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First observations of B — D*D~, D} D~ and D°D° decays
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First observations and measurements of the branching fractions of the BY — D*D~, BY — DD~ and
BY — DD’ decays are presented using 1.0 fb~! of data collected by the LHCb experiment.
These branching fractions are normalized to those of BY—D*D™, B — D D/ and B~ — DODS_,
respectively. An excess of events consistent with the decay B® — D°DP is also seen, and its branching
fraction is measured relative to that of B~ — D°D; . Improved measurements of the branching fractions
B(B?— D!D;) and B(B~ — D°D;) are reported, each relative to B(B® — D~ D;). The ratios

of branching fractions are %— 1.08  0.20 % 0.10, B*—l,jgh;—ooso+0008+ooo4
AT = 0.019 = 0.003 0,003, ZE=DDY < 0.0024 at 90% CL, 2H=0i0 = 0.56 = 0.03 +

0.04, BB =D'D.) — 22 + (.02 * 0. 07, where the uncertainties are statistical and systematic,

B(B"—D~ D)
respectively.
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L. INTRODUCTION

Double-charm decays of B mesons can be used to probe
the Cabibbo-Kobayashi-Maskawa matrix [1,2] elements
and provide a laboratory to study final state interactions.
The time-dependent CP asymmetry in the B — DD~
decay provides a way to measure the B’ mixing phase
[3,4], where information from other double-charm final
states can be used to account for loop (penguin) contribu-
tions and other nonfactorizable effects [5-9]. Double-
charm decays of B mesons can also be used to measure
the weak phase vy, assuming U-spin symmetry [10,11]. The
purely CP-even B — D} D; decay is also of interest, as it
can be used to measure the BY mixing phase. Moreover, a
lifetime measurement using the B — D} D decay pro-
vides complementary information on AI'; [11-14] to that
obtained from direct measurements [15], or from lifetime
measurements in other CP eigenstates [16,17].

The study of B— DD’ decays1 can also provide a better
theoretical understanding of the processes that contribute
to B meson decay. Feynman diagrams contributing to
the decays considered in this paper are shown in Fig. 1.
The BY — D°D°, B — D*D~ and B° — D°D° decays
are mediated by the W-exchange amplitude, along with
penguin-annihilation contributions and rescattering [18].
The only other observed B meson decays of this type

are B — DK™~ and BY — 7t 7, with branching
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fractions of the order of 107> [19] and 10~ [20], respec-
tively. Predictions of the BY — D* D™~ branching fraction
using perturbative approaches yield ~5.0 X 107% [21],
while the use of nonperturbative approaches has led to a
larger value of 4.5 X 1073 [22]. More recent phenomeno-
logical studies, which assume a dominant contribution
from rescattering, predict a significantly lower branch-
ing fraction of B(BY— D*D”) = B(BY— D°DP) =
(7.8 £4.7) X 1077 [18].

This paper reports the first observations of the B? —
D*D™, BY— DD and B? — D°D° decays, and mea-
surements of their branching fractions normalized relative
to those of B> = D™D~, B> - D™D/ and B~ — DDy,
respectively. An excess of events consistent with
B — D°DC is also seen, and its branching fraction is
reported. Improved measurements of the ratios of
branching fractions B(BY — DI D;)/B(B’ — D™ D})
and B(B~ — D°D;)/B(B° — D~ D) are also presented.
All results are based upon a data sample corresponding to
an integrated luminosity of 1.0 fb~! of pp collision data at
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FIG. 1 (color online). Feynman diagrams contributing to the
double-charm final states discussed in this paper. They include
(a) tree, (b) W exchange and (c) penguin diagrams.
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/s =7 TeV recorded by the LHCb experiment in 2011.
Inclusion of charge conjugate final states is implied
throughout.

II. DETECTOR, TRIGGER AND DATA SAMPLES

The LHCD detector [23] is a single-arm forward spec-
trometer covering the pseudorapidity range 2 < n <S5,
designed for the study of particles containing b or ¢ quarks.
The detector includes a high precision tracking system
consisting of a silicon-strip vertex detector surrounding
the pp interaction region, a large-area silicon-strip detector
located upstream of a dipole magnet with a bending power
of about 4 Tm, and three stations of silicon-strip detectors
and straw drift tubes placed downstream. The combined
tracking system has a momentum resolution (A p/p) that
varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and
an impact parameter (IP) resolution of 20 wm for tracks
with high transverse momentum (p). The impact parame-
ter is defined as the distance of closest approach of a given
particle to the primary p p interaction vertex (PV). Charged
particles are identified by two ring-imaging Cherenkov
detectors [24]. Discrimination of photons, electrons and
charged hadrons is provided by a calorimeter system con-
sisting of scintillating-pad and preshower detectors, an
electromagnetic calorimeter and a hadronic calorimeter.
Muons are identified by a system composed of alternating
layers of iron and multiwire proportional chambers.

