these curves must join, obviously they
must have zero slopes somewhere leading to the shape of Fig. 18. It happensthat the first part

of the curve has a zero slope, hence zero group velocity, at fd = 0 and 7T which give the lower

wo/c and upper wy/c frequencies of a pass band which remains true for the higher space
harmonics. The condition of propagation hence corresponds to:

O<cospd<1
W/c

t

On/e e e e e e e

O)O/C ___________ ~ S~

Bo B 3n

::.I: L
=3}

Fig. 18 Brillouin diagram for a slow wave structure

At Bd = m the phases in two successive cells are opposite (771 mode) and one gets a
standing wave pattern in the combination of al the space harmonics.

The calculation of thereal fieldsin loaded structures which would take careful account of
al boundary conditions is tedious. Generally a reasonably accurate description of the

dispersion curve, relating S to k, is obtained by an equivaent transmission line analysis or a
coupled resonators chain analysis.

In order to accelerate electrons which aready have the velocity of light ¢ the operating

point in the Brillouin diagram must correspond to the intersection of thek, 8 curve with the 45
line (Fig. 19).

In a travelling wave structure the 71 mode is avoided according to the previous remarks.

Either 772 or 2773 modes are used. For the former aphase shift of 2rTis obtained over four
cellswhilefor the latter it needs three cells.
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Fig. 19 Operating point forvp=c

For an acceleration to take place one chooses the fundamental space harmonic such that:

- w

'BO_C
T 271
d=— or —
B, 2 3

The fundamental is the only one to give a net accelerating field since thehigher space
harmonics have no effect on the average. Hence, most of the particle dynamics in a travelling
wave structure can be treatedonly using the fundamenta space harmonicwhich can be
calculated, for any structure having cylindrical symmetry, with the help of powerful computer
codeslike LALA or SUPERFISH. Theradial dimension of the structure is determined to fit the

operating frequency cw.

3. ENERGY GAIN IN LINEAR ACCELERATING STRUCTURES

3.1 Standing-wave structures

The energy gain in a standing-wave structure is straightforward when the shunt
impedance corrected by the transit time factor isknown. However, when the power source is
matched to the resonant structure through a coupling loop, such that no power is reflected
toward the source, then the loaded Q value becomes:

_ Q
QL—m

where the coupling coefficient 8is unity when the power given to the beam isnegligible. The
corresponding filling time now becomes:

_2Q _ 2Q

LA w(1+p)
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For long power pulses thereis no peculiar effect, but for short power pulses whose length is of
the order of the filling time (acceleration of short beam pulses) there will be a transient effect
during the filling of the cavity where reflected power cannot be avoided. Hence the minimum
power required to attain a certain accelerating voltage will depend on the coupling coefficient
and not only on the shunt impedance.

3.2 Travelling-wave structures

For travelling-wave structures the energy gain will depend on the RF characteristics of the
cells in a more complicated way. It is usual to distinguish between constant-impedance
structures and constant-gradient structures.

3.2.1 Constant-impedance structure

In a constant-impedance structure, for instance of the disk-loaded type, dl the cdls are
identical. Hence the group velocity vg, which depends on the geometrical parameters of the
cells, remains constant al along the structure. If L is the total length of the structure the filling
timeis:

tf = —
Vg

For a disk-loaded structure such as the one drawn on Fig. 7, operating in the 2773 mode
a 3 GHz, the group velocity, which is a strong function of the iris diameter 2a is
approximately given by:

323
Vg /c= (2a)
891

where 2a is expressed in cm. For instance, vg = 0.01 ¢ for 2a = 1.97 cm.

As the waves propagate in such a structure, part of the input power is dissipated into the
walls and the remaining power will lead to a smdler accelerating field. Hence the accelerating
gradient decreases continuously along the structure. It was shown in the previous section that:

Q= (;:)’ /V\(/jsz
L
Q wwg
W =P/ vy
So one can write:
ap__wP
dz VgQ
leading to the exponential behaviour:
p= R)e—(w/ng)z
E= Eoe—(wlzng)z



At the input of the structure the accelerating field E; is related to the input power Pg:

wr
E =P~
v, Q
Integrating the field along the structure |eads to the energy gain:
L
= = Q — w/2vy
Viow = [ E(2)dz= 2E v, S|1-e (wr2vgQ)L

o]
It iscommon to use the attenuation factor T of the structure as follows:
e?"=P(z=L)/P(z=0)
Then

1
r== = ==
2 f

N[~
Qle

e
Qvy
and the expression for the energy gain becomes:

