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Abstract

A search for the decays B0
s → µ+µ−µ+µ− and B0 → µ+µ−µ+µ− is performed using data, corresponding to an integrated

luminosity of 1.0 fb−1, collected with the LHCb detector in 2011. The number of candidates observed is consistent
with the expected background and, assuming phase-space models of the decays, limits on the branching fractions are
set: B(B0

s → µ+µ−µ+µ−) < 1.6 (1.2)× 10−8 and B(B0 → µ+µ−µ+µ−) < 6.6 (5.3)× 10−9 at 95 % (90 %) confidence level.
In addition, limits are set in the context of a supersymmetric model which allows for the B0

(s) meson to decay into a
scalar (S) and pseudoscalar particle (P ), where S and P have masses of 2.5 GeV/c and 214.3 MeV/c, respectively, both
resonances decay into µ+µ−. The branching fraction limits for these decays are B(B0

s → SP ) < 1.6 (1.2)× 10−8 and
B(B0 → SP ) < 6.3 (5.1)× 10−9 at 95 % (90 %) confidence level.
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hAlso at Università di Modena e Reggio Emilia, Modena, Italy
iAlso at Università di Genova, Genova, Italy
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kAlso at Università di Roma Tor Vergata, Roma, Italy
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The decays B0
(s) → µ+µ−µ+µ− are strongly suppressed

in the standard model (SM). Significant enhancements
in the branching fractions can occur in beyond the SM
theories [1, 2]. For example, in minimal supersymmet-
ric models (MSSM) the decay is mediated via the new
scalar S, and pseudoscalar P sgoldstino particles, which
both decay into µ+µ−. The sgoldstinos can couple to
SM particles via type-I couplings, where one sgoldstino
couples to two SM fermions and via type-II couplings,
where both S and P couple to two SM fermions in a
four-prong vertex [1]. Such searches are also of particular
interest since the HyperCP Collaboration found evidence
of the decay Σ+ → pµ+µ−, which is consistent with the
decay Σ+ → pP and P → µ+µ− with a P particle mass of
214.3± 0.5 MeV/c2 [3]. The inclusion of charge conjugated
processes is implied throughout this Letter. The Belle
Collaboration has reported a search for a P particle in
B0 → V P (→ µ+µ−) decays, where V is either a K∗0(892)
or a ρ0(770) meson [4]. The corresponding upper limits
constrain the type-I couplings of sgoldstinos to the SM
particles. The search presented here is sensitive to the
decays B0

(s) → SP in which both the S and P particle

decay vertices are not significantly displaced from the B0
(s)

decay vertex and the P particle has a similar mass to that
reported by the HyperCP collaboration. Such final states
probe type-II couplings, which might dominate for general
low energy supersymmetry breaking models and have not
been probed by previous experiments. The present search
is therefore complementary to the Belle study. Moreover,
the four-muon final state is essentially background free and
therefore ideally suited to search for new physics signatures.
The present search is also sensitive to B0

(s) → µ+µ−µ+µ−

decays which are not propagated through intermediate
resonant structures.

The dominant SM decay of a B meson into a
four-muon final state is B0

s → J/ψφ(1020), where both
the J/ψ and the φ mesons decay into two muons
[Fig. 1 (a)]. In this Letter, this is referred to as
the resonant decay mode. The branching fraction
for B0

s → J/ψ (→ µ+µ−)φ (→ µ+µ−) is calculated as
the product of B(B0

s → J/ψφ), B(J/ψ → µ+µ−) and
B(φ→ µ+µ−) [5], resulting in a value of (2.3± 0.9)× 10−8.
The main SM nonresonant B0

(s) → µ+µ−µ+µ− decay mode

is B0
(s) → µ+µ−γ (→ µ+µ−), where one muon pair is pro-

duced via an electroweak penguin or box diagram and
the other via a virtual photon [Fig. 1 (b)]. The branching
fraction of B0

(s) → µ+µ−γ (→ µ+µ−) is expected to be less

than 10−10 [6]. The diagram for the MSSM decay mode
B0

(s) → SP is shown in Fig. 1 (c).
This Letter presents a search for the decays

B0
(s) → µ+µ−µ+µ− using data corresponding to an in-

tegrated luminosity of 1.0 fb−1 of pp collision data at√
s = 7 TeV collected with the LHCb detector in 2011.