The trigger [25] consists of a hardware stage, based on
information from the calorimeter and muon systems,
followed by a software stage that performs a partial
event reconstruction (only tracks with pr > 0.5 GeV/c are
reconstructed and used). The software trigger requires a
two-, three- or four-track secondary vertex with a large
track pt sum and a significant displacement from any of
the reconstructed PVs. At least one track must have pt >
1.7 GeV/c and IP y? greater than 16 with respect to all
PVs. The IP x? is defined as the difference between the y?
of the PV reconstructed with and without the considered
particle. A multivariate algorithm [26] is used to identify

TABLE 1.
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secondary vertices that originate from the decays of b
hadrons.

Signal efficiencies and specific backgrounds are studied
using simulated events. Proton-proton collisions are gen-
erated using PYTHIA 6.4 [27] with a specific LHCb con-
figuration [28]. Decays of hadronic particles are described
by EVTGEN [29] in which final state radiation is generated
using PHOTOS [30]. The interaction of the generated parti-
cles with the detector and its response are implemented
using the GEANT4 toolkit [31] as described in Ref. [32].
Efficiencies for identifying K* and 7t mesons are deter-
mined using D** calibration data, with kinematic quanti-
ties reweighted to match those of the signal particles [24].

Signal B candidates are formed by combining pairs of D
meson candidates reconstructed in the following decay
modes: D° - K~ 7t or K~ wta #", DY - K 7t o™
and Dy — K"K~ 7. The D° — K~ w7~ 7" decay is
only used for B — D°D° candidates, where a single
D’ — K~ w7~ o decay in the final state is allowed,
which approximately doubles the total signal efficiency.
A refit of signal candidates with D mass and vertex con-
straints is performed to improve the B mass resolution.

Due to the similar kinematics of the D* — K~ 7" 7+,
DY - K*K 7" and A} — pK~ @t decays, there is
cross feed between various b-hadron decays that have
two charm particles in the final state. Cross feed between
D" and D} occurs when the K~ 7" h™" invariant mass is
within 25 MeV/c? (~ 3 times the experimental resolution)
of both the Dt and D masses under the 2" = 7" and
h* = K" hypotheses, respectively. In such cases, an arbi-
tration is performed as follows: if either |M(K*K™) —
my| <10 MeV/ c? or h satisfies a stringent kaon particle
identification (PID) requirement, the D candidate is
assigned to be a D; meson. Conversely, if A" passes a
stringent pion PID requirement, the D candidate is taken to
be a D' meson. Candidates that do not pass either of these
selections are rejected. A similar veto is applied to D" and
D} decays that are consistent with the A} — pK~ 7"
decay hypothesis if the proton is misidentified as a 7+ or
K, respectively. The efficiencies of these D selections are

Individual contributions to the efficiency for selecting the various B — DD’ final

states. Shown are the efficiencies to reconstruct (rec.) and trigger (trig.) on the final state, and to
pass the charm cross-feed veto, the VS x? and BDT selection requirements. The total selection
efficiency is the product of these four values. The relative uncertainty on the selection efficiency
for each decay mode due to the finite simulation samples sizes is 2%. Entries that are left blank
indicate that the efficiency factor is not applicable.

Efficiencies (%)

Rec. X Trig. Cross-feed veto VS x? BDT
BY— D} Dy 0.140 88.4 75.4 97.5
BY — D™D} (loose selection) 0.130 77.8 82.9 100.0
B?S) — DD, (K~ 7*,Kt7™) 0.447 73.7 57.8
B?S) — DD (Kot , Ktow war™) 0.128 74.6 63.6
B~ — DDy 0.238 92.5 75.0 99.2
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determined using simulated signal decays to model the
kinematics of the decay and D** — Dz calibration
data for the PID efficiencies. Their values are given
in Table 1.

