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A search for direct CP violation in D0 → h−h+ (where h = K or π ) is presented using data corresponding
to an integrated luminosity of 1.0 fb−1 collected in 2011 by LHCb in pp collisions at a centre-of-mass
energy of 7 TeV. The analysis uses D0 mesons produced in inclusive semileptonic b-hadron decays to
the D0μX final state, where the charge of the accompanying muon is used to tag the flavour of the D0

meson. The difference in the CP-violating asymmetries between the two decay channels is measured to
be

�ACP = ACP
(

K − K +) − ACP
(
π−π+) = (

0.49 ± 0.30 (stat) ± 0.14 (syst)
)
%.

This result does not confirm the evidence for direct CP violation in the charm sector reported in other
analyses.

© 2013 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

The combined symmetry of charge conjugation and parity (CP)
is broken in the weak interaction of the Standard Model by a sin-
gle phase in the Cabibbo–Kobayashi–Maskawa matrix [1,2]. Physics
beyond the Standard Model may reveal itself in the form of addi-
tional sources of CP violation. In both the K 0 and B0 systems CP
violation has been unambiguously observed, and is in agreement
with the Standard Model predictions. In contrast, CP violation in
the charm sector has yet to be established. The amount of CP vio-
lation in charm decays was generally expected to be much smaller
than the 1% level in the Standard Model [3,4]. The LHCb collab-
oration, however, reported evidence with 3.5 standard deviations
significance for direct CP violation in two-body, singly-Cabibbo-
suppressed D0 decays [5]. The difference in CP asymmetries be-
tween D0 → K −K + and D0 → π−π+ decays was found to be
�ACP = (−0.82 ± 0.21 (stat) ± 0.11 (syst))%. This result sparked
a theoretical debate on whether or not this could be accommo-
dated within the Standard Model. For a comprehensive review see
Ref. [6].

After the LHCb paper, the CDF and Belle collaborations pre-
sented measurements of �ACP = (−0.62 ± 0.21 (stat) ± 0.10
(syst))% [7] and �ACP = (−0.87 ± 0.41 (stat) ± 0.06 (syst))% [8],
respectively. These numbers are included in the average from
the Heavy Flavor Averaging Group (HFAG) [9], together with a
previous measurement [10] from the BaBar collaboration, yield-
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ing a world average of the difference in direct CP violation of
�adir

CP = (−0.68 ± 0.15)%.1

In all previous results D∗+ → D0π+ decays2 have been used as
the source of the D0 sample, and the emitted pion was used to
determine the flavour of the neutral D meson (i.e., whether it is
D0 or D0). In this Letter a measurement of �ACP is presented us-
ing D0 mesons produced in semileptonic b-hadron decays where
the flavour of the neutral D meson is tagged by the accompanying
charged lepton. This approach provides an independent determina-
tion of �ACP .

2. Method and formalism

The measured (raw) asymmetry for a D0 decay to a CP eigen-
state f is defined as

Araw = N(D0 → f ) − N(D0 → f )

N(D0 → f ) + N(D0 → f )
, (1)

where N denotes the observed yield for the given decay. The initial
flavour of the neutral D meson is tagged by the charge of the ac-
companying muon in the semileptonic b-hadron (B) decay to the
DμX final state. A positive muon is associated with a D0 meson,
and a negative muon with a D0 meson. The X denotes any other
particle(s) produced in the semileptonic B decay, which are not
reconstructed (e.g., the neutrino).

1 The relation between �ACP and �adir
CP is explained in Section 6.

2 The inclusion of charge-conjugated modes is implied throughout this Letter, un-
less explicitly stated otherwise.
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The raw asymmetry can be written in terms of the D0 decay
rate, Γ , the muon detection efficiency, ε, and the D0 production
rate in semileptonic b-hadron decays, P , as

Araw = Γ (D0)ε(μ−)P(D0) − Γ (D0)ε(μ+)P(D0)

Γ (D0)ε(μ−)P(D0) + Γ (D0)ε(μ+)P(D0)
. (2)

Defining the CP asymmetry as ACP = (Γ (D0) − Γ (D0))/(Γ (D0) +
Γ (D0)), the muon detection asymmetry as Aμ

