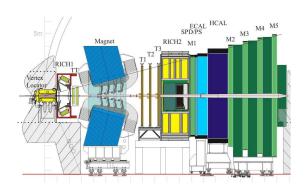
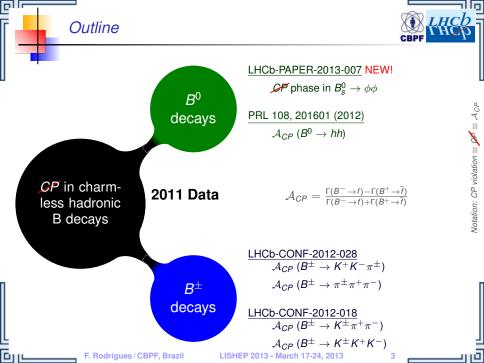


CP violation in charmless hadronic B decays at LHCb

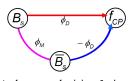
Fernando Rodrigues on behalf of the LHCb Collaboration (Centro Brasileiro de Pesquisas Físicas, Brazil)

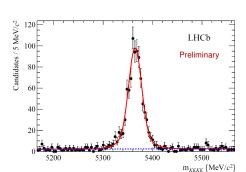

LISHEP 2013

 17^{th} - 24^{th} March, 2013 | Rio de Janeiro, Brazil



- Integrated luminosity: 37 pb⁻¹ (2010), **1.0 fb⁻¹ (2011)**, 2 fb⁻¹ (2012)
- ▶ Efficient trigger for many B-decay topologies
- Excellent particle identification for π K separation in a wide momentum range
 Good decay-time resolution in particular to resolve fast B_S oscillations
- Good mass resolution to efficiently suppress background

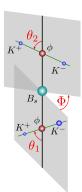




LHCb-PAPER-2013-007 (in preparation)

- Proceeds via a gluonic b → ss̄s hadronic penguin
- Forbidden at tree level in Standard Model
- SM expectation of ϕ_S is zero
- Excellent probe of new heavy particles entering the penguin quantum loops
- ▶ 880 ± 31 events observed in KKKK final state [1.0 fb⁻¹ data]
- Results presented based on time-dependent tagged angular analysis

Interference of mixing & decay: \mathcal{SP} phase $\phi_{\mathcal{S}} = \phi_{\mathcal{M}} + 2\phi_{\mathcal{D}}$

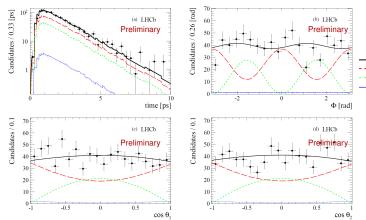

LHCb-PAPER-2013-007 (in preparation)

Analysis method

- Final state a mixture of CP-even and CP-odd eigenstates → full angular analysis in helicity basis is employed
- Unbinned maximum likelihood fit is performed to the decay time, \mathbf{t} , and the three angles in helicity bases, $\Omega = \{cos\theta_1, cos\theta_2, \Phi\}$
- Time resolution accounted for with single Gaussian convolution (39.7 fs resolution from simulation)
- Use of opposite side and same side flavour tagging (see Bruno and Alberto slides)

Acceptances

- Magnetic field causes low p_Γ kaons to be swept out of detector acceptance → causes efficiency drop as cos θ_i → ±1
- Due to KKKK final state, time biasing criteria are unavoidable to select from background, e.g. impact parameter of kaon tracks w.r.t. PV
- These angular and time acceptances are taken from simulation



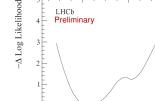
Total CP-even

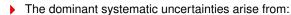
CP-odd

S-wave

LHCb-PAPER-2013-007 (in preparation)

- Γ_S and $\Delta\Gamma_S$ are constrained to $B_S \to J/\psi \, \phi$ measured values $\Gamma_S = 0.663 \pm 0.008 \, \mathrm{ps^{-1}}$ and $\Delta\Gamma_S = 0.100 \pm 0.017 \, \mathrm{ps^{-1}}$ [LHCb-PAPER-2013-002]
- ▶ B_S oscillation frequency constrained to the value of 17.73 \pm 0.05 ps $^{-1}$ [LHCb-CONF-2011-050]




φ [rad]

LHCb-PAPER-2013-007 (in preparation)

Small dataset → Feldman
 Cousins (pseudo-experiments) are used
 to provide the correct coverage.
 A interval of [-2.46, -0.76] rad

at 68% C.L. is obtained for ϕ_S The p-value of the SM hypothesis is 16%.

