Diboson Production Cross Section @ LHC

On behalf of the ATLAS and CMS Collaborations

Vincenzo Lombardo LAPP/CNRS

Moriond QCD 2013, March 14

Diboson Physics

Diboson production cross-section measurements

- Test of SM electroweak theory and perturbative QCD at TeV scale
- Irreducible SM background to Higgs (WW, ZZ, Zγ)
- Sensitivity to new particles decaying to dibosons (Technicolor, Little Higgs, SUSY, etc...)
- Small cross sections O(1-100 pb)

Anomalous Triple Gauge Couplings (aTGC)

- aTGC modify total cross sections and kinematics
 neutral TGC not allowed in the SM (ZZZ, ZZγ)
- an effective Lagrangian featuring such couplings can be constructed and tested

s-channel TGC vertex

$W(I_V)\gamma$, $Z(II)\gamma$ Cross Sections

Selection highlights *

• at least one isolated photon $E_T^{\gamma} > 15$ GeV • $\Delta R(l, \gamma) > 0.7$ to suppress FSR photons • $E_T^{miss} > 35$ GeV (Wy channel)

* ATLAS cuts shown (CMS cuts are similar)

$W(|v)\gamma$, $Z(||)\gamma$ Cross Sections

• Unfolding the E_T^{γ} spectrum

Zγ: good agreement with MCFM predictions
Wγ: fair agreement with MCFM (at the one sigma level)

$W(|v)\gamma$, $Z(||)\gamma$ Cross Sections

• Unfolding the E_T^{γ} spectrum

ATLAS 7 TeV 4.6 fb⁻¹ arXiv: 1302.1283 (submitted to PRD)

- Wγ: the shape is well reproduced by ALPGEN/SHERPA
- Wγ: MCFM NLO shows discrepancies in the high-E_T^γ spectrum
- Zγ: good agreement with SHERPA and MCFM NLO predictions

 $Z(vv) \gamma$ Cross Section

Selection highlights *

one isolated photon E_T^γ > 100 GeV
 E_T^{miss} > 90 GeV
 well separated Δ^φ(E_T^{miss}, jet) & Δ^φ(E_T^{miss}, γ)
 high-pT lepton veto

* ATLAS cuts shown (CMS E_{T}^{γ} > 145 GeV)

CMS 7 TeV 5.0 fb⁻¹ CMS SMP-12-020

 Backgrounds: Wγ, W(ev), γ+jets, multi-jets

Fair agreement with theoretical predictions

$WZ \rightarrow 3Iv$ Cross Section

Selection highlights *

 \circ exactly 3 isolated high-p_T leptons

- $\circ E_T^{miss} > 25 \text{ GeV}$
- tight Z mass window cut (10 GeV)
- lepton from W: tighter ID/isolation

* ATLAS cuts

• Backgrounds: Z + jets, ZZ, Zγ, top-quark

WZ Cross Section

ATLAS: WZ \rightarrow 3lv analysis @ 8 TeV with 13 fb⁻¹

MCFM NLO + CT10 prediction: 20.3 ±0.8 pb (excellent agreement)

$(WZ+WW) \rightarrow jjlv Cross Section$

Selection highlights *

(electron)

• exactly one lepton with $p_T > 25$ (35) GeV) • exactly two jets with $p_T > 35$ GeV • $E_T^{miss} > 25$ (30) GeV

* CMS cuts shown (ATLAS cuts are quite similar)

Backgrounds: W/Z+jets (dominant)
Signal: from binned ML fit to m_{ii} (ATLAS/CMS)

 $ZZ \rightarrow 4I$ Cross Section

Selection highlights ○ 4 isolated high-p_T leptons ○ require both Z bosons on shell