D = (ε(μ−)−ε(μ+))/

(ε(μ+)+ε(μ−)), and the effective production asymmetry as AB
P =

(P(D0) − P(D0))/(P(D0) + P(D0)), the raw asymmetry can be
written to first order as

Araw ≈ ACP + Aμ
D + AB

P . (3)

The effective production asymmetry is due to different produc-
tion rates of b- and b̄-hadrons and also includes any effect due to
semileptonic asymmetries in neutral B mesons. As the detection
and production asymmetries are of order 1%, the approximation
in Eq. (3) is valid up to corrections of order 10−6. Both detection
and production asymmetries differ from those in the analyses us-
ing D∗± decays, where the D∗± mesons are produced directly in
the primary pp interaction. In these “prompt” decays a possible
detection asymmetry enters through the reconstruction of the tag-
ging pion, and the production asymmetry is that of the prompt
D∗± mesons.

By taking the difference between the raw asymmetries mea-
sured in the D0 → K −K + and D0 → π−π+ decays the detection
and production asymmetries cancel, giving a robust measurement
of the CP asymmetry difference

�ACP = Araw
(

K −K +) − Araw
(
π−π+)

≈ ACP
(

K −K +) − ACP
(
π−π+)

. (4)

Since the detection and the production depend on the kinemat-
ics of the process under study, the cancellation is only complete
when the kinematic distributions of the muon and b-hadron are
the same for both D0 → K −K + and D0 → π−π+ . A weighting
procedure is used to improve the cancellation by equalising the
kinematic distributions.

3. Detector and simulation

The LHCb detector [11] is a single-arm forward spectrometer
covering the pseudorapidity range 2 < η < 5, designed for the
study of particles containing b or c quarks. The detector includes
a high-precision tracking system consisting of a silicon-strip ver-
tex detector surrounding the pp interaction region, a large-area
silicon-strip detector located upstream of a dipole magnet with a
bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream. The polarity
of the magnet is reversed repeatedly during data taking, which
causes all detection asymmetries that are induced by the left–
right separation of charged particles to change sign. The combined
tracking system has momentum resolution �p/p that varies from
0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and impact parameter
resolution of 20 μm for tracks with high transverse momentum.
Charged hadrons are identified using two ring-imaging Cherenkov
detectors [12]. Muons are identified by a system composed of al-
ternating layers of iron and multiwire proportional chambers. The
trigger [13] consists of a hardware stage, based on information
from the calorimeter and muon systems, followed by a software
stage, which applies a full event reconstruction.

In the simulation, pp collisions are generated using Pythia 6.4
[14] with a specific LHCb configuration [15]. Decays of hadronic

particles are described by EvtGen [16] in which final state radia-
tion is generated using Photos [17]. The interaction of the gener-
ated particles with the detector and its response are implemented
using the Geant4 toolkit [18] as described in Ref. [19]. The B+ and
B0 mesons in the simulated events are forced to decay semilepton-
ically using a cocktail of decay modes, including those that involve
excited D states and τ leptons, that lead to final states with a D0

meson and a muon.

4. Data set and selection

This analysis uses the LHCb 2011 data set, corresponding to an
integrated luminosity of 1.0 fb−1, of which 0.4 fb−1 is taken with
the magnet field pointing up and 0.6 fb−1 with the magnet field
pointing down. The measurement of �ACP is performed separately
for the two field polarities. The final value for �ACP is obtained
by taking the arithmetic mean of the two results to reduce as
much as possible any residual effect of the detection asymmetry.
To minimise potential trigger biases the candidates are required to
be accepted by specific trigger decisions. About 87% of the candi-
dates in the final selection are triggered at the hardware stage by
the muon system only, about 3% by the hadronic calorimeter only
and about 10% by both. The muon trigger requires the muon trans-
verse momentum, pT, to be greater than 1.48 GeV/c. The effect of
a charge-dependent shift in the pT estimate in this trigger is cor-
rected, which requires tightening the muon transverse momentum
cut, as measured by the hardware trigger, to pT > 1.64 GeV/c. In
the software trigger the candidates are selected by either a single
muon trigger or by a topological trigger, which selects combina-
tions of a muon with one or two additional tracks that are con-
sistent with the topological signature of b-hadron decays. At this
level, 5% of the candidates in the final selection are selected by
the single muon trigger only, 79% by the topological trigger only,
and 16% by both.