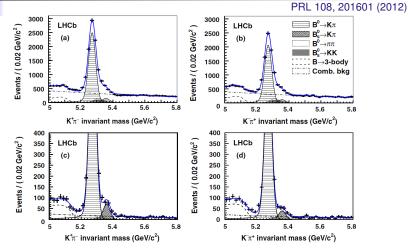
- the description of the decay time acceptance;
- the knowledge of the S-wave contamination from ${\cal B}^0_S \to f_0 \phi$ and ${\cal B}^0_S \to f_0 f_0$
- First time-dependent tagged analysis of \mathscr{P} in the interference between mixing and decay for the $B_s^0 \to \phi \phi$.

no evidence of Spr in Bs

Previous results

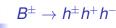
•
$$\mathcal{A}_{CP}(B^0 \to K\pi) = -0.097 \pm 0.012$$
 [PDG]
• $\mathcal{A}_{CP}(B^0_S \to K\pi) = 0.39 \pm 0.17$ [PDG] CDF(PRL106(2011)181802)

Analysis


- Very efficient hadronic trigger \rightarrow one high p_T track
- ▶ $B_S^0 \to K\pi \sim 14 \times$ lower decay rate and $\sim 4 \times$ lower production than $B^0 \to K\pi$.
- Applied a tighter selection for B_S^0 .
- ▶ Magnet field polarity reversion → minimizes instrumental charge asymmetry
- Inclusive hh selection under $\pi\pi$ mass hypothesis within 4.7 5.9 GeV/ c^2
- Unbinned maximum likelihood fit:

$$N(B^0 \to K\pi) = 13250 \pm 150$$
 $N(B^0_S \to K\pi) = 314 \pm 27$

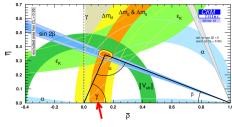
- $\mathcal{A}_{CP} = \mathcal{A}_{CP}^{RAW} \pm \mathcal{A}_D(K\pi) k_{d(s)}\mathcal{A}_P(B_{(S)}^0)$
 - instrumental asymmetry (A_D) from D^* $A_D = -0.010 \pm 0.02$ production asymmetry (A_P) from $B^0 \rightarrow J/\psi K^{*0}$ $A_P = +0.010 \pm 0.013$ $k_{d(s)}$ describes dilution of A_P due to $B^0_{(s)} - \bar{B^0}_{(s)}$ mixing $A_D = -0.010 \pm 0.02$ $A_D = -0.010 \pm 0.02$ $A_D = -0.010 \pm 0.02$ $A_D = +0.010 \pm 0.02$



First evidence for
$$\mathscr{A}$$
 in B_S .

▶
$$\mathcal{A}_{CP}(B_S^0 \to K\pi) = 0.27 \pm 0.08(\text{stat}) \pm 0.02(\text{syst})$$
, 3.3 σ
▶ $\mathcal{A}_{CP}(B^0 \to K\pi) = -0.088 \pm 0.011(\text{stat}) \pm 0.008(\text{syst})$, > 6 σ

F. Rodrigues / CBPF, Brazil LISHEP 2013 - March 17-24, 2013


) ,

LHCb-CONF-2012-018 and LHCb-CONF-2012-028

- ▶ $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$ gives access to γ angle of the unitary triangle (see Alberto slides)
- $\gamma = arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cd}^*}\right)$

 $(\lambda \equiv \sin\theta_C \equiv |V_{US}| \approx 0.22)$

- Two groups of two decays with:
 - similar physics (see backup slide for the diagrams) $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$ and $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$

$$\rightarrow \gamma$$
 in tree diagram $\propto \lambda^4$ and penguin diagram $\propto \lambda^2$

$$ightarrow$$
 $B^\pm o K^+K^-\pi^\pm$ and $B^\pm o\pi^\pm\pi^+\pi^-$

$$\rightarrow \gamma$$
 in tree diagram $\propto \lambda^3$ and penguin diagram $\propto \lambda^3$

- CPT connection (related final state through scattering $KK \to \pi\pi$)
- similar statistics
- same selection except for particle ID and background vetoes

 $A_{CP}^{RAW}(J/\psi K) - A_{CP}(J/\psi K) = B^{-}/B^{+}$ production and K instrumental asymmetries

similar challenges (both use $B^{\pm} \rightarrow J/\psi K^{\pm}$ as control channel)