The resonant B0
s → J/ψφ decay mode is removed in the

signal selection and is used as a control channel to develop
the selection criteria. The decay B0 → J/ψK∗0, where
J/ψ → µ+µ− and K∗0 → K+π−, is used as a normaliza-
tion channel to measure the branching fractions of the
B0

(s) → µ+µ−µ+µ− decays.

The detector [7] is a single-arm forward spectrometer,
covering the pseudorapidity range 2 < η < 5, designed for
the study of particles containing b or c quarks. The detec-
tor includes a high precision tracking system consisting of a
silicon-strip vertex detector surrounding the pp interaction
region, a large-area silicon-strip detector located upstream
of a dipole magnet, and three stations of silicon-strip detec-
tors and straw drift tubes placed downstream. The magnet
has a bending power of about 4 Tm. The combined track-
ing system has a momentum resolution ∆p/p that varies
from 0.4 % at momenta of 5 GeV/c to 0.6 % at 100 GeV/c.
The impact parameter (IP) resolution is 20 µm for tracks
with high transverse momentum (pT). Charged particles
are identified using two ring-imaging Čerenkov detectors.
Photon, electron and hadron candidates are identified by
a calorimeter system consisting of scintillating-pad and
preshower detectors, an electromagnetic calorimeter and
a hadronic calorimeter. Muons are identified by a sys-
tem composed of alternating layers of iron and multiwire
proportional chambers.

The trigger consists of a hardware stage, based on infor-
mation from the calorimeter and muon systems, followed
by a software stage that performs a full event reconstruc-
tion. Events are selected by the single-muon, dimuon and
generic b-hadron triggers described in Ref. [8].

Simulated events are generated using Pythia 6.4 [9]
configured with the parameters detailed in Ref. [10].
Final state QED radiative corrections are included us-
ing the Photos package [11]. The EvtGen [12] and
Geant4 [13, 14] packages are used to generate hadron de-
cays and simulate interactions in the detector, respectively.

Signal B0
(s) → µ+µ−µ+µ− candidates are selected by ap-

plying cuts on the final state muons and the reconstructed
B0

(s) meson. Each final state muon candidate track is re-

quired to be matched with hits in the muon system [15].
The muon candidates are required to have particle iden-
tification (PID) criteria consistent with those of a muon
and not those of a kaon or pion. This is determined by cal-
culating an overall event likelihood for the distribution of
Čerenkov photons detected by the ring-imaging Čerenkov
system being consistent with a given particle hypothe-
sis. To assess a particle hypotheses the difference between
the logarithm of its likelihood and the pion hypothesis
likelihood (DLL) is computed. Each muon candidate is re-
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Figure 1: Feynman diagrams for the B0
s → µ+µ−µ+µ− and B0 → µ+µ−µ+µ− decays, via (a) the resonant B0

s → J/ψφ
SM channel, (b) the nonresonant SM channel and (c) the supersymmetric channel. The latter is propagated by scalar S
and pseudoscalar P sgoldstino sfermions.

quired to have DLL(K − π)< 0 and DLL(µ− π)> 0. The
PID selection criteria yield a muon selection efficiency of
78.5 %; the corresponding efficiency for mis-identifying a
pion (kaon) as a muon is 1.4 % (< 0.1 %). All muon can-
didates are required to have a track fit chi2 per degree
of freedom of less than 5. Selection criteria are applied
on the consistency of the muons to originate from a sec-
ondary vertex rather than a primary vertex. The muons
are each required to have the difference between the χ2 of
the primary vertex formed with and without the considered
tracks, χ2

IP, to be greater than 16. The B0
(s) candidates are

formed from two pairs of oppositely charged muons. The
B0

(s) decay vertex χ2 is required to be less than 30 to en-
sure that the four muons originate from a single vertex. In
addition, the reconstructed B0

(s) meson is required to have

a χ2
IP less than 9 and hence be consistent with originating

from a primary vertex.
The B0

(s) candidates are divided into two samples ac-
cording to the invariant mass of the muon pairs. Sig-
nal nonresonant candidates are required to have all four
µ+µ− invariant mass combinations outside the respec-
tive φ and J/ψ mass windows of 950− 1090 MeV/c2 and
3000 − 3200 MeV/c2. The four-muon mass resolution is
estimated by the simulation to be around 19 MeV/c2 for
both B0 and B0

s decay modes. The signal candidates
are selected in a four-muon invariant mass window of
±40 MeV/c2 around the world average B0

(s) mass [5]. Can-

didate B0
s → J/ψφ decays are used to optimize the selec-

tion criteria described above. The B0
s → J/ψφ candidates

are selected by requiring the invariant mass of one muon
pair to be within the φ mass window and that of the other
pair to be within the J/ψ mass window.