Vi = (PorL)? 2[(2r)1’ (1-¢77)s r]

Exercise: Consider a disk-loaded structure, 1-meter long, operating at 3 GHz inthe 2773 mode
and assume an iris diameter of 1.97 cm which givesvg/c = 0.01. For such a structure made of
copper the shunt impedance per meter isroughly:

f [mg/m]= 86~ 3.6(28) [em] = 72MQ / m

while Q is practically independant of (2a) and equal to 15000.
For this example the performances of the structure are:
t; =0.33 us
T = 0.21 neper
VimMev] = 5\ Pomw]
3.2.2 Constant-gradient structure
In order to compensate for the variation of the accelerating field along the structure, due to
power dissipation, it is possible to lower the group velocity from cdl to cell, by changing the
geometry for the same operating frequency. In fact thisis obtained by reducing theiris aperture
and by reducing the diameter of the cell at the sametime. Such a scheme will make a better use
of the available power.
In a perfect constant-gradient structure E = cte, so one must have:

dP
— =cte
dz
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assuming the shunt impedance is not too much affected by the change in the iris aperture.
Then one can write:

P:Po_(Po_PL)E

where L isthe length of the structure, P, the input power and P the output power.

By analogy with the constant impedance case it is usua to definethe attenuation factor t
such that:

P/P=€"

Then one has:

Pz&%—@—éﬂfﬂ

LH
95_—P( é”WLz—Ef-
dz v,Q

leading to alinear variation for the group velocity:

The values of the group velocity at both extremities are:

ol 1

Vg(o) - 61_ e—2r
O.j_ e—2T

Vg(L) - 61_ e—2T

The attenuation factor iswell defined when the output group velocity is known.

eZT =1+ ol
Qyy(L)
In practice the iris diameter at the end of the structure ismade as smdl as possible

compatible with the dimensions of the accelerated beam. Setting the output group velocity and
the length of the structure give the input group velocity.

Thefilling time in the present caseis:

tdz _Q, 0 w O
—E==Lng+ 0
I R AT
tf:ZT9
w
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Integrating the accelerating field gives the energy gain:

=[PrL(L-e* )]”2

total

with

THL (1 e_ZT)g

Exercise: Let's take the previous set of parameters and keep the shunt impedance constant.
One gets.

Vg(L)/c=0.01
T = 0.175 neper
t; =0.28 us

Vg(0)/c=0.014

V[MeV] =4, 6\ PO[MW]

The constant-gradient case appearsto be dightly less efficient. However inthe constant-
impedance case the maximum field which takes place at the input is higher for equa energy
gains. Since there is some worry about field breakdown on the walls, the constant-gradient
structure finally appears more interesting although it is more difficult to build. Andternative is
to build quasi-constant-gradient structures made of constant impedance landings, with transition
cells between the landings. In that case the number of different cellsis reduced.

For travelling-wave linacs the length of the power pulse must be a least equa to the
filling time in order to accelerate very short bunches. The particles travel fast through the
structure as compared to the group velocity so they must enter whenthe structure is completely
filled. For longer beam pulses the power pulse must follow in length.

Pulsed klystrons are available at the level of 50 MW with a pulse length < 5 ps.  For
short bunches (< 10 ns) compression schemes are used which give shorter power pulses

(< 1 ps), compatible with the structure filling time, with a higher peak power which can be as
much as 4 times the direct klystron peak power. Thisis either used to double the energy of
existing linacs (for instance SLAC at Stanford) or to reduce thetotal number of power sources
for agiven nominal energy (for instance the LEP Injector Linac).

4. PARTICLE DYNAMICS IN LINEAR ACCELERATORS

Up to now a synchronism condition has been defined as a necessary condition for the
particlesto be accelerated in alinear structure. However this simple approach to the problem is
not sufficient as it only describes the behaviour of selected particleswhich enter the accelerator
at the right time with the right velocity.

In fact abunch of particles, asit is produced by the gun, has a spread in velocities aswell
as afinite transverse dimension (beam emittance). Depending on their initial conditions the
particles will undergo different stories during the acceleration. It isusual to differentiate the
transverse motion of the particles from their longitudinal motion.
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4.1 Longitudinal motion: phase stability

If particles enter continuoudly in an accelerating structure obviously a fraction of these
particleswill seethe axial field E; at the wrong time (or wrong phase) due to the sinusoidal time
variation. Thisaready givesa feeling of the bunching phenomenon that will occur in the two
types of accelerators (discrete acceleration through gaps or continuous accderation with
travelling waves).

eVi

EVS — —

Fig. 20 Particle phasesrelative to the RF field

Two particleswhich arrive at different times of the accelerating half period (see Fig. 20)
can be either subject to equal energy gains (M1, N1) or different energy gains (P, P').
Considering for instance an Alvarez structure in which the synchronism condition is obtained
for agiven energy gain eV, then particles M1, N1, M2 etc. will always see the same phase of
the accelerating field.