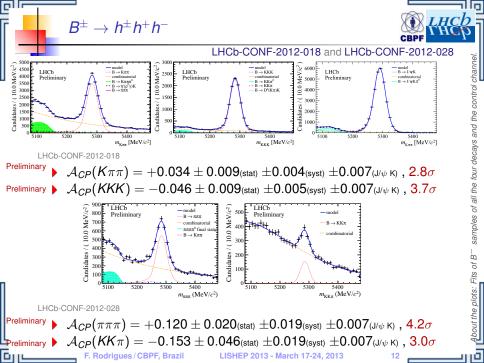
LHCb-CONF-2012-018 and LHCb-CONF-2012-028

$$B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$$
 and $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$ physical GP

 $B^{\pm} \rightarrow h^{\pm} h^{+} h^{-}$

 $\mathcal{A}_{CP}(hh\pi) =$

$$\begin{array}{c} B^+/B^- \text{ production and instrumental asymmetries} \\ \mathcal{A}_{CP}(hhK) = \mathcal{A}_{CP}^{RAW}(hhK) - \overline{\mathcal{A}_{CP}^{RAW}(J/\psi K)} + \overline{\mathcal{A}_{CP}(J/\psi K)} \\ \\ physical \mathcal{P} \\ \text{ (from PDG)} \end{array}$$


$$B^{\pm} \to K^+ K^- \pi^{\pm}$$
 and $B^{\pm} \to \pi^{\pm} \pi^+ \pi^-$ physical \mathcal{OF}

$$B^{+}/B^{-}$$
 production and instrumental asymmetries $A_{CP}^{RAW}(J/\psi K)$ [Extracted from LHCb-CONF-2012-018] A_{CP}^{K} [Extracted from a large sample of $D^{0} \rightarrow K\kappa$ and $D^{0} \rightarrow K\kappa$. -LHCb-PIL 108, [2012] 201601] A_{T}^{π} [Extracted from a large D^{π} sample - LHCb: PLB713, [2012] 188] A_{CP}^{π} [Extracted from a large D^{π} sample - LHCb: PLB713, [2012] 189]

raw asymmetry corrected

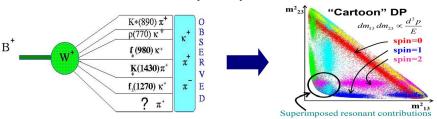
physical CP

(from PDG)

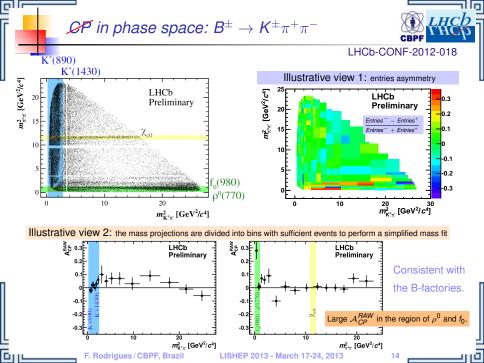
How to get fish that we do not know?

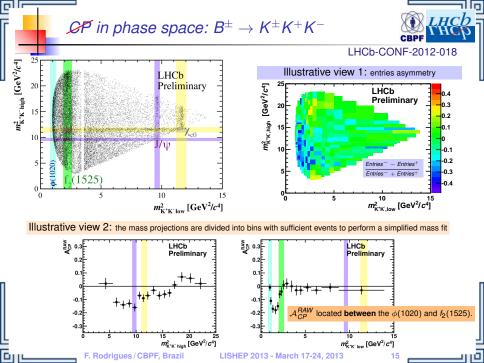
Fishing net. Attacking a large space with an idea of the kind of fish expected there.

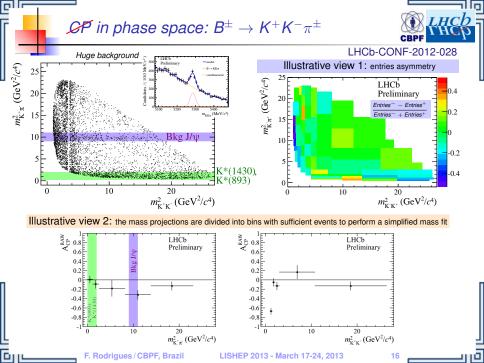
Inspecting the phase space



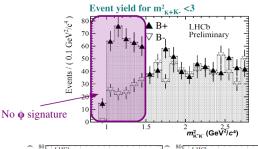
How to get fish that we do not know?

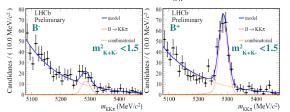

Fishing net. Attacking a large space with an idea of the kind of fish expected there.



