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Abstract
The data of elastic scattering of 6,8He and 11Li on protons and 6He on 12C
at beam energies less than 100 MeV/nucleon (MeV/N) are analyzed utilizing
microscopic optical potentials obtained by a single (double)-folding procedure
and also by using those inherent in the high-energy approximation. The cal-
culated real and imaginary parts of the optical potentials are based on the neu-
tron and proton density distributions of He and Li isotopes obtained within the
large-scale shell-model (LSSM) method. The depths of the real and imaginary
parts of the microscopic optical potentials are considered as tting parameters
using as a constrain the behavior of the volume integrals as functions of the
incident energy. The 11Li breakup effect on 11Li+p elastic scattering at en-
ergy of 62 MeV/N is analyzed within a cluster model for 11Li with 9Li and
2n fragments. Predictions for the longitudinal momentum distribution of 9Li
fragments produced in the breakup of 11Li on a proton target are given. The
role of the spin-orbit and "surface" terms of the optical potential is also studied
and estimations of the total cross sections within the both LSSM and breakup
reaction model are made.

1 Introduction
The availability of radioactive ion beams facilities made it possible to carry out many experiments and
to get more information regarding the structure of these nuclei and the respective reaction mechanisms
(see, e.g., the review [1]). Experimental studies of exotic light nuclei, such as 6,8He, 11Li, 12Be and
others, with a localized nuclear core and dilute few-neutron halo or skin have also been an important
test for various theoretical models used in the description of the data on cross sections of processes with
such nuclei. Among the latter we should mention the microscopic analysis using the coordinate-space
g-matrix folding method (e.g., Ref. [2]), as well as works where the real part of the optical potential
(ReOP) is microscopically calculated (e.g., Ref. [3]) using the folding approach (e.g., Refs. [4, 5]).
Usually the imaginary part of the OP’s (ImOP) and the spin-orbit (SO) terms have been determined
phenomenologically, which has led to the usage of a number of tting parameters.

In this work we present results of our works [6–9] on calculations of 6He+p [6], 8He+p [7],
6He+12C [8], as well as on 11Li+p [9] elastic differential cross sections in which we used microscopic
both ReOP and ImOP. The latter was taken from the OP derived in [10,11] in the frameworks of the high-
energy approximation (HEA) [12] that is known as the Glauber theory. Our main aim is to describe the
existing experimental data using these microscopic OP’s with a minimal number of tting parameters.
In particular we study: i) the limits of applicability of the HEA OP for different regions of angles and
incident energies; ii) the sensitivities of the cross sections to the nuclear densities of 6,8He and 11Li; iii)
the role of the SO interaction and the non-linearity in the calculations of the OP’s; iv) the nuclear surface
effects; v) the role of the renormalization of the depths of the ReOP and ImOP; vi) the possibility to
involve additional physical criteria for a better description of limited number of experimental data.
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2 Theoretical scheme
The optical potential used in our calculations has the form

Uopt = V F (r) + iW (r). (1)

The real part of the nucleon-nucleus OP is assumed to be a result of a single folding of the nuclear density
and of the effective NN potential and involves the direct and exchange parts (e.g. Refs. [4, 5]):

V F (r) = V D(r) + V EX(r). (2)

The direct part V D(r) is composed by the isoscalar (IS) and isovector contributions and expres-
sions for them can be found in Ref. [6]. In our consideration the energy and density dependence of the
effective NN interaction (of CDM3Y6-type) are taken in usual forms [5, 6]. The isoscalar part of the
exchange contribution to the ReOP has the form:

V EX
IS (r) = g(E)

∫
ρ2(r2, r2 − s)F (ρ2(r2 − s/2)) × vEX

00 (s)j0(k(r)s)dr2, (3)

where for the density matrix ρ2(r2, r2− s) an approximation [13] is used. It is shown in Ref. [6] how the
isovector part of the exchange ReOP can be obtained. The local momentum k(r) of the incident nucleon
in the eld of the Coulomb VC(r) and nuclear potential (ReOP) is:

k2(r) =
2m

�2
[Ec.m. − VC(r)− V (r)]

(
1 +A2

A2

)
. (4)

One can see from Eq. (4) that nonlinearity effects appear as ingredient of the approach and they have to
be taken into account.

In our work we use proton and neutron densities calculated microscopically within the LSSM
method using the Woods-Saxon (WS) basis of single-particle wave functions with realistic exponential
asymptotic behavior [14].

The complex HEA OP was derived in [10] on the basis of the eikonal phase inherent in the optical
limit of the Glauber theory. In our procedure this OP or only its imaginary part together with the ReOP
from the folding procedure is used to calculate the cross sections by means of the code DWUCK4 [15]
for solving the Schrödinger equation. The HEA OP is obtained as a folding of the form factors of the
nuclear density and the NN amplitude fNN (q) [10, 11]:

UH
opt = V H + iWH = −

�v

(2π)2
(ᾱNN + i)σ̄NN ×

∫
∞

0

dqq2j0(qr)ρ2(q)fNN (q). (5)

In Eq. (12) σ̄NN and ᾱNN are, respectively, the NN total scattering cross section and the ratio of the real
to imaginary part of the forward NN scattering amplitude, both averaged over the isospin of the nucleus
(see, e.g., [16, 17]).

