The observation of a strong E0 component in the 2+2-2+1 transition in 184 Hg from the β -decay of laser-ionized thallium isotopes: a strong signature for shape coexistence.

E.Rapisarda

Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium

The mass region of neutron-deficient mercury and lead isotopes near the midshell (N=104) is well known for the phenomenon of shape coexistence. In neutron-deficient, even-even ¹⁸⁰⁻¹⁸⁸Hg isotopes an oblate ($\beta_2 \sim -0.15$) ground state band is found to coexist with an excited prolate ($\beta_2 \sim 0.25$) band at low spin and low-excitation energies. This band is built on top of a deformed excited 0⁺ state, which is interpreted as resulting from proton excitations across the Z=82 closed shell. Such intruder states have been found to be a widely occurring structural feature of nuclei at and near closed shell.

The low-lying coexisting states in ^{180,182,184}Hg have been studied at ISOLDE, CERN through the β^+ /EC decay of ^{180,182,184}Tl as part of a systematic α , β , and β -delayed fission study of neutrondeficient thallium isotopes. The β^+ /EC decay is a very simple but still powerful tool which allows to effectively populate low-lying not-yrast states in the daughter nucleus, normally not easily accessible with other techniques, thus providing complementary information to the ones from in-beam γ spectroscopy studies and from α -decay studies from the Pb parent nuclei.

Mass-separated Tl beams, produced at ISOLDE, CERN, in the bombardment of ²³⁸U by 1.4 GeV protons and selectively laser ionized, were implanted on a carbon foil mounted on a rotating wheel. The implantation foil was surrounded by two Si detectors for α , β and electron detection while γ rays were detected with two high-resolution Ge detectors.

By means of unambiguously Si- γ and $\gamma\gamma$ coincidences, a detailed level scheme of the coexisting states has been built-up as well as a detailed description of their decay properties (γ intensities, E0 component of $2^+ \rightarrow 2^+$ transitions). The newly observed or better energy-determined 0_2^+ , 2_2^+ , 2_3^+ states in ^{180,182}Hg follow well the general trend of the prolate band. They confirm that the minimum of the parabolic behavior in excitation energy of the prolate band occurs in ¹⁸²Hg, as expected. The exceptionally large E0 component observed in the $2_1^+ \rightarrow 2_2^+$ transition in ¹⁸⁴Hg (23+/-5) confirm that the two states are strongly mixed and they have different deformation.

Isomerism is well-known in the heavier thallium isotopes and the population of low-spin states as well as high-spin states (up to 8^+ in 182,184 Hg) in the beta decay points to similar features in the lighter thallium isotopes.

The information gathered can be combined with the ones obtained with different techniques, such as in-beam γ and conversion-electron spectroscopy, Coulomb excitation on postaccelerated radioactive ions (recently performed at ISOLDE), lifetime measurements and laser spectroscopic studies to get a deeper knowledge of the shape-coexistence phenomenon.