To suppress contributions from non-DD’ final states, the
reconstructed D decay vertex is required to be downstream
of the reconstructed B decay vertex, and the B and D decay
vertices are required to have a vertex separation (VS) x?
larger than two. Here, the VS x? is the difference in x*
between the nominal B vertex fit and a vertex fit where the
D is assumed to have zero lifetime. The efficiencies of this
set of requirements are obtained from simulation and are
included in Table .

To further improve the purity of the B — DD’ samples, a
boosted decision tree (BDT) discriminant is used to
distinguish signal D mesons from backgrounds [33,34].
The BDT uses five variables for the D meson and 23 for
each of its children. The variables include kinematic quan-
tities, track quality, and vertex and PID information. The
signal and background distributions used to train the BDT
are obtained from B — D" 7=, B~ — D7~ and BY —
D} 7~ decays from data. The signal distributions are
background subtracted using weights [35] obtained from
a fit to the B candidate invariant mass distribution. The
background distributions are taken from the high B mass
sidebands in the same data sample.

It is found that making a requirement on the product
of the two D meson BDT responses provides better
discrimination than applying one to each BDT response
individually. The optimal BDT requirement in each decay
is chosen by maximizing Ng/+/Ng + Ng. The number
of signal events, Ng, is computed using the known
(or estimated, if unknown) branching fractions, selection
efficiencies from simulated events, and the BDT efficien-
cies from the B°—> D*7w~, B~ - D7 and BY—
D/ 7~ calibration samples, reweighted to account for
small differences in kinematics between the calibration
and signal samples. The number, Ng, is the expected
background yield for a given BDT requirement. To obtain
the BDT efficiency in a given signal mode, the kinematical
properties and correlations between the two D mesons are
taken from simulation, while the actual BDT response
distributions are obtained from B — D7~ data. The result-
ing optimal BDT efficiencies are listed in Table I.

For the purpose of measuring B(B?— D/ D;)/
B(B* — D™ D}), the BDT optimization leads to loose
BDT requirements since the expected yields are rela-
tively large. On the other hand, for B(B? — D/ D7)/
B(B" — D™ D}), the expected signal yield of B?—
DI D~ decays is small; in this case both the signal and
normalization modes are required to pass the same tighter
BDT requirement. The different BDT selections applied to
the B — D™D} decay are referred to as the ‘“loose
selection” and the ‘‘tight selection.” Since the final state
is identical for the tight selection, the BDT efficiency
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cancels in the ratio of branching fractions, and is not
included in Table I.

For B, — DD’ candidates, a peaking background
from B— D*"7~ — (D°7")7m~ decays, where the 7"
is misidentified as a K™, is observed. This contribution is
removed by requiring the mass difference, M(K~ 7" 7r+)—
M(K~7%) > 150 MeV/c?, where the K* in the recon-
structed decay is taken to be a 7v+. After the final selection,
around 2% of events in the B — DD, decay mode
contain multiple candidates; for all other modes the mul-
tiple candidate rate is below 1%. All candidates are kept for
the final analysis.

For the ratios of branching fractions between modes
with identical final states, no requirements are made on
the hardware trigger decision. When the final states differ,
a trigger selection is applied to facilitate the determination
of the relative trigger efficiency. The selection requires that
either (i) at least one of the tracks from the reconstructed
signal decay is associated with energy depositions in the
calorimeters that passed the hardware trigger requirements,
or (ii) the event triggered independently of the signal
decay particles, e.g., on the decay products of the other b
hadron in the event. A small fraction (~ 5%) of events are
triggered by a combination of both the signal b-hadron
daughters and one or more other particles in the event.
These events are discarded.

II1. SIGNAL AND BACKGROUND SHAPES

To determine the signal yields, the mass distributions are
parameterized as the sum of two Crystal Ball (CB) func-
tions [36], which account for non-Gaussian tails on both
sides of the signal peak. The asymmetric shapes account
for both non-Gaussian mass resolution effects (on both
sides) and energy loss due to final state radiation. The
two CB shapes are constrained to have equal area and a
common mean. Separate sets of shape parameters are
determined for B — DDy, B — DD, and B~ —
D°D; using simulated signal decays, although their shapes
are very similar. In the fits to data, the signal shape pa-
rameters are fixed to the simulated values, except for a
smearing factor that is added in quadrature to the widths
from simulation. This number is allowed to vary indepen-
dently in each fit, but is consistent with about 4.6 MeV/ c?
across all modes, resulting in a mass resolution of about
9 MeV/c?. For the more rare B?S) — DD and B?S) —
D*D™ decay modes, the B?— D}D; signal shape
parameters are used. In determining the signal significan-
ces, the signal shape is fixed to that for B — DDy,
including an additional smearing of 4.6 MeV/c?. The
impact of using the B — D™ D] or B~ — D°D; signal
shapes on the signal significances is negligible.