A particle Pwhich arrivesin agap in advance as compared toM1 will get less energy and
itsvelocity will be smaller so that it will take moretime to travel through the drift tube. In the
next gap it will appear closer to particle M. The effect is true for particle P which will get
more energy and reduce its delay time as compared toM1. Points M1, M> etc. are stable points
for the acceleration since particlesdightly away from them will experience forces that will
reduce their deviation. On the contrary it can be seen that pointsN1, N etc. are unstable points
in the sense that particles slightly away from these points will shift even more in the next gaps.

In order to study the longitudinal motion one uses variables which give relative position,
and energy, as compared to the synchronous particle:

At =t -t

¢ :(P_(os:w(t_ts):(*At
w=W-W,

where ¢ is the RF phase of the synchronous particle and Ws the energy of the same particle.
The accelerating field can be smply described by:

£ N ) wzU
= E.cos -2 =E.cos
= Er‘) VpH Eocosg
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When the phase velocity varies, wz/vp must be replaced by a)-[ S—Z in the forthcoming
p

expressions so that they will remain valid. The azimutha position z is generally taken as the
independant variable instead of t.

4.1.1 Non-relativistic case — Adiabatic damping

The rate of energy gain for the synchronous particle is given by:

aw _drt

n d
ety mszD: a(mvs) = eE,cosq,

where E; would take into account the transit time in the case of standing-wave drift-tube linacs.
For other particles the energy gain can be expressed in reduced variables:
dw _
e eED[cos((pS +¢)- COS(pS]
In addition one has:

d¢ dt dipg_ 1 10
dz dz dz0 “Hy VSB

which turns out to be:

having assumed that:
w=W-W, = %m(v2 —vsz) v (v — V)

Considering small deviations from the synchronous particle one getsthe following set of
first-order linear equations:

W__o,

dz Mvg
d—W=-eEosin(p¢
dz S

which respresent a phase harmonic oscillation:

d’¢p 2, _
Fr AR

with angular frequency relative to the independant variablez

eEw sing,
Q=-"2"
S mV:
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showing that sin ¢ has to be negative for stable solutions. Notice that this is true since vs is a
congtant parameter. But the approach is till valid if vg varies slowly. The wavelength of the
small amplitude phase oscillation is given by:

Ag=2m/ Qg
and increases rapidly along the accelerator.

Considering larger amplitudes one should write:

9w _
7 —m—vgeEo[cos(goS +¢)- COS(pS] =F

Therestoring force F can be derived from an effective potential energy functionU
U=- J’ F d¢

which is drawn on Fig. 21. An analysis of the non-linear motion in the phase space w, ¢
shows that the oscillation is bounded at some energy wmax. The corresponding curve is called

the separatrix.
The motion can be derived from a Hamiltonian H satisfying the canonical equations:
z
' |
| |
1
L 1T

| eEpcos oy
//: l\
-0 | s \/
|
!
|
|
|

Q
\ 0

separatnx

CESS

Fig. 21 Phase stability graphs
dw__oH  dp_oH
dz o0¢ dz oJw

u

EERN

|
|
|
{
W
|
|
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One gets.

H = —%wz —eED(sin (0+0)-0 COS%)

S

which, for small amplitudes, reduces to:

w

HO-
2mv3

W e, sin @g?

A particle with some initial conditions will perform an ellipse in the phase space. Its
maximum energy Wmax iS obtained when ¢ = 0 and correspondingly its maximum phase
excursion ¢max is obained whenw = 0. One has the relation:

Winay _ [BE, Sing@mV? i

X

¢max w

Liouville's theorem stipulates that for a conservative motion the area of the phase space
elipseisaninvariant

Wmax ¢max = cte

Thisisnormally true for a constant v, but can still be applied when considering adiabatic
variation of this parameter (adiabatic theorem).

It follows from the previous relations that:

/4
Wiy = cteE%E" sin (psm\ég1

= cteD sin qosmvgg

It appears that ¢max Will decrease during the acceleration and the bunch length will
become shorter. On the contrary wmax Will increase, but the relative energy spread w/Ws , in
which the user isinterested, will decrease.