The expression for the spin-orbit contribution to the OP used in our work is added to the right side
of Eq. (1) and its form can be seen in e.g., Refs. [7, 15, 18].

In the case of the 11Li+p elastic scattering we consider also the simplest 9Li+2n model of 11Li
(see, e.g. [19]) in which two clusters are suggested, the 9Li core (c) and the correlated pair of neutrons
h = 2n with the spin of the 2n cluster set to s = 0. In the framework of this model, the 11Li+p OP can
be estimated as folding of two OP’s of interaction of the c- and h-clusters with protons and the density
ρ0(s) corresponding to the wave function of the relative motion of two clusters:

U (b)(r) = V (b) + iW (b) =

∫
dsρ0(s) [Uc (r+ (2/11)s) + Uh (r− (9/11)s)] . (6)

146

174 A. N. Antonov et al. 



The potentials Uc and Uh in Eq. (6) are calculated within the microscopic hybrid model of OP [10],
in which a single-folding procedure is applied for the real part V (b), while the imaginary part W (b) is
derived using the optical limit of the Glauber theory. For the n-p interaction we adopt the one introduced
by Suzuki et al. [20] vnp = v(r)(1 + iγ), where v(r) is taken from the Minnesota potential [21].

The differential and total cross sections (for elastic scattering, as well as for diffractive breakup
and absorption) all require calculations of the probability functions d3P (b,k)/dk that depend on the
impact parameter b. The general expression for the probability functions can be written as [22]

d3PΩ(b,k)

dk
=

1

(2π)3

∣∣∣∣
∫

drφ∗

k(r)Ω(b, r⊥)φ0(r)

∣∣∣∣
2

, (7)

where Ω(b, r⊥) is expressed by means of the two prole functions Sc and Sh of the core and the di-
neutron clusters, respectively:

|Si(b)|
2 = e−

2

�v

∫
∞

−∞
dzWi(

√

b2+z2), i = c, h (8)

whereW is the imaginary part of the microscopic OP (6).
As shown in [22], the diffraction breakup elastic cross section (the longitudinal momentum distri-

bution) has the form
(

dσ

dkL

)

diff

=

∫
∞

0

bhdbh

∫ 2π

0

dϕh

∫
∞

0

dk⊥
d2P (k,b)

dkLdk⊥
, (9)

where d2PΩ(b,k)/dkLdk⊥ is obtained by integration of Eq. (7) over the transverse angle ϕk of the
momenta.

3 Results and discussion
In the case of 6He+p elastic cross sections (E < 100MeV/N) the optical potential has the form

Uopt(r) = NRV (r) + iNIW (r), (10)

where NR and NI are tting parameters, the ReOP V is taken either from single-folding calculations
(V F ) or from HEA (V H ), while ImOP has the form W = WH or W = V F . In the case of 8He+p
process we introduce a surface component:

U �

opt(r) = Uopt(r)− i4aNS
dV F (r)

dr
. (11)

For the 6He+12C cross sections the OP has the form

Uopt(r) = NRV
DF (r) + iNIW (r) + iNIW

SF (r), (12)

where the ReOP V DF (r) is a result of a double-folding procedure (using the charge density of 12C ob-
tained from electron-12C scattering experiments) andW SF (r) has various forms related to the derivative
dW (r)/dr (e.g., dW (r)/dr, rdW (r)/dr, r2dW (r)/dr, dW (r − δ)/dr). It was shown in [6] that a
good agreement in the case of 6He+p is obtained when LSSM density is used (in comparison with the
phenomenological densities) for E = 41.6 and 71 MeV/N with values of NR and NI close to unity.
However, an agreement for the case of E = 25.2 MeV/N was obtained for rather smaller values of NR

(0.35) and NI (0.03), thus showing the limitation of the approach for small energies (E ≤ 25 MeV/N).
In Fig. 1 we give the results for the 8He+p elastic cross sections at energies E = 15.7, 26, 32, 66, and 73
MeV/N. It is known that because the procedure of tting belongs to the class of the ill-posed problems
(e.g., [23]), it is necessary to impose some physical constraints on the choice of the set of parameters N .
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One of them is the total cross section of scattering and reaction. However, the corresponding values are
missing at E < 100 MeV/N. Another physical criterion that was imposed on the choice of N ’s is the
behavior of the volume integrals [4]

JV =
4π

A

∫
drr2[NRV

F (r)], JW =
4π

A

∫
drr2[NIW

H(r)] (13)

as functions of the energy. It has been pointed out (see, e.g., [24]) that the values of JV decrease with
the increase of the energy at 0 < E < 100MeV/N, while JW is almost constant in the same interval. In
Fig. 1 one can see the result of the tting procedure with the values of the parameters given in Table 1.