Neutral TGC vertices don't exist in SM

gluon fusion 6%

ATLAS update: $ZZ \rightarrow 4I$ analysis @ 8 TeV with 20 fb⁻¹

Backgrounds: very clean signature

$ZZ \rightarrow 2l_{2\tau}$, $2l_{2\nu}$ Cross Sections

ZZ Cross Section

	fb ⁻¹	$\sigma(pp \rightarrow ZZ + X)$ [pb]	
ATLAS 7TeV	4.6	$6.7 \pm 0.7(stat)^{+0.4}_{-0.3}(syst) \pm 0.3(lumi)$	
CMS 7TeV	5.0	$6.2_{-0.8}^{+0.9}(stat)_{-0.3}^{+0.4}(syst) \pm 0.1(lumi)$	
ATLAS 8TeV	20	$7.1_{-0.4}^{+0.5}(stat) \pm 0.3(syst) \pm 0.2(lumi)$	MCFM NLO + CT10 prediction
CMS 8TeV	5.3	$8.4 \pm 1.0(stat) \pm 0.7(syst) \pm 0.4(lumi)$	@ 8 TeV: 7.2 ^{+0.3} pb
	Preliminary	NLO QCD (MCFM, CT10.0) ZZ (pp) (66 <m <116="" gev)<br="">ZZ (pp) (66<m <116="" gev)<br="">ZZ (pp) (66<m <116="" gev)<br="">ZZ (pp) (66<m <116="" gev)<br="">ZZ (pp) (66<m <116="" gev)<br="">COM = 100 CC + 10</m></m></m></m></m>	d agreement ATLAS/CMS parison with MCFM NLO + CT10 /s a good agreement imited by statistics syst: lepton reco/ID/isolation

CMS 7 TeV ZZ: JHEP 1301 (2013) 063 ATLAS 7 TeV ZZ: arXiv: 1211.6096 (differential cross sections are also available in the 4l channel)

WW \rightarrow IvIv Cross Section

Selection highlights *

$$E_{\rm T, \ Rel}^{\rm miss} = \begin{cases} E_{\rm T}^{\rm miss} \times \sin\left(\Delta\phi\right) & \text{if } \Delta\phi < \pi/\\ E_{\rm T}^{\rm miss} & \text{if } \Delta\phi \ge \pi/ \end{cases}$$

 \circ two isolated high-p_T leptons (opposite sign)

- \circ Z veto to suppress Drell-Yan $|m_{\parallel}-m_{z}| > 15$ GeV (ee,µµ)
- $\circ E_{T,Rel}^{miss}$ > 45 GeV (ee, $\mu\mu$) and > 25 GeV (e μ)
- \circ jet veto to suppress the top background

SM LO diagrams

* ATLAS cuts shown (CMS cuts are similar)

• Higgs to WW increases the WW production by 3%

WW \rightarrow IvIv Cross Section

jeto veto efficiency is the main source of systematics (for both CMS and ATLAS)

		fb⁻¹	$\sigma(pp \rightarrow WW + X)$ [pb]	SM NLO
ATLAS	7TeV	4.6	$51.9 \pm 2.0(stat) \pm 3.9(syst) \pm 2.0(lumi)$	$44.7^{+2.1}_{-1.9}$
CMS	7TeV	4.9	$52.4 \pm 2.0(stat) \pm 4.5(syst) \pm 1.2(lumi)$	_
CMS	8TeV	3.5	$69.9 \pm 2.8(stat) \pm 5.6(syst) \pm 3.1(lumi)$	$57.3^{+2.4}_{-1.6}$

CMS 7 TeV WW: CMS PAS SMP-12-005 ATLAS 7 TeV WW: arXiv: 1211.6096

MCFM NLO+CT10

aTGC - ZZV

aTGC modelled using an effective Lagrangian depending on few parameters

In SM all parameters = 0					
coupling	parameters	channel			
$WW\gamma$	$\lambda_{\gamma}, \Delta \kappa_{\gamma}$	WW, W γ			
WWZ	$\lambda_Z, \Delta \kappa_Z, \Delta g_1^Z$	WW, WZ			
$ZZ\gamma$	h_3^Z, h_4^Z	${\sf Z}\gamma$			
$Z\gamma\gamma$	$h^{\gamma}_3, h^{\gamma}_4$	${\sf Z}\gamma$			
$Z\gamma Z$	f_{40}^Z, f_{50}^Z	ZZ			
ZZZ	$f^{\gamma}_{40}, f^{\gamma}_{50}$	ZZ			

CMS 7 TeV ZZ: JHEP 1301 (2013) 063 ATLAS 7 TeV ZZ: arXiv: 1211.6096

aTGC sensitivity to M^{VV}, p^V, etc... likelihood test incorporating:

excpected signal as function of the aTGCs
 backgrounds, sytematics as nuisance parameters

ZZV (V =Z, γ) via ZZ production

No deviations from SM observed

aTGC -WWV

WWV (V = Z, γ) via WW, WZ, W γ production

CMS results on aTGC in WW @ 7 TeV
using the leading lepton p_T distribution
aTGC also measured in WW/WZ→jjlv