4.1.2 Relativistic case — Electron capture

In the case of relativistic particles:

s-t-bi
with
=1-p7)" & =

Then it happens that the previous formulae remain valid just replacing vs by ys vs and
taking m as the rest mass.
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The same phenomena occur for relativistic particles but the phase oscillation becomes
very slow at high energies, so that in practice a particle can travel al aong alinac in less than
one oscillation period and some of the previous statements cannot have the same meaning any
more. For instance if a short bunch of particles is captured in an electron linac and if dl the
particles have the light velocity they will keep that velocity and always arrive at the same RF
phase in the gaps. In that case the phase spread of the bunch will remain constant. Moreover if
this phase spread is very small, for instance around the peak of the RF, dl the particles will get
the same energy and the absolute energy spread will also remain constant while the relative

energy spread will go down like -1,

It is now interesting to consider the case of eectronlinacs, where the structure has a
phase velocity equal to ¢, and to look at what happens when particles enter the structure having
still avelocity smaller than ¢, as for instance produced by e ectron guns.

So let's consider an accelerator with a phase velocity equal to ¢ and an axia eectric field
Ez which has a sinusoidal time variation with constant amplitude E along the trgjectory. Then

if E;is the field seen by a particle one defines the phase angle ¢ between the wave and the
particle by means of the relation:
E,=E sing

If visthe particle velocity, then
d¢ =(c-v)dt

isthe difference in path between the wave and the particle in the timedt. This path difference
can also be expressed in term of the phase differencedg@

where Aq is the wavelength of the propagation in the waveguide. From the above equations
one gets:

d 271C

W= -p)

dt  Ag4

The equation of motion for the particle, in the relativistic case, isssmply:

E(mv) = CEE!LS: eE sing
dt rT"O dt gl—ﬁz)llzg
and using anew variablea such that:
[ =cosa
it becomes
do __ek sing sin’a
dt m,C

with
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Hence:

. 2mmc? (1- cosa
—anodqo:/\—rTeon ( sin’a )da
g

Integrating from timet; where v = ¢, to time to where 8 = o, a = ao and @ = @, one

gets.
COS@ — COS@, :2—7-[m°Cz ggﬂ—tg&D
“ ° A, eE H 2 T2
Knowing that:
¢ g:[ll— cowdjzzﬂ—ﬁﬂjz
2 U+ cosrU H+ﬁ%
one gets:

2 /12
cosp — cosp = 2EMEC 0-p,0
p, sp A, eE %"'[305

Since the left hand side cannot be greater than 2 one must have:

T myc? - B, '

ok Age %HBOE

This "capture condition” must be satisfied in order to capture the eectrons injected a a

velocity less than the phase velocity. For example, for Ag = 10 cm and an injection energy of
150 keV the condition givesEqy = 7.6 MV/m which is technically possible.

In practice however, to improve the capture efficiency it is common to use asmal
bunching section, with a variable phase velocity, in which the energy is brought to afew MeV.

4.2 Transverse motion: defocusing

Looking at the electric field pattern in the gap betweentwo drift tubes it is seenthat there
areradial components (Fig. 22), which are focusing at the gap entrance and defocusing at the
end. In an electrostatic accelerator where the field is constant this gives a global focusing effect
since the particle having more energy at the end of the gap makes the defocusing effect smaller.

In an RF accelerator the behaviour is different. From the phase stability requirement (@ < 0) it

appears that the field increases with time during the passage of the particle. Hence the
defocusing force becomes larger than the focusing one resulting in atransverse instability as the
particle may strike the drift tubes.
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Fig. 22 Field patternin the gap of adrift tube accelerator

It is possible to show the effect mathematically using approximate transverse field
expressions only valid for small transverse deviations from the axis:

E,=E, Bwt “f ZD
= CcoSs

O

dz
= Sl n W
& 2v BM I

- wEosin Ewt-wj%g
p

The transverse force acting on the particle is given by the Newton-L orentz equation:

d, .
a(mr) =eE, -evBy

ek,

dzU
Esm Er.t —a)J'V—pE

Considering the synchronous particle for whichv = v, and

one gets:

For ultracrelativistic particles (v [Ic) the transverse defocusing effect becomes negligible.
In other words the transverse magnetic force compensates exactly the eectric one. This is a
well known behaviour in relativistic particle dynamics.
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There are many other reasons for radia deflection of the particles than the normal
transverse field components in awaveguide. For instance, in the input and output couplers of a
travelling-wave dructure there is an axia fidd asymmetry which induces transverse
components and gives atransverse kick to the beam, even atv =c.