The selection criteria are chosen by applying initial cut
values that select generic B meson decays. These values
are then further optimized using B0

s → J/ψφ candidates.

After applying the selection, seven B0
s → J/ψφ candidates

are observed in the signal sample. This is consistent with
the expected B0

s → J/ψφ yield, 5.5 ± 2.3, calculated by
normalizing to the B0 → J/ψK∗0 decay mode.

The dominant B0
(s) → µ+µ−µ+µ− background is combi-

natorial, where a candidate B0
(s) vertex is constructed

from four muons that did not originate from a single
B0

(s) meson. Sources of peaking background are esti-
mated to be negligible, the largest of these is due to
B0 → ψ(2S) (→ µ+µ−)K∗0 (→ K+π−) decays, which has
an expected yield of 0.44 ± 0.06 events across the entire
four-muon invariant mass range of 4776−5426 MeV/c2.

To evaluate the combinatorial background, a single
exponential probability distribution function (PDF) is
used to fit the events in mass ranges of 4776−5220 and
5426−5966 MeV/c2, where no signal is expected. Extrap-
olating the PDF into the B0 (B0

s ) signal window results
in an expected background of 0.38+0.23

−0.17 (0.30+0.22
−0.20) events.

Linear and double exponential fit models give consistent
background yields.

The branching fraction of the B0
(s) → µ+µ−µ+µ− de-

cay is measured relative to that of the normaliza-
tion channel B0 → J/ψK∗0, this avoids uncertainties
associated with the B0 production cross section and
the integrated luminosity. This normalization channel
has the same topology as the signal channel and two
muons as final state particles. The S-wave component
from the nonresonant decay B0 → J/ψK+π− is removed
from the present search. The branching fraction of
B0 → J/ψ (→ µ+µ−)K∗0 (→ K+π−) is calculated as the
product of B(B0 → J/ψK∗0), with the S-wave component
removed [16], B(K∗0 → K+π−) and B(J/ψ → µ+µ−) [5];
the resulting branching fraction is (5.10± 0.52)× 10−5.

The muon PID and kinematic selection criteria for the
normalisation channel are identical to those applied to the
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Figure 2: (color online). Invariant mass distribution of
K+π−µ+µ− candidates. The B0 and B0

s signal distribu-
tions are shown by short-dashed black and long-dashed
red (gray) lines, respectively. The background shape is
denoted by a long-dashed black line. The total fit result
is shown as a solid blue (black) line. The inset shows the
mass distribution centered around the B0

s mass.

signal channel. In addition to these criteria, the kaon is
required to have its PID consistent with that of a kaon
and not a pion, and vice versa for the pion. This re-
moves B0 → J/ψK∗0 candidates where the kaon and pion
mass hypotheses are exchanged. The K∗0 (J/ψ) meson
is selected by applying a mass window of ±100 MeV/c2

(±50 MeV/c2) around the world average invariant mass [5].
There are four main sources of peaking backgrounds

for B0 → J/ψK∗0 decays. The first is the decay
B+ → J/ψK+ combined with a pion from elsewhere in
the event, which is removed by applying a veto on candi-
dates with a K+µ+µ− invariant mass within ±60 MeV/c2

of the world average B+ mass [5]. The second arises from
B0

s → J/ψφ decays, where the φ meson decays to two
kaons, one of which is misidentified as a pion. This back-
ground is suppressed with a veto on candidates with a
K+π− invariant mass, where the pion is assigned a kaon
mass hypothesis, within ±70 MeV/c2 of the world average
φ mass [5]. The third source of background is from the de-
cay B0

s → J/ψK∗0, which is included in the K+π−µ+µ−

invariant mass fit described below. The last source of
background is the S-wave component of the decay mode
B0 → J/ψK+π−, this is discussed later.