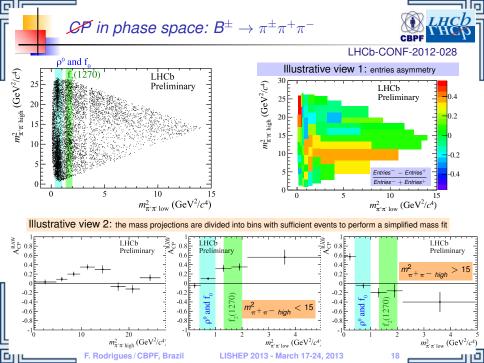

Search for *P* in three body decays

- Each intermediary state is included in a coherent sum for the total decay.
 - Resonance interference (parallel or crossing) → probe for CF

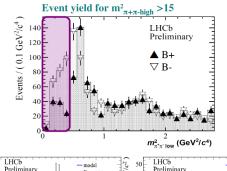



Zoom in the large CP region: $B^\pm o K^+K^-\pi^\pm$

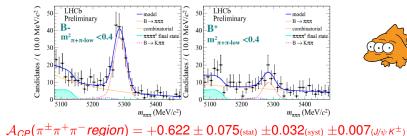
LHCD-CONF-2012-026



Very large in a region of the phase space not associated to a resonance.



 $\mathcal{A}_{CP}(K^+K^-\pi^\pm region) = -0.671 \pm 0.067_{ ext{(stat)}} \pm 0.028_{ ext{(syst)}} \pm 0.007_{ ext{(J/\psi}} \kappa^\pm)$



Zoom in the large \mathcal{OP} region: $\mathcal{B}^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}$

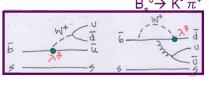
Very large positive A in a region of the phase space not associated to a resonance.

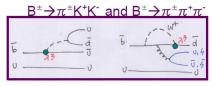
 7.6σ

Conclusions

-) A first measuremente of ϕ_S using the time-dependent tagged analysis of in hadronic $B^0_s \to \phi\phi$ decays yields a 68% C.L. of [-2.46, -0.76]rad.
- First evidence of direct of in $B^0_S \to K^-\pi^+$ and precision at $B^0 \to K^+\pi^ \mathcal{A}_{CP}(B^0 \to K\pi) = -0.088 \pm 0.01 \text{(stat)} \pm 0.008 \text{(syst)}$, [> 6σ] $\mathcal{A}_{CP}(B^0_S \to K\pi) = +0.27 \pm 0.08 \text{(stat)} \pm 0.02 \text{(syst)}$, [3.3 σ]
- ▶ Evidence of direct P in $B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}$ and $B^{\pm} \to K^{\pm}K^{+}K^{-}$ $\mathcal{A}_{CP}(K\pi\pi) = +0.034 \pm 0.009(\text{stat}) \pm 0.004(\text{syst}) \pm 0.007(\text{J/ψ K})$, [2.8 σ] $\mathcal{A}_{CP}(KKK) = -0.046 \pm 0.009(\text{stat}) \pm 0.005(\text{syst}) \pm 0.007(\text{J/ψ K})$, [3.7 σ]
- ▶ Evidence of direct P in $B^{\pm} \to K^{+}K^{-}\pi^{\pm}$ and $B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}$ $\mathcal{A}_{CP}(\pi\pi\pi) = +0.120 \pm 0.020_{\text{(stat)}} \pm 0.019_{\text{(syst)}} \pm 0.007_{\text{(J/$\psi}} \text{ K)}$, [4.2 σ] $\mathcal{A}_{CP}(KK\pi) = -0.153 \pm 0.046_{\text{(stat)}} \pm 0.019_{\text{(syst)}} \pm 0.007_{\text{(J/$\psi}} \text{ K)}$, [3.0 σ]
- ▶ Large \mathscr{S} in regions of dalitz plot in charmless 3-body B-decays $\mathcal{A}_{CP}(KK\pi\ region) = -0.671 \pm 0.067(\mathrm{stat}) \pm 0.028(\mathrm{syst}) \pm 0.007(\mathrm{J/\psi}\ K)$, [9.2 σ] $\mathcal{A}_{CP}(\pi\pi\pi\ region) = +0.622 \pm 0.075(\mathrm{stat}) \pm 0.032(\mathrm{syst}) \pm 0.007(\mathrm{J/\psi}\ K)$, [7.6 σ]
- ▶ All measurements use only 1.0 fb⁻¹ of data (2011). Additional 2 fb⁻¹ from 2012 is being analyzed now.

BACKUP SLIDES





 $B^0 \rightarrow K^+ \pi^-$