In order to suppress backgrounds, the χ2 per degree of freedom
of the track fit is required to be smaller than 4 for the kaons and
pions and smaller than 5 for the muon. Furthermore, the χ2 per
degree of freedom of each of the b-hadron and D0 decay vertex
fits is required to be smaller than 6, and the impact parameter χ2

(defined as the difference between the χ2 of the primary vertex
formed with and without the considered tracks) is required to be
larger than 9 for all three tracks. The significance of the distance
between the primary vertex and the D0 decay vertex is required
to be above 10. The momentum and transverse momentum of the
muon are required to be above 3 GeV/c and 1.2 GeV/c,3 and the
momentum and transverse momentum of the D0 daughters above
2 GeV/c and 0.3 GeV/c. The D0 transverse momentum must be
above 0.5 GeV/c and the scalar pT sum of its daughters above
1.4 GeV/c. The invariant mass of the D0-muon combination is re-
quired to be between 2.5 and 5.0 GeV/c2 to suppress background.
The upper bound removes three-body final state b-hadron decays.
The reconstructed decay time of the D0 meson (measured from the
b-hadron decay vertex) is required to be positive. The requirement
on the muon impact parameter reduces the contribution from D0

mesons produced directly in the pp collision to below 3%. Require-
ments on the D0 decay topology are minimal in order to keep the
lifetime acceptance similar for the D0 → K −K + and D0 → π−π+
modes.

A potentially significant background from B → J/ψ X decays
is suppressed by removing candidates where the invariant mass
of the muon and the oppositely-charged D0 daughter is within

3 This cut affects mainly the candidates triggered by the hadronic calorimeter at
the hardware level.
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Fig. 1. Invariant mass distributions for (a, c) D0 → K − K + and (b, d) D0 → π−π+ muon-tagged candidates for the two magnet polarities. The result of the fit is overlaid,
showing the contribution from signal, combinatorial background and D0 → K −π+ reflection. Underneath each plot the pull in each mass bin is shown.
three times the mass resolution from the J/ψ or ψ(2S) mass
and the D0 daughter passes muon identification requirements. Re-
flections from Cabibbo-favoured D0 → K −π+ decays are observed
in the mass regions below and above the signal peaks in the
D0 → π−π+ and D0 → K −K + samples, respectively. Information
from the relevant detectors in LHCb is combined into differences
between the logarithms of the particle identification likelihoods
under different mass hypotheses (DLL). The selected kaons are re-
quired to have DLLKπ ≡ lnLK − lnLπ > 10 and the selected pions
are required to have DLLKπ < −2. The D0 → K −π+ mode is used
as a control channel and is selected with the same requirements
as the two decay modes of interest.

5. Determination of the asymmetries

The invariant mass distributions for the muon-tagged D0 can-
didates are shown in Fig. 1. To determine the numbers of sig-
nal candidates after selection, a binned maximum likelihood fit
to each of these distributions is performed. The signal is mod-
elled by the sum of two Gaussian functions with common means,
but different widths. The combinatorial background is described
by an exponential shape. For the π−π+ invariant mass dis-
tribution the fit is performed in the range between 1795 and
1940 MeV/c2 and a Gaussian distribution is used to model
the tail of the reflection from D0 → K −π+ decays. For the
K −K + invariant mass distribution the fit range is restricted to
1810–1920 MeV/c2 such that the contamination from the D0 →
K −π+ reflection and from partially reconstructed D0 → K −K +π0

and D+ → K −K +π+ decays is negligible. The total number of sig-
nal candidates determined from the fit is (558.9 ± 0.9) × 103 for
D0 → K −K + decays and (221.6 ± 0.8) × 103 for D0 → π−π+ de-
cays.

The raw asymmetries are determined with simultaneous binned
likelihood fits to the D0 mass distributions for positive and neg-
ative muon tags where the shape parameters for the signal and
the D0 → K −π+ reflection are required to be the same. The back-

Table 1
Unweighted raw asymmetries (in %) for the D0 → π−π+ , D0 → K − K + and D0 →
K −π+ decays for the two magnet polarities. The mean value is the arithmetic av-
erage over the two polarities. The uncertainties are statistical only.