Several specific backgrounds contribute to the DD’
mass spectra. In particular, decays such as B — D® D*,
where the D* mesons decay through pion or photon
emission, produce distinct structures in all decays under
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consideration (due to angular momentum conservation).
The shapes of these backgrounds are derived from simu-
lation, which are corrected for known resolution differ-
ences between data and simulated events, and then fixed in
fits to the data. The relative yield of the two peaks in the
characteristic structure from the decay D* — D%z is
allowed to vary freely, to enable better modeling of the
background in the low mass region. Since these events are
below the signal peak by at least the pion mass, the impact
on the signal yield determinations is negligible.

A source of peaking background that contributes to
B — DD} modes are the B— DK*°K* — DK 7"K*
decays, where the K**K* is not produced in a D] decay.
Although the branching fractions for these decays [37]
are about twice as large as that of the B— DD/} —
DK* K~ 7" decay channel, the 25 MeV/c? mass window
around the known D mass and the VS y? > 2 require-
ment reduces this contribution to about 1% of the signal
yield. This expectation is corroborated by studying the D
candidate mass sidebands. The shape of this background is
obtained from simulation, and is described by a single
Gaussian function which has a width about 2.5 times larger
than that of the signal decay and peaks at the nominal B
meson mass. The larger width in this decay than in the
signal mode is a result of the D mass and vertex-
constrained fit applied in the B reconstruction.

After the charm cross-feed vetoes (see Sec. II), the
cross-feed rate from B°— D™D} decays into the
BY — D! D; sample is (0.7 = 0.2)%. The shape of this
misidentification background is obtained from simulation.
A similar cross-feed background contribution from A9 —
AT Dy decays is also expected due to events passing the
A7 veto. Taking into account the observed yields of these
decays in data, we fix the B> — D™D and AY — A} Dy
cross feed yields to 35 and 15 events, respectively.
Investigation of the D mass sidebands reveals no additional
contributions from non-DD’ backgrounds.

The combinatorial background shape is described by an
exponential function whose slope is determined from
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B D! D
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- Combinatorial
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o
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FIG. 2 (color online).
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wrong-sign candidates. Wrong-sign candidates include
the DD}, D°DP, or D°(K* 7~ )D; final states, in which
no signal excesses should be present [neglecting the
small contribution from the doubly Cabibbo suppressed
B~ — D%(K*77)D; decay]. For the B, — D"D~
decay, the exponential shape parameter is allowed to vary
in the fit due to an insufficient number of wrong-sign
D" D™ candidates.

IV. FIT RESULTS

Figure 2 shows the invariant mass spectra for BY —
DID; and B — D D] candidates. The results of
unbinned extended maximum likelihood fits to the
distributions are overlaid, with the signal and background
components indicated in the legends. Signal yields of
451 +23 BY—D!D; and 5157 +64 B"— D D}
decays are observed.

Figure 3 shows the invariant mass spectrum for B® —
D™D} and B — D{ D~ candidates, where the tight BDT
selection requirements have been applied as discussed
previously. We observe 36+ 6 BY— DD~ signal
decays, with 2832 + 53 events in the B — D™D} nor-
malization mode. The statistical significance of the
BY — DD~ signal corresponds to 10o by computing
V=2In(Ly/ L ax ), where L. and L, are the fit like-
lihoods with the signal yields allowed to vary and fixed to
zero, respectively. Variations in the signal and background
model have only a marginal impact on the signal signifi-
cance. The BY — D™D} decay is thus observed for the
first time.