Fig. 1: The 8He+p elastic scattering cross sections (a) at different energies using LSSM density of 8He and
parameters from Table 1. Experimental data are taken for 15.7 [25], 26 [26], 32 [27, 28], 66 [27, 28] and 73
MeV/N [27–29]. The obtained values of the volume integrals JV (b) and JW (c) (given by points) are shown as
functions of the incident energy, while the dashed lines give the trend of this dependence.

It was shown in [6] that the inclusion of the surface term [see Eq. (11)] leads to a better agreement
with the data for the lowest energy E = 15.7 MeV/N. Using the same physical constraint we obtained
the best agreement of the calculations in the case of 6He+12C [by means of Eq. (11) and the surface term
(-iNSF

I r2dW (r)/dr)] that are presented in Fig. 2 for E = 3, 38.3, and 41.6 MeV/N. In Fig. 3 we show
the results of our calculations of the 11Li+p elastic cross sections for three energies E = 62, 68.4, and
75 MeV/N with and without accounting for the SO term.

Finally, in Fig. 4 we give as an example the calculated cross sections for the diffractive breakup
elastic 11Li+p reaction at E = 62 MeV/N. These results give predictions because there are not experi-
mental data for such a process at 11Li+p scattering at E < 100MeV/N.

4 Conclusions
The results of the present work can be summarized:
1. The optical potentials and cross sections of 6He+p (E = 25.2, 41.6 and 71 MeV/N), 8He+p (E =
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Table 1: The parametersNR, NI , NSO

R
and NSO

I
, the volume integrals JV and JW (in MeV.fm3) as functions of

the energy E (in MeV/N), and the total reaction cross sections σR (in mb) for the 8He+p scattering in the case of
LSSM density.

E NR NI NSO
R NSO

I JV JW σR

15.7 0.630 0.064 0.139 0.070 411.1 58.6 722.0
15.7 0.630 0.052 0.166 0.057 411.1 47.6 701.2
26 0.644 0.128 0.035 0.026 377.7 84.35 381.2
32 0.648 0.120 0.062 0.022 358.3 69 302.7
66 0.852 0.131 0 0 344.2 45 95.2
73 0.869 0.090 0.004 0 330.0 29 60.9
73 0.869 0.063 0.010 0 330.0 20.25 43.9
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Fig. 2: Differential cross section of elastic 6He+12C scattering at E = 3 (a), 38.3 (b) and 41.6 MeV/N (c). Solid
line: W = WH , dashed line: W = V DF . The experimental data are taken from Refs. [30–32].
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Fig. 3: The 11Li+p elastic scattering cross section at E = 62, 68.4, and 75 MeV/N. Solid line: without SO term;
dashed line: with SO term. The experimental data are taken from [33] for 62 MeV/N, [34] for 68.4 MeV/N,
and [35] for 75 MeV/N.
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Fig. 4: Cross section of diffraction breakup in 11Li+p scattering at E = 62MeV/N.
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15.7, 26, 32, 66 and 73 MeV/N), 11Li+p (E = 62, 68.4 and 75 MeV/N), and 6He+12C (E = 3, 38.3
and 41.6 MeV/N) elastic scattering were calculated and comparison with the available experimental data
was performed. The direct and exchange parts of ReOP (V F ) were calculated microscopically using the
folding procedure and M3Y (CDM3Y6-type) effective interaction based on the Paris NN potential. The
ImOP (WH ) was calculated within the high-energy approximation. Different model densities of protons
and neutrons in 6He, 8He and 11Li were used in the calculations: LSSM method, Jastrow correlation
method (also Tanihata and COSMA). The SO contribution to the OP was included in the calculations.
The cross sections were calculated by numerical integration of the Schrödinger equation by means of the
DWUCK4 code using all interactions obtained (Coulomb plus nuclear optical potential).
2. The problem of the ambiguity of the values of the depths of OP’s contributions: the parameters NR,
NI , NSO

R , and NSO
I when the tting procedure is applied to a limited number of experimental data is

considered. A physical criteria imposed in our work on the choice of the values of the parameters N
were the known behavior of the volume integrals JV and JW as functions of the incident energy in the
interval 0 < Einc < 100MeV/N, as well as the values of the total reaction cross section.
3. We considered also another folding approach that includes 11Li breakup suggesting a 9Li+2n cluster
model, computing the potentials of the interactions of the two clusters with the proton. Predictions for
the longitudinal momentum distributions of 9Li fragments produced in the breaking of 11Li at 62 MeV/N
on a proton target are given and calculations of the diffraction and stripping reaction cross sections are
performed. The necessity of experiments on these reactions of 11Li+p atE < 100MeV/N is emphasized.
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