Magnet up Magnet down Mean

Aunweighted
raw (K − K +) −0.33 ± 0.23 −0.22 ± 0.19 −0.28 ± 0.15

Aunweighted
raw (π−π+) −1.18 ± 0.40 −0.35 ± 0.34 −0.77 ± 0.26

�Aunweighted
CP 0.85 ± 0.46 0.13 ± 0.39 0.49 ± 0.30

Aunweighted
raw (K −π+) −1.64 ± 0.10 −1.60 ± 0.08 −1.62 ± 0.06

ground shape can vary independently for positive and negative
muon tags. Table 1 lists the raw asymmetries for both modes, and
for the D0 → K −π+ control mode. An additional asymmetry in
the D0 → K −π+ mode originates from the different cross-sections
in matter for positive and negative kaons. It can be seen that the
asymmetry in this mode is consistent for the two magnetic field
polarities, which indicates that the detection asymmetry related to
the magnetic field is at most O(10−3).

5.1. Differences in kinematic distributions

Since the detection and production asymmetries may have
kinematic dependences, the cancellation in Eq. (4) is only valid if
the kinematic distributions of the muon and b-hadron are similar
for both D0 → K −K + and D0 → π−π+ decays. After the trig-
ger and selection requirements the kinematic distributions for the
two decay modes are, however, slightly different. Although the
selection is largely the same, the particle identification require-
ments introduce differences in the momentum distributions. In
addition, due to the difference in available phase space, the pi-
ons in D0 → π−π+ decays have a harder momentum spectrum
compared to the kaons in D0 → K −K + decays. The muon trigger
and selection requirements are identical. Nevertheless, the D0 me-
son and the muon are kinematically correlated since they originate
from the same decay, causing also the muon kinematic distribu-
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Fig. 2. Kinematic distributions of the (a, c) D0 meson and (b, d) muon for D0 → π−π+ (black circles) and D0 → K − K + (red squares) candidates normalised to unit area.
The histograms show the distributions of signal candidates, after background subtraction. Underneath each plot the ratio of the two distributions is shown.

Fig. 3. Kinematic distributions of the (a, c) D0 meson and (b, d) muon for D0 → π−π+ (black circles) and D0 → K − K + (red squares) candidates normalised to unit area after
the weighting procedure. The histograms show the distributions of signal candidates, after background subtraction. Underneath each plot the ratio of the two distributions is
shown.
tions to be different for the two decay modes. Fig. 2 shows the
pT and pseudorapidity η distributions for the D0 meson and the
muon. The background has been statistically subtracted using the
sPlot method [20]. In order to obtain the same kinematic distribu-
tions for both decays, the D0 candidates are given a weight de-
pending on their pT and η values. The weights are obtained from
a comparison of the background-subtracted distributions and are
applied to either D0 → K −K + or D0 → π−π+ candidates depend-
ing on which has most events in the given kinematic bin. Fig. 3

shows the weighted kinematic distributions for both decay modes.
Whereas the weights are determined purely on the basis of the
D0 pT and η distributions, after the weighting, the muon distribu-
tions are also in excellent agreement. The raw asymmetries after
the weighting procedure for the D0 → K −K + and D0 → π−π+
modes are given in Table 2. There are minor changes in the values
of the raw asymmetries and �ACP with respect to the unweighted
results, showing that the effect of the difference in kinematic dis-
tributions is small.
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Table 2
Weighted raw asymmetries (in %) for the D0 → π−π+ and D0 → K − K + decays for
the two magnet polarities. The mean value is the arithmetic average over the two
polarities. The uncertainties are statistical only.