So finally in practice it is necessary to use external magnetic fields, such as those given
by solenoids or quadrupoles, to ensure a stable transverse motion within the aperture of the
linac.

4.3 Dynamics in a radio frequency quadrupole (RFQ)

Conventional proton (or heavy ion) linear structures, like the Alvarez structure, which use
magnetic focusing, are only efficient in the range:

QM<B:%<05

For B> 0.5 it is better to use high-8 linac structures. For 3 < 0.04 successful activity in

designing low-f structuresis very recent (in the past, the solution consisted of applying a very
high voltage on the gun to extract particles a energies that could match a drift-tube structure).
The biggest success has been the invention of the radio frequency quadrupole (RFQ) which
combines three functions: electric focusing, bunching and acceleration.

The RFQ is a four-vanes resonator with quadrupolar symmetry which provides a
transverse eectric gradient for transverse focusing (at low velocity, magnetic focusing is not
efficient because of the v term which appears in the force equation). Modulated pole shapes
(Fig. 23) lead to alongitudinal variation of the transverse field gradient giving a longitudinal
electric component for acceleration and bunching. In adrift tube structure the transittime factor

isworseat low 3; in the RF quadrupole many cells are made (since 8 is small) in an overall
practical length which permit a continuous acceleration and perfect adiabatic conditions to
produce a very good bunching efficiency (~ 100%).

vy,

1
|
t 3 :ma

|
—
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B
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(unit cell)

Fig. 23 Modulated pole shapesin an RFQ

The spatially continuous fields also cure the space charge effects that could freely develop
in the drift tubes of conventional structures.

The lowest-order potential function, in cylindrical coordinates, which satisfies the
quadrupole symmetry of an RFQ can be written as follows:

u=Vaod

U
— X5 cos 2y + Al (kr)coskz sin (at + @
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where V is the difference potentia between adjacent pole tips, and:
k=2rm/BA
From this, the following electric field components are obtained:

E = —%r cos 2y —%/Il(kr)coskz

Ew:%r sin 2 in (ct + @)

E, = k%/Io(kr) sinkz

NN O B B

with
A= (m2 —1) / (mzlo(ka) + Io(mka))
X =1- Al (ka)

The quantity VA is the potential difference that exists on the axis between the beginning
and the end of aunit cell. Then the space average longitudinal field is:

The energy gain for aparticle with charge e and synchronous velocity 3 ¢ traversing a
unit cell is approximately:

AW = eE (T cosg;
=82
2

and T = 174 isthe transit time factor for alongitudinal field with space variation sinkz and time
variation sin at, knowing that when the particle travelsone period SA = 21Uk, the RF phase
changes by 21t

Applying the equations of phase oscillations to the RFQ gives the angular frequency for
small oscillations:

o2 = eAVw? sin @

S 4mc?p?
the angular length of the separatrix, gn:
_sin @m ~ Gm
t =—_fm ¥m
9= cos @y,

and the spatia length of the separatrix:
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_ BAgn
Zm 2717

Note that here @y is the phase difference between the two exteme elongations of the
separatrix.

To avoid space-charge phenomena it is interesting to keep the longitudinal density
constant during bunching which means:

z,, =cte
condition which determines ¢ and A as functions of S.

The next interesting aspect of the RFQ is the transverse focusing during bunching and
acceleration. The magnitude of the electric quadrupole strength isXV/a2 which means that:

—  for given a, m, Bthe strength is constant in a unit cell
—  thesame strength can be maintained in every unit by keepingXV/a2 constant.

The equation for the transverse oscillation is:

d?x _Oxv oA if @ AV O
G2 - B 7, s 2 - — 577 SN PKX
dr gnoc La O 2 mocﬁ g

where T isthe reduced variable:
1=(wt+¢q)/2m
The previous equation is of the Mathieu type:

2
%+[A+B cos 2mr|x=0
T

which means that solutions can be stable for some combinations of A and B. It can be shown
that the oscillations will be stable if the following conditions are satisfied:

XV rf VA
o orn A 5298
2mmyc? Hall 2mc?B

x2v . mA

2V DD - ™ gn
8mmyc? Jall 282 ¢

ne

An anaysis of these inequalities shows that in practice the transverse oscillations are
stable with any values of the synchronous phase (up to -90°) just as in accelerators with static
lenses.

In practice an RFQ can bring proton (or ion) energies from a few 10 keV to afew Mev
over avery reasonable overall length (1 to 2 meters).
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