No deviations from SM observed

Feb 2013 ATLAS Limits CMS Limits D0 Limit HH LEP Limit -0.410 - 0.460 4.6 fb Wγ $\Delta \kappa_{\nu}$ -0.380 - 0.290 5.0 fb⁻¹ Wγ ww -0.210 - 0.220 4.9 fb⁻¹ WV -0.110 - 0.140 5.0 fb⁻¹ -0.158 - 0.255 8.6 fb⁻¹ D0 Combination LEP Combination -0.099 - 0.066 0.7 fb Wγ -0.065 - 0.061 4.6 fb⁻¹ λ, Wγ -0.050 - 0.037 5.0 fb⁻¹ ww -0.048 - 0.048 4.9 fb⁻¹ -0.038 - 0.030 5.0 fb⁻¹ н WV -0.036 - 0.044 8.6 fb D0 Combination -0.059 - 0.017 0.7 fb⁻¹ He-I LEP Combination -0.5 0 0.5 1.5 aTGC Limits @95% C.L Feb 2013 ATLAS Limits CMS Limits D0 Limit LEP Limit ww -0.043 - 0.043 4.6 fb $\Delta \kappa_7$ \square WV -0.043 - 0.033 5.0 fb LEP Combination -0.074 - 0.051 0.7 fb --ww -0.062 - 0.059 4.6 fb λ_{z} ww -0.048 - 0.048 4.9 fb⁻¹ -0.046 - 0.047 4.6 fb -WZ WV -0.038 - 0.030 5.0 fb -0.036 - 0.044 8.6 fb D0 Combination -0.059 - 0.017 0.7 fb -LEP Combination WW \vdash -0.039 - 0.052 4.6 fb Δg^2 -0.095 - 0.095 4.9 fb ww WZ -0.057 - 0.093 4.6 fb HOH D0 Combination -0.034 - 0.084 8.6 fb⁻¹ ю LEP Combination -0.054 - 0.021 0.7 fb -0.5 0 0.5 1.5

WW,WZ,WY

ATLAS/CMS 7 TeV

ATLAS 7 TeV Wγ: arXiv:1302.1283, ATLAS 7 TeV WZ: EPJ C72 (2012) 2173

CMS 7 TeV Wy : CMS EWK-11-009, CMS 7 TeV WW: CMS SMP-12-005, CMS 7 TeV VW (V=W,Z jj): EPJ C73 (2013) 2283

aTGC - ZVγ

ZV γ (V = Z, γ) via Z γ production

CMS 7 TeV 5.0 fb⁻¹ CMS SMP-12-020

aTGC measured in Zγ (eeγ, μμγ & ννγ) • ννγ dominates the sensitivity in CMS

No deviations from SM observed

ATLAS 7 TeV Zγ: arXiv:1302.1283 CMS 7 TeV Zγ: CMS EWK-11-009 / CMS SMP-12-020

Conclusions

Excellent performance of the LHC ~5 fb⁻¹ @ 7 TeV, ~ 20 fb⁻¹ @ 8 TeV (per experiment) Diboson Cross-section measurements match NLO SM predictions

aTGC measurements show no apparent deviation from SM
 limitations due to statistics, still to be analysed the full 8 TeV dataset
 sensitivity is expected to increase with centre-of-mass energy

Cross Section Measurements

- Count observed events after selection requirements
- Background estimation using data-driven and MC-based methods
- Measure the fiducial cross-section (within detector acceptance)
- Measure the total cross-section (extrapolated to full/extended phase space)

C adjusted to data/MC differences
 - lepton reco/ID
 - energy scale/resolution
 - trigger efficiency
 - etc...

A based on MC tools
 ME, parton shower, PDFs, etc..

• Measure differential cross sections as function of M^{VV} , p_T^V , etc...