The invariant mass spectrum for B,y — D* D~ candi-

dates is shown in Fig. 4 (left). Peaks are seen at both the B°
and BY meson masses, with yields of 165 + 13 and 43 *= 7
signal events, respectively. In the lower mass region, two
prominent peaks from B® — D¥D** decays are also evi-
dent. The significance of the B — D* D™ signal yield is
computed as described above, and corresponds to 110,
establishing the first observation of this decay mode.
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> i B°- D*~ D}
= T B 5~ D D:*
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2 500
©
b
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C
©
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Invariant mass distributions for (left) B — D} D and (right) B — D™ D; candidates in the data with the

loose BDT selection applied to the latter. The signal and background components are indicated in the legend. The A — AY Dy,
B> DK K"7 and B - D™ K"K~ 7" background components are too small to be seen, and are excluded from the legends.
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FIG. 3 (color online).
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Invariant mass distribution for B — D™D and BY — D} D~ candidates in the data, with the tight BDT

selection applied. The distribution is plotted on a (left) linear and (right) logarithmic scale to highlight the suppressed BY — D} D~
signal. Signal and background components are indicated in the legend.
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FIG. 4 (color online). Invariant mass distributions for (left) B&) — D*D™ (right) B?S) — D%DP candidates in the data. Signal and

background components are indicated in the legend.

Figure 4 (right) shows the D°D° invariant mass distri-
bution and the results of the fit. Both (K~ 7", K™ 7~ ) and
(K@, K"m 7" 7~) combinations are included. A
B% — D°DO signal is seen with a significance of 11o,
which establishes the first observation of this decay
mode. The data also show an excess of events at the B°
mass. The significance of that excess corresponds to 2.4,
including both the statistical and systematic uncertainty.
The fitted yields in the BY — D°D° and B® — D°DC decay
modes are 45 = 8 and 13 = 6 events, respectively. If both
the BY — D°D° and B® — D°DP decays proceed through
W-exchange diagrams, one would expect the signal yield
in B — D°D° to be ~(f;/fs) X |V,.4/V.|> = 0.2 of the
yield in BY — D°D°, where we have used |V, ;/V.,|* =
0.054 [19] and the B fragmentation fraction ratio f,/f; =
0.256 = 0.020 [38]. The fitted yields are consistent with
this expectation. The decay B~ — D°D; is used as the
normalization channel for both the BY — D°D° and B® —
D°DP branching fraction measurements, where only the
D — K~ " decay mode is used. The fitted invariant mass
distribution for B~ — D°D; candidates is shown in Fig. 5.
The fitted signal yield is 5152 * 73 events.

The measured yields, Ng_,pp, relevant for the branch-
ing fraction measurements are summarized in Table II.
The branching fractions are related to the measured
yields by

_ | LHCb — B— D°D;
% 1000 * M=
§ B— D" D,
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g 3 - Combinatorial
= 500

i)

©

C

c

(@]

5200 T 5400 5600
D° D Mass [MeV/c?]

FIG. 5 (color online). Invariant mass distribution for B~ —
D°D; candidates in the data. Signal and background compo-
nents are indicated in the legend. The B~ — DK K* 7~
background components are too small to be seen, and are
excluded from the legend.
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TABLE II. Summary of the observed signal and normalization
(norm.) mode yields and their relative efficiencies (rel. eff.), as
used in the measurements of the ratios of branching fractions.
The quoted uncertainties are statistical only.

Measurement  Signal yield =~ Norm. yield Rel. eff. erel
FEmpiL) 451 =23 5157 £64  0.928 = 0.027
s 36 + 6 2832 = 53 1.0
gro 437 165 = 13 1.0
=) 45+ 8 5152+73  0.523 =0.016
el 13+6 515273 0.523 = 0.016
o) 515273 5157+64 0508 % 0.011
B(BY — D}'Dy) _ Q BB B(D* — K atwh)
B(B— D D) f, ™ B(D] — K"K 7")
No—nin: 0
Npo_.p-p;
BBy — D;D7) _ fa Np—p; p-
BB =D D) £ Ny
B(B?—D*'D") f4 Npo_.p+p-
BB =00 . Ny

/
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B(E? - DOD_O) _ & e k- NB?_,DODO (4)
BB~ —DD;) f, ™ Ng-_pop-’
B(EO - DOD_O) 1 NBO_,DOD(» (5)
- "= 2222
BB~ —D°D;) ' Ny _pop-