The yield of the normalisation channel is determined by
fitting the K+π−µ+µ− invariant mass distribution with
a combination of three PDFs, the B0 → J/ψK∗0 and the
B0

s → J/ψK∗0 signal PDFs consist of the sum of a Gaus-
sian and a Crystal Ball function [17], centred around the

respective world average B0 and B0
s masses and the back-

ground PDF consists of a single exponential. The resulting
fit is shown in Fig. 2. The B0 → J/ψK∗0 mass peak has
a Gaussian standard deviation width of 15.9± 0.6 MeV/c2

and contains 31 800± 200 candidates.
The branching fraction of the B0

(s) → µ+µ−µ+µ− decay
is calculated using

B(B0
(s) → µ+µ−µ+µ−) = B(B0 → J/ψK∗0)×
εB0→J/ψK∗0

εB0
(s)
→µ+µ−µ+µ−

NB0
(s)
→µ+µ−µ+µ−

NB0→J/ψK∗0

(
fd(s)

fd

)−1
κ , (1)

where B(B0 → J/ψK∗0) is the branching fraction of
the normalisation channel [5, 16] and εB0→J/ψK∗0 and
εB0

(s)
→µ+µ−µ+µ− are the efficiencies for triggering, recon-

structing and selecting the normalisation and signal chan-
nel events, respectively. The efficiencies are calculated
using simulated events and are cross-checked on data.
The yields of the normalisation and signal channels are
NB0→J/ψK∗0 and NB0

(s)
→µ+µ−µ+µ− , respectively. The rel-

ative production fraction for B0 and B0
(s) mesons, fd(s)/fd,

is measured to be fs/fd = 0.256± 0.020 for B0
s decays [18]

and taken as unity for B0 decays. The factor κ accounts
for the efficiency-corrected S-wave contribution to the nor-
malisation channel yield; κ is calculated to be 1.09± 0.09,
using the technique described in Ref. [19].

The PID components of the selection efficiencies are
determined from data calibration samples of kaons, pions
and muons. The kaon and pion samples are obtained from
D0 → K−π+ decays, where the D0 meson is produced
via D∗+ → D0π+ decays. The muon sample is obtained
from B+ → J/ψ (→ µ+µ−)K+ decays. The calibration
samples are divided into bins of momentum, pseudorapidity,
and the number of charged tracks in the event. This
procedure corrects for differences between the kinematic
and track multiplicity distributions of the simulated and
the calibration event samples.

Two models are used to simulate B0
(s) → µ+µ−µ+µ−

decays: (i) the phase space model, where the B0
(s) mass

is fixed and the kinematics of the final state muons are
distributed according to the available phase-space and
(ii) the MSSM model, which describes the decay mode
B0

(s) → SP . In the MSSM model the pseudoscalar particle

P is a sgoldstino of mass 214.3 MeV/c2, consistent with
results from the HyperCP experiment [3]. The decay
widths of S and P are set to 0.1 MeV/c2. The scalar
sgoldstino S mass is set to 2.5 GeV/c2. If the mass of S
is varied across the allowed phase space of the B0

(s) → SP
decay, the relative change in εB0

(s)
→SP from the central

values varies from −12.6 % to +17.2 %.
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Table 1: Combined reconstruction and selection efficiencies
of all the decay modes considered in the analysis. The
uncertainties shown are statistical.

Decay mode Model Efficiency [%]

B0 → µ+µ−µ+µ− Phase space 0.349± 0.003

B0 → SP MSSM 0.361± 0.003

B0
s → µ+µ−µ+µ− Phase space 0.359± 0.003

B0
s → SP MSSM 0.366± 0.003

B0 → J/ψK∗0 SM 0.273± 0.003

Table 2: Systematic uncertainties on the branching frac-
tions of B0

(s) → µ+µ−µ+µ−. The combined systematic
uncertainties are calculated by adding the individual com-
ponents in quadrature.

Source Systematic uncertainty [%]

B(B0 → J/ψK∗0) 10.2
S-wave correction 8.3
fd/fs 7.8
Data-simulation differences 5.2
Trigger efficiency 4.4
PID selection efficiency 4.1
Simulation sample size 1.3
B0 → J/ψK∗0 yield 0.6

Combined B0
s uncertainty 17.2

Combined B0 uncertainty 15.4

The calculated efficiencies of all the simulated decay
modes are shown in Table 1. The total efficiencies of the
MSSM models are comparable to those for the phase space
models, indicating that the present search has approxi-
mately the same sensitivity to new physics models, which
feature low mass resonances, as to the phase space models.