- using bin-by-bin correction factors or advanced unfolding techniques

 $W\gamma$, $Z\gamma$

Systematic uncertainties on efficiency: Cvy

Source	$pp \to e \nu \gamma$	$pp \to \mu \nu \gamma$	$pp ightarrow e^+ e^- \gamma$	$pp ightarrow \mu^+ \mu^- \gamma$	$pp \rightarrow \nu \bar{\nu} \gamma$
Relative systematic uncer	rtainties or	the signal	correction fa	ctor $C_{V\gamma}$ [%]	
γ identification efficiency	6.0 (6.0)	6.0 (6.0)	6.0 (6.0)	6.0 (6.0)	5.3 (5.3)
γ isolation efficiency	1.9 (1.8)	1.9 (1.7)	1.4 (1.4)	1.4 (1.4)	2.8 (2.8)
Jet energy scale	0.4 (2.9)	0.4 (3.2)	- (2.2)	- (2.4)	0.6 (2.0)
Jet energy resolution	0.4 (1.5)	0.6 (1.7)	- (1.7)	- (1.8)	0.1 (0.5)
unassociated energy cluster in $E_{\rm T}^{\rm miss}$	1.5 (1.6)	0.5 (1.0)	- (-)	- (-)	0.3 (0.2)
μ momentum scale and resolution	- (-)	0.5 (0.4)	- (-)	1.0 (0.8)	- (-)
EM scale and resolution	2.3 (3.0)	1.3 (1.6)	2.8 (2.8)	1.5 (1.5)	2.6 (2.7)
Lepton identification efficiency	1.5 (1.6)	0.4 (0.4)	2.9 (2.5)	0.8 (0.8)	- (-)
Lepton isolation efficiency	0.8 (0.8)	0.3 (0.2)	2.0 (1.6)	0.5 (0.4)	- (-)
Trigger efficiency	0.8 (0.1)	2.2 (2.1)	0.1 (0.1)	0.6 (0.6)	1.0 (1.0)
Total	7.1 (8.0)	6.8 (7.8)	7.6 (7.9)	6.5 (7.1)	6.6 (7.0)

Systematic uncertainties on acceptance: Avy

- PDF: ~0.8% estimated using the CT10 error eigenvectors at their 90% CL limits rescaled to 68% CL with variation of α_sin0.116 – 0.120
- Scale μ_F, μ_R : ~0.5% obtained by varying ×2 around their nominal value

Wγ, Ζγ

	ννγ	νūγ
	$N_{ m jet} \geq 0$	$N_{ m jet}=0$
$N_{Z\gamma}^{ m obs}$	1094	662
$W(e\nu)$	$171\pm2\pm17$	$132\pm2\pm13$
$Z(\nu\bar{\nu})$ +jets, multi-jet	$70\pm13\pm14$	$29\pm5\pm3$
$W\gamma$	$238\pm12\pm37$	$104\pm9\pm24$
$\gamma + ext{jets}$	$168\pm20\pm42$	$26\pm7\pm11$
$Z(au^+ au^-)\gamma$	$11.7\pm0.7\pm0.9$	$6.5\pm0.6\pm0.6$
$t \overline{t}$	$11\pm1.2\pm1.0$	$0.9\pm0.6\pm0.1$
$N_{Z\gamma}^{ m sig}$	$420\pm42\pm60$	$360\pm29\pm30$

-	Measured	Expected
processes	pp -	+lvy
Λ	∞	~
$\Delta \kappa_{\gamma}$	(-0.41, 0.46)	(-0.38, 0.43)
λ_{γ}	(-0.065, 0.061)	(-0.060, 0.056)
Λ	6 TeV	6 TeV
$\Delta \kappa_{\gamma}$	(-0.41, 0.47)	(-0.38, 0.43)
λ_{γ}	(-0.068, 0.063)	(-0.063, 0.059)
processes	$pp \rightarrow \nu \nu \gamma$ and	d $pp \rightarrow \ell^+ \ell^- \gamma$
Λ	∞	00
h_3^{γ}	(-0.015, 0.016)	(-0.017, 0.018)
h_3^Z	(-0.013, 0.014)	(-0.015, 0.016)
h_4^γ	(-0.000094, 0.000092)	(-0.00010, 0.00010)
h_4^Z	(-0.000087, 0.000087)	(-0.000097, 0.000097)
Λ	3 TeV	3 TeV
h_3^γ	(-0.023, 0.024)	(-0.027, 0.028)
h_3^Z	(-0.018, 0.020)	(-0.022, 0.024)
h_4^{γ}	(-0.00037, 0.00036)	(-0.00043, 0.00042)
$h_4^{\hat{Z}}$	(-0.00031, 0.00031)	(-0.00037, 0.00036)
$\begin{array}{c} 10^{3} \\ \hline \\ 0.1 \\ \hline \\ pp \rightarrow 1^{1}\dot{\gamma}, pp \rightarrow v\bar{\nu}\gamma \\ 0.5 \\ \hline \\ 95\% CL \\ 0 \\ \hline \\ 0.6 \\ \hline \\ 0.1 \\ \hline \\ 0.02 \\ -0.01 \\ -0.01 \\ -0.001 \\$	ATLAS 0 0.005 0.01 0.015 0.02	$Ldt = 4.6 \text{ fb}^{-1}, \text{ fs} = 7 \text{ TeV}$ $p \to (1^{+} Y, pp \to v \overline{v} \overline{Y})$ 5% CL $= \infty$ $ATLAS$ $0.02 - 0.01 0 0.01 0.02$