B(B_ —’DODS_) BY/B~ B(D+ —>K_7T+7T+)
=€ .
BB —D D) ™ B(DY— K )
Ng-_pop-
'NB DOD; ' (6)
B'—D~Df

Here, it is assumed that B~ and B° mesons are produced in
equal numbers. The relative efficiencies, €., are given in
Table II. They account for geometric acceptance, detection
and trigger efficiencies, and the additional VS y?, BDT,
and charm cross-feed veto requirements. The first four of
these relative efficiencies are obtained from simulation,
and the last two are determined using data-driven methods,
as discussed in Sec. II. The indicated uncertainties on the
relative efficiencies are due only to the finite sizes of the
simulated signal decays. The average selection efficiency
for B~ — DDy relative to B — DD’ is

€p—pop- BIDS = K*'K~ 7" )B(D° — K~ 7")

€

where the quantities €z-_pop- = (0.166 = 0.003)%,
€xmir = (0.190 £0.003)% and €x,pmixr = (0.061 £
0.002)% are the selection efficiencies for the B~ —
DD, B — (D°— K7, D" — K*7) and BY—
(D — K 7", D°— K"~ 7" 7~) decays, respectively.
The D branching fractions, B(D°— K 7")=
(3.88 £ 0.05)%, B(D°—K 77 7+)=(8.07=0.20)%,
B(Df - K*K 7)) =(5.49 = 0.27)%, and B(D* —
K 7 @) =(9.13 = 0.19)% are taken from Ref. [19].

The factor « in the equations above is a correction that
accounts for the lower selection efficiency associated
with the shorter-lifetime CP-even eigenstates of the B
system compared to flavor-specific final states [15]. The
impact on the B? acceptance is estimated by convolving
an exponential distribution that has a 10% smaller life-
time than that in flavor-specific decays with the simulated
lifetime acceptance. The resulting correction is « =
1.058 = 0.029. In the B° sector, A';/T'; is below 1%
[39], and the lifetime acceptance is well described by the
simulation.

The measured ratios of branching fractions are com-
puted to be

rel = EK#K#[B(DO_)K 7T+)]2+26K7T7T7TK7TB(D — K 7T+)B(DO_)K 7T T T )

(7)

[

B(B?— D*D")
BB’ — D*D")
B(B?— DID")
B(B* — D™ D;)
B(B® — D°DY)
B(B~ — D°Dy)
B(B® — D°DY)
B(B~ — D°Dy)

= 1.08 = 0.20(stat) = 0.10(syst),
= 0.050 = 0.008(stat) * 0.004(syst),
= 0.019 = 0.003(stat) * 0.003(syst),

= 0.0014 = 0.0006(stat) = 0.0002(syst)

[<0.0024 at 90% CL],
B(B{ — D{ Dy)
B(B* — D™ DY)
B(B~ — D°Dy)
B(B'— D D))
For  B(B}— D°D°)/B(B~ — D°D;), the results
obtained using the DK™ #*)D°(K*#w 7" 7~) and
D°(K~7*)D°(K* 7r™) final states differ by less than one

standard deviation. For the B® — D°D° decay, we provide
both the central value and the 90% confidence level (CL)

= 0.56 = 0.03(stat) = 0.04(syst),

= 1.22 * 0.02(stat) == 0.07(syst).
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upper limit. The upper limit is obtained by convolving the
fitted likelihood with a Gaussian function whose width is
the total systematic error, and integrating over the physical
region.

V. SYSTEMATIC UNCERTAINTIES

A number of systematic uncertainties contribute to the
measurements of the ratios of branching fractions. The
sources and their values are summarized in Table III.
The dominant source of uncertainty on the branching
fraction ratios comes from the b fragmentation fraction
ratio, f,;/f,, which has a total uncertainty of 7.8% [38], of
which 5.3% is from the ratio of branching fractions
B(Df - K*K w")/B(D" — K wtw"). For clarity,
we have removed that portion of the uncertainty from
fu/fs,» and included its contribution in the row labeled
B(D) in Table III. For B(B—D;D;)/B(B°—D~D}),
the above D /D" branching fraction ratio from f,;/f,
cancels with the corresponding inverted ratio in Eq. (1).
On the other hand, in the ratio B(B?s) — D'DY%)/
B(B~ — DDy ), the D{ — K"K~ 7" branching fraction
enters as the square, after considering the D branching
fractions used in computing f,/f, [see Eq. (4)]. As a
result, the uncertainty from B(D;} — K* K~ 7") contrib-
utes 9.8% to the total uncertainty on B(B?S) — D'DY%)/

B(B~ — D°D;); smaller contributions from the lim-
ited knowledge of B(D°— K~ #*) [1.3%], B(D°—
K wmtm @) [25%] and B(D" — K- wtat) [2.1%]
are also included in the B(D) uncertainties.