Systematic uncertainties enter into the calculation of
the limits on B(B0

(s) → µ+µ−µ+µ−) through the various

elements of Eq. (1). The largest uncertainty arises from
the branching fraction of B0 → J/ψK∗0, which is known
to a precision of 10.2 % [5, 16]. An uncertainty arises
due to the correction for the B0 → J/ψK+π− S-wave con-
tribution. This is conservatively estimated to be 8.3 %,
which is the maximum relative change in κ when it is
calculated: (i) by using the angular acceptance from simu-
lated events and (ii) by performing a fit with the physics
parameters of the decay fixed and the angular acceptance
parameterised, the coefficients of which are left free in
the fit. An uncertainty of 7.8 % is introduced in the cal-
culation of B(B0

s → µ+µ−µ+µ−), due to the uncertainty
on fs/fd [18]. The 4.4 % systematic uncertainty associ-
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Figure 3: Invariant mass distribution of nonresonant
B0

(s) → µ+µ−µ+µ− candidates. The solid (dashed) black

lines indicate the boundaries of the B0
s (B0) signal window.

The blue curve shows the model used to fit the mass side-
bands and extract the expected number of combinatorial
background events in the B0

s and B0 signal regions. Only
events in the region in which the line is solid have been
considered in the fit.

ated with the trigger efficiency is calculated as the relative
difference between the data and simulation efficiencies of
the trigger selection criteria applied to the normalisation
channel. The efficiency in data is calculated using the
method described in Ref. [20]. Small differences are seen
between the data and the simulated events for the track
χ2
IP distributions and the efficiency for reconstructing in-

dividual tracks. The distributions of these quantities are
corrected in the simulation to resemble the data using data-
driven methods and the associated uncertainty is assessed
by varying the magnitude and the configuration of the
corrections. The relative systematic uncertainty assigned
to the ratio of efficiencies, εB0→J/ψK∗0/εB0

s→µ+µ−µ+µ− ,
is calculated to be 5.2 %. The 4.1 % uncertainty on the
PID selection efficiency is the maximum relative change
in εB0→J/ψK∗0/εB0

s→µ+µ−µ+µ− that results from applying
different binning schemes to the PID calibration samples.
This uncertainty includes effects associated with muon,
kaon and pion identification. The statistical uncertainty
associated with the size of the simulated event samples
is 1.3 % for both B0 and B0

s modes. The uncertainty on
the B0 → J/ψK∗0 yield is 0.6 %. Table 2 summarizes the
systematic uncertainties for both the B(B0

s → µ+µ−µ+µ−)
and B(B0 → µ+µ−µ+µ−) branching fractions. The com-
bined systematic uncertainty for the B0

s and B0 modes is
17.2 % and 15.4 %, respectively. The same uncertainties
apply for B(B0

s → SP ) and B(B0 → SP ).
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The nonresonant four-muon invariant mass range and the
background fit are shown in Fig. 3. One event is observed
in the B0 signal window and zero events are observed in
the B0

s window. These observations are consistent with
the expected background yields. The CLs method [21, 22]
is used to set upper limits on the branching fractions. The
95 % (90 %) confidence level limits for the nonresonant
B0

(s) → µ+µ−µ+µ− decay modes in the phase space model
are

B(B0
s → µ+µ−µ+µ−) < 1.6 (1.2)× 10−8,

B(B0 → µ+µ−µ+µ−) < 6.6 (5.3)× 10−9.

The corresponding limits for the MSSM model with
B0

(s) → SP and the mass of P (S) set to 214.3 MeV/c2

(2.5 GeV/c2), are

B(B0
s → SP ) < 1.6 (1.2)× 10−8,

B(B0 → SP ) < 6.3 (5.1)× 10−9.

Varying the mass of S across the allowed phase
space of the B0

(s) → SP decay, from 211 MeV/c2 to 5065

(5153) MeV/c2 for B0 (B0
s ), results in a relative change in

the 95 % confidence level limit from −23 % to +6 % for
both B0 and B0

s decay modes.
In summary, a search for the decays B0

(s) → µ+µ−µ+µ−

has been performed and first limits on the branching
fractions for these decay modes have been set. These
limits probe the upper regions of the parameter space
of the B0

(s) → SP decay, and, in particular set the first

constraints on type-II couplings [1].
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