WW

WW

- Equal Couplings scenario assumes WWZ and WW γ are equal. $(\Delta \kappa_z = \Delta \kappa_\gamma, \lambda_Z = \lambda_\gamma, g_1^Z = 1)$
- LEP scenario assumes $\Delta \kappa_{\gamma} = (\cos^2 \theta_W / \sin^2 \theta_W) (\Delta g_1^Z \Delta \kappa_Z)$ and $\lambda_Z = \lambda_{\gamma}$
- HISZ scenario assumes $\Delta g_1^Z = \Delta \kappa_Z / (\cos^2 \theta_W \sin^2 \theta_W)$, $\Delta \kappa_\gamma = 2\Delta \kappa_Z \cos^2 \theta_W / (\cos^2 \theta_W - \sin^2 \theta_W)$ and $\lambda_Z = \lambda_\gamma$

WZ

ATLAS: WZ \rightarrow 3lv analysis @ 8 TeV with 13 fb⁻¹

Channel	Cross Section [pb]
μμμ	$19.1^{+1.4}_{-1.3}$ (stat.) $^{+1.3}_{-1.3}$ (syst.) $^{+0.6}_{-0.6}$ (lumi.)
еµµ	$21.4^{+1.9}_{-1.7}$ (stat.) $^{+1.5}_{-1.5}$ (syst.) $^{+0.7}_{-0.7}$ (lumi.)
ееµ	$21.9^{+1.8}_{-1.6}$ (stat.) $^{+1.4}_{-1.4}$ (syst.) $^{+0.7}_{-0.6}$ (lumi.)
eee	$18.6^{+2.1}_{-1.9}$ (stat.) $^{+1.9}_{-1.9}$ (syst.) $^{+0.6}_{-0.6}$ (lumi.)
Combined	$20.3^{+0.8}_{-0.7}$ (stat.) $^{+1.2}_{-1.1}$ (syst.) $^{+0.7}_{-0.6}$ (lumi.)

Systematics: reco efficiencies, pT scale/resolution, isolation and impact parameter efficiencies, backgrounds (mainly Z+jets), luminosity(2.8%)

WZ

ATLAS: WZ \rightarrow 3lv analysis @ 7 TeV

	Observed $\Lambda = 2 \text{ TeV}$	Observed no form factor	Expected no form factor
Δg_1^Z	[-0.074, 0.133]	[-0.057, 0.093]	[-0.046, 0.080]
$\Delta \kappa_Z$	[-0.42, 0.69]	[-0.37, 0.57]	[-0.33, 0.47]
λz	[-0.064, 0.066]	[-0.046, 0.047]	[-0.041, 0.040]

ATLAS: $ZZ \rightarrow 4l$ analysis @ 7TeV

Λ	f^{γ}_{40}	f_{40}^Z	f^{γ}_{50}	f^Z_{50}
3 TeV	[-0.022, 0.023]	[-0.019, 0.019]	[-0.023, 0.023]	[-0.020, 0.019]
∞	[-0.015, 0.015]	[-0.013, 0.013]	[-0.016, 0.015]	[-0.013, 0.013]

ZZ

ATLAS: ZZ→4l analysis @ 8 TeV

Source	e ⁺ e ⁻ e ⁺ e ⁻	$\mu^+\mu^-\mu^+\mu^-$	$e^+e^-\mu^+\mu^-$	$\ell^+\ell^-\ell'^+\ell'^-$
Reconstruction Uncertainties				
Lepton identification and reconstruction	6.2%	1.2%	3.1%	2.8%
Lepton energy/momentum	0.4%	<0.1%	0.2%	0.1%
Lepton isolation and impact parameter	1.8%	2.6%	1.5%	1.6%
Trigger efficiency	<0.1%	0.2%	0.1%	0.1%
Total Reconstruction Uncertainty (C_{ZZ})	6.4%	2.8%	3.4%	3.3%
Theoretical Uncertainties				-
PDF & Scale (C _{ZZ})	0.1%	0.1%	<0.1%	<0.1%
MC Generator Difference (C_{ZZ})	1.7%	0.9%	1.8%	1.5%
PDF & Scale (A _{ZZ})		1.	0%	
MC Generator Difference (A_{ZZ})		0.	8%	
Total for C_{ZZ}	6.6%	3.0%	3.9%	3.6%
Total for A _{ZZ}		. 1.	3%	
Luminosity		2.	8%	

ATLAS: ZZ→4l analysis @ 8 TeV

ATLAS: $ZZ \rightarrow 4I$ analysis @ 8 TeV

ZZ

ATLAS: $ZZ \rightarrow 4I$ analysis @ 8 TeV