Another significant uncertainty results from the preci-
sion on b-hadron lifetimes and decays of B® and BY to
CP eigenstates. Using the measured value of the width
difference, AT, = 0.116 = 0.018 = 0.006 ps~! [40] we
conservatively assume the CP-even lifetime to be in the
range from 0.85 to 0.95 times the flavor-specific decay
lifetime. With this allowed range a 2.9% uncertainty on
the efficiencies for BY decays to CP eigenstates is found.
The average BY lifetime is known only to a precision of

TABLE III.
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3%, which leads to a 1.5% uncertainty on the selection
efficiencies for BY decays to flavor-specific final states. The
B° and B~ lifetimes are known with sufficient precision
that the associated uncertainty is negligible.

Several of the efficiency factors are estimated from
simulation. Most, but not all, of the associated systematic
uncertainties cancel due to the similar or identical final
states for the signal and normalization modes. For modes
with an unequal number of tracks in the final state, a 1%
uncertainty due to small differences in the IP resolution
between data and simulation is assigned. The efficiency
of the VS yx? requirement is checked using the large
B° — D™D} signal in data, and the agreement to within
1% with the efficiency from simulation is the assigned
uncertainty. For B(B~ — D°D;)/B(B" — D~ D}), a
1% uncertainty is attributed to the efficiency of track
reconstruction. For B(BY — D°D%)/B(B~ — DD, ), the
one fewer track in the D°(K7)D°(K 7) final state is offset
by the one extra track in D°(K7)D°(Km ), relative to
D°(K)D; (KK), leading to a negligible tracking uncer-
tainty. The mass resolution in data is slightly larger than in
simulation, resulting in slightly different efficiencies for
the reconstructed D°, D™ and D invariant masses to lie
within 25 MeV/¢? of their known masses. This introduces
a maximum of 1% uncertainty on the relative branching
fractions. To estimate the uncertainty on the trigger effi-
ciencies determined from simulation, the hadron trigger
efficiency ratios were also determined using data. These
efficiencies were measured using trigger-unbiased samples
of kaons and pions identified in D** — D%7" decays.
Using this alternative procedure, we find that the simulated
trigger efficiency ratios have an uncertainty of 2%. The
combined systematic uncertainties in the efficiencies
obtained from simulation are given in Table III.

The limited sizes of the B — D~ calibration samples
lead to uncertainties in the BDT efficiencies. The uncer-
tainties on the ratios vary from 1.0% to 2.0%. The
uncertainty on the efficiency of the D(,) and A} vetoes is
dominated by the PID efficiencies, but they only apply to

Sources of systematic uncertainty and their values (in %) for the ratios of

branching fractions of the indicated decays. For B(B?S) — D°D%)/B(B~ — D°Dy), the error
on f,/f, only applies to the BY — D°DO decay, as indicated by the values in parentheses.

B'—D; D; B'—Di D™ B'—D*D™ B} —D°D° B~ —D°D;
Source B'—DD; B'—=D D] B'—D"D~ B —D'D, B—D~ D
falfs 5.7 5.7 5.7 —(5.7) e
‘B(D) R 53 53 10.2 2.5
B meson lifetimes 29 1.5 29 29 s
Eff. from simulation 2.4 s R 2.2 2.6
BDT selection 1.4 2.2 14
Cross-feed vetoes 0.6 0.5 1.0
D mass resolution 1.0 cee s 1.0 1.0
Fit model 2.1 0.5 0.5 1.7 2.1
Simulated sample size 3.0 3.0 3.0 3.0 3.0
Total 8.0 8.5 8.9 11.7 (13.0) 55
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the subset of D candidates that fall within the mass window
of two charm hadrons, e.g., both the D* and D mesons,
which occurs about 20% of the time for D] decays. Taking
this fraction and the uncertainty in the PID efficiency into
account, the veto efficiencies are estimated to have uncer-
tainties of 1.0% for the D™ veto, 0.5% for the D} veto, and
0.3% for the A veto.