Magnet up Magnet down Mean

Araw(K − K +) −0.39 ± 0.23 −0.20 ± 0.19 −0.29 ± 0.15
Araw(π−π+) −1.25 ± 0.40 −0.29 ± 0.34 −0.77 ± 0.26

�ACP 0.86 ± 0.46 0.09 ± 0.39 0.48 ± 0.30

5.2. Wrong flavour tags

In some cases the D0 flavour is not tagged correctly by the
muon charge due to misreconstruction (e.g., a prompt D0 decay
can be combined with a random muon). The probability to tag a
D0 meson with a positive muon is denoted by ω+ and the proba-
bility to tag a D0 meson with a negative muon by ω− . The average
mistag probability is ω = (ω+ + ω−)/2 and the mistag difference
is �ω = ω+ − ω− . The raw asymmetry in Eq. (3) is then modified
to

Araw ≈ (1 − 2ω)
(

ACP + Aμ
D + AB

P

) − �ω, (5)

which makes clear that the average mistag probability dilutes the
observed asymmetry, while any difference in the mistag probabil-
ity for D0 and D0 gives rise to a systematic shift in Araw. Assuming
that the values of ω and �ω are the same for D0 → K −K + and
D0 → π−π+ , the value of �ACP is then corrected as

�ACP = (1 − 2ω)−1(Araw
(

K −K +) − Araw
(
π−π+))

. (6)

The mistag probability is estimated from the D0 → K −π+ sam-
ple. As the D0 → K −π+ decay is almost self-tagging the mistag
probability is determined using the charge of the final state (either
K +π− or K −π+). The wrongly tagged decays include a fraction of
doubly-Cabibbo-suppressed D0 → K +π− and mixed D0 → D− →
K +π− decays. This fraction is calculated to be (0.393 ± 0.007)%
using input from Ref. [21]. After correcting for this fraction the av-
erage mistag probability, ω, is found to be (0.982 ± 0.012)%, which
means that the effect from wrong tags constitutes only a small cor-
rection on the observed asymmetries. This number also provides
an upper bound of about 2% from any background from real D0

decays with a random muon, which includes promptly produced
D0 decays. The difference in mistag probabilities for D0 and D0

mesons is found to be �ω = (0.006 ± 0.021)% and is neglected.
As a cross-check the mistag probabilities are also determined

from a doubly-tagged sample by reconstructing B → D∗+μ− X de-
cays where the D∗+ decays to D0π+ and comparing the charge of
the pion with that of the muon. The fraction of wrongly tagged
decays is estimated from a simultaneous fit, similar to that in
Ref. [22], to the distribution of �M = M(h−h+π+) − M(h−h+)

for the full sample and for the wrongly tagged decays. The mistag
probability in the D0 → K −π+ sample is (0.880 ± 0.043)%, while
the average mistag probability in the D0 → K −K + and D0 →
π−π+ samples equals (1.00 ± 0.09)%. The largest difference with
the result obtained from the full D0 → K −π+ sample (i.e., 0.102%)
is assigned as a systematic uncertainty in the mistag probability.
The difference in mistag probabilities, �ω, in this cross-check is
also consistent with zero.

After the weighting and correcting for the mistag probability
of (0.982 ± 0.012 (stat) ± 0.102 (syst))%, the difference of the raw
asymmetries between the two modes is found to be

�ACP = (0.49 ± 0.30)%,

where the uncertainty is statistical only. The corresponding sys-
tematic uncertainties are discussed in Section 7.

6. Measurement of the average decay times

The time-integrated asymmetry for a decay to a CP eigenstate
f is defined as

ACP = Γ (D0 → f ) − Γ (D0 → f )

Γ (D0 → f ) + Γ (D0 → f )
, (7)

where Γ is the decay rate for the given channel. As the recon-
struction and selection requirements for the two decay modes are
not identical, the decay time acceptance can be different. This in-
troduces a difference in the contribution from direct and indirect
CP violation for the two modes. When assuming the CP violating
phase in D0 oscillations, φ, to be universal [4], the difference be-
tween the asymmetries for D0 → K −K + and D0 → π−π+ can be
written in terms of direct and indirect CP violation as [23]

�ACP ≈ �adir
CP

(
1 + y

〈t〉
τ

cosφ

)
+ (

aind
CP + adir

CP y cosφ
)�〈t〉

τ
. (8)

In this equation the indirect CP violation is aind
CP = −(Am/2)y cos φ

+ x sin φ, x and y are the D0 mixing parameters, Am represents
the CP violation from mixing, τ is the average D0 lifetime, �adir

CP

and adir
CP are the direct CP violation difference and average of the

two decay modes, and �〈t〉 and 〈t〉 are the difference and average
of the two mean decay times. Under SU(3) flavour symmetry, the
direct asymmetries in the individual modes are expected to have
opposite sign and therefore add constructively in the difference.
Furthermore, since y is of order 1%, 〈t〉/τ is O(1) and �〈t〉/τ is
close to zero, �ACP is essentially equal to the difference in direct
CP violation, �adir

CP . While y and cosφ can be obtained from the
HFAG averages [9], in order to interpret �ACP in terms of direct
and indirect CP violation, the mean decay time 〈t〉 in each channel
needs to be measured.

The determination of the mean decay time is performed
through a fit to the decay time distribution of the signal can-
didates. Candidates with negative measured decay times are in-
cluded in the fit to have a better handle on the acceptance and
the resolution function. The measured decay time distribution is
modelled by a decreasing exponential function, with mean life-
time τ , convolved with a double Gaussian resolution function and
multiplied with an acceptance function of the form

A(t) = 1 − ae−(t/(bτ ))2
, (9)

where a and b are acceptance parameters. The fit model is moti-
vated by simulation studies. The values for the fraction and width
of the second Gaussian and the acceptance parameter b are taken
from the simulation and fixed in the fit. The role of the accep-
tance parametrisation is to allow a fit to the distribution such that
the resolution effect can be removed and the true decay time,
which appears in Eq. (8), can be evaluated. The observed decay
time distributions with the fit result superimposed are shown in
Fig. 4.

The decay time resolutions obtained from the lifetime fit (taken
as the width of the first Gaussian function) are 63.3 ± 0.3 fs for
D0 → K −K + and 58.3 ± 0.4 fs for D0 → π−π+ , which are about
10% larger than expected from simulations. The main systematic
uncertainties come from the uncertainty in the acceptance func-
tion and from backgrounds. Using the world average of the D0

lifetime, τ (D0) = 410.1 ± 1.5 fs, the difference and average of the
mean decay times relative to τ (D0) are found to be

�〈t〉/τ (
D0) = 0.018 ± 0.002 (stat) ± 0.007 (syst), (10)

〈t〉/τ (
D0) = 1.062 ± 0.001 (stat) ± 0.003 (syst), (11)
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Fig. 4. Decay time distribution for signal candidates (solid points) with the result from the fit overlaid for (a) D0 → K − K + and (b) D0 → π−π+ decays. The distribution for
background candidates scaled to a ±34 MeV/c2 window around the nominal D0 mass is shown in the shaded (green in the web version) region. The distributions for signal
and background candidates are obtained using the sPlot method.
where the uncertainty in τ (D0) is included as a systematic un-
certainty. Note that 〈t〉 is not a measurement of the D0 effective
lifetime (i.e., the lifetime measured with a single exponential fit),
since this number contains effects from the LHCb acceptance. The
small value of �〈t〉 implies that the measured value of �ACP is
equal to the difference in direct CP violation, i.e., �ACP = �adir

CP
with negligible corrections.

7. Systematic uncertainties

The contributions to the systematic uncertainty on �ACP are
described below.

• Difference in b-hadron mixture. Due to the momentum require-
ments in the trigger and selection, the relative contribution
from B0 and B+ decays (the contribution from b-baryon
and B0

s decays can be neglected) can be different between
the D0 → K −K + and D0 → π−π+ modes. In combination
with a different effective production asymmetry for candi-
dates from B0 and B+ mesons (the production asymmetry
from B0 mesons is diluted due to B0 mixing) this could lead
to a non-vanishing bias in �ACP . Assuming isospin symme-
try, the production cross-sections for B0 and B+ mesons are
expected to be equal. Therefore, the ratio between B0 and
B+ decays is primarily determined by their branching frac-
tions to the D0μX final state. Using the inclusive branching
fractions [24], B+,0 → D0 X , the B0 fraction is expected to be
f (B0) = (37.5 ± 2.9)%. From the simulation the difference in
the B0 fraction due to the difference in selection efficiencies is
found to be at maximum 1%. Further assuming a B+ produc-
tion asymmetry of 1.0% [25] and assuming no B0 production
asymmetry, the difference in the effective production asymme-
try between the two modes is ∼ 0.02%.