The fit model is validated using simulated experiments,
and is found to be unbiased. To assess the uncertainty due
to the imperfect knowledge of the various parameters used
in the fit model, a number of variations are investigated.
The only non-negligible uncertainties are due to the
B — DK~ K" 7~ background contribution, which is var-
ied from 0% to 2%, and the cross feed from BY — D} D~
decays into the BY — D] D; sample. The uncertainty
varies from 1.7% to 2.1%. For B(B°— D'D")/
B(B*— D*D™) and B(BY — D D")/B(B° — D D}),
we assign an uncertainty of 0.5%, which accounts for
potentially small differences in the signal shape for B°
and BY decays (due to the B*-BY mass difference). Lastly,
the finite size of the samples of simulated decays contrib-
utes 3% uncertainty to all the measurements. In total, the
systematic uncertainties on the branching fraction ratios
range from 5.5% to 13.0%, as indicated in Table III.

VI. DISCUSSION AND SUMMARY

First observations and measurements of the relative
branching fractions for the decays BY — D*D~, BY —
DD~ and BY — D°D° have been presented, along with
measurements of B(BY — DY D;) and B(B~ — D°D;).

The measured value of B(B’— D/D;)/
B(B* — D D}) =0.55+0.06 is significantly lower
than the naive expectation of unity for the case that both
decays are dominated by tree amplitudes [see Fig. 1(a)],
assuming small nonfactorizable effects and comparable
magnitudes of the B — D(J; ) form factors [41]. Unlike
B — D™D}, the B — D} D; decay receives a contribu-
tion from the W-exchange process [see Fig. 1(b)], suggest-
ing that this amplitude may not be negligible. Interestingly,
when comparing the B — DfD; and B’— D™D~
decays, which have the same set of amplitudes, one finds
|Vcd/vcs|2 ’ B(B? - D;D;)/B(EO - D+D_) ~ 1

Taking the world average values for B(B® — D~ D) =
(7.2 £ 0.8) X 1073 [19], the absolute branching fractions
are

B(B~ — D°Dy)

= (8.6 = 0.2(stat) * 0.4(syst) = 1.0(norm)) X 1073,
B(B{ — D{ Dy)

= (4.0 * 0.2(stat) = 0.3(syst) = 0.4(norm)) X 1073,

The third uncertainty reflects the precision of the branching
fraction for the normalization mode. These measurements
are consistent with, and more precise than, both the current
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world average measurements [19] as well as the more
recent measurement of B(BY — D D;) [42].

Using B(B°— D*D7)=(2.11 £0.31) X 107* and
B(B~ — D°D;) = (10.0 = 1.7) X 1073 [19], the follow-
ing values for the branching fractions are obtained:

B(B?— D*D")

= (2.2 *+ 0.4(stat) * 0.2(syst) + 0.3(norm)) X 1074,
B(BY — D°D°)

= (1.9 =+ 0.3(stat) = 0.3(syst) = 0.3(norm)) X 1074,
B(B° — D°D°)

= (1.4 = 0.6(stat) = 0.2(syst) = 0.2(norm)) X 1077.

These results are lower than, but consistent with, the
perturbative-based calculations presented in Ref. [21].
The nonperturbative calculations for B(BY — D™D™)
give a result that is ~20 times larger than the measured
value. The measured branching fractions are on the upper
end (~1.5 — 20) of the predictions obtained by assuming
that these decay amplitudes are dominated by rescattering
[18]. As discussed above for the B(B? — D} D;) mea-
surement, this may also suggest that the W-exchange
amplitude contribution is not negligible in B — DD’
decays. For precise quantitative comparisons of these BY
branching fraction measurements to theoretical predic-
tions, one should account for the different total widths of
the CP-even and CP-odd final states [13].

The Cabibbo suppressed BY — D} D~ decay is also
observed for the first time. Its absolute branching
fraction is

B(BY— DD")
= (3.6 *+ 0.6(stat) * 0.3(syst) + 0.4(norm)) X 10™%.

This value is consistent with the expected suppression
of |Vcd/vcs|2-

The results reported here are based on an integrated
luminosity of 1.0 fb~!. A data sample with approximately
2.5 times larger yields in these modes has already been
collected in 2012, and larger samples are anticipated in the
next few years. These samples give good prospects for
CP-violation measurements, lifetime studies, and obtain-
ing a deeper understanding of the decay mechanisms that
contribute to b-hadron decays.
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