• Difference in B decay time acceptance. A difference between the
D0 → K −K + and D0 → π−π+ modes in the B decay time
acceptance, in combination with B0 mixing, changes the ef-
fective B production asymmetry. Its effect is estimated from
integrating the expected B decay time distributions at differ-
ent starting values, such that the mean lifetime ratio corre-
sponds to the observed B decay length difference (∼ 5%) in
the two modes. Using the estimated B0 fraction and assuming
a 1.0% production asymmetry, the effect on �ACP is found to
be 0.02%.

• Effect of the weighting procedure. After weighting the D0 dis-
tributions in pT and η, only small differences remain in the
muon kinematic distributions. In order to estimate the system-
atic uncertainty from the B production and detection asymme-
try due to residual differences in the muon kinematic distribu-

tions, an additional weight is applied according to the muon
(pT, η) and the azimuthal angle φ. The value of �ACP changes
by 0.05%.

• Difference in mistag asymmetry. The difference in the mistag
rate between positive and negative tags contributes to the
measured raw asymmetry. The mistag difference using D0 →
K −π+ decays is measured to be �ω = (0.006 ± 0.021)% (see
Section 5.2). In case �ω is different for D0 → K −K + and
D0 → π−π+ there can be a small effect from the mistag
asymmetry. A systematic uncertainty of 0.02% is assigned,
coming from the uncertainty on �ω.

• Effect of different fit models. A possible asymmetry in the back-
ground from false D0 combinations is accounted for in the fit
to the D0 mass distribution. Different models can change the
fraction between signal and background and therefore change
the observed asymmetry. The baseline model is modified by
either using a single Gaussian function for the signal, a sin-
gle Gaussian plus a Crystal Ball function for the signal, a first-
or second-order polynomial for the background, by leaving
the asymmetry in the reflection free, or by modifying the fit
range for D0 → π−π+ to exclude the reflection peak. The
largest variation changes the value of �ACP by 0.035%. As
another check, the asymmetry is determined without any fit
by counting the number of positively- and negatively-tagged
events in the signal window and subtracting the correspond-
ing numbers in the sideband windows. The sideband win-
dows are defined as [μsig − 48 MeV/c2,μsig − 34 MeV/c2] and
[μsig + 34 MeV/c2,μsig + 48 MeV/c2], and the signal window
as [μsig − 14 MeV/c2,μsig + 14 MeV/c2], where μsig is the
mean of the signal distribution. This method changes the value
of �ACP by 0.05%, which is taken as a systematic uncertainty.

• Low-lifetime background in D0 → π−π+ . As can be seen in
Fig. 4, there is more background around t = 0 in the D0 →
π−π+ channel compared to the D0 → K −K + channel. If this
background exhibits a non-flat or peaking structure this could
bias the measurement of �ACP . When including the negative
lifetime events the value of �ACP changes by 0.11%. This shift
is taken as a systematic uncertainty.

• Λ+
c background in D0 → K −K + . A non-negligible fraction of

the background in the D0 → K −K + mode originates from par-
tial reconstruction of Λ+

c → pK −π+ decays, where the proton
is misidentified as a kaon. Most of these Λ+

c decays are ex-
pected to come from semileptonic Λ0

b decays. From exclusively
reconstructed Λ+

c decays the shape of the background is ob-
served to be linear in the K −K + invariant mass distribution.
The influence of such a linear background on the fit model
is tested by generating many pseudo-experiments. With an
asymmetry in the Λ+

c background of 3%, which is a conser-
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Fig. 5. Raw asymmetries and �ACP as a function of (a) pT and (b) η of the D0 meson. No weighting is applied.
Table 3
Contributions to the systematic uncertainty of �ACP .

Source of uncertainty Absolute
uncertainty

Production asymmetry:
Difference in b-hadron mixture 0.02%
Difference in B decay time acceptance 0.02%

Production and detection asymmetry:
Different weighting 0.05%

Background from real D0 mesons:
Mistag asymmetry 0.02%

Background from fake D0 mesons:
D0 mass fit model 0.05%
Low-lifetime background in D0 → π−π+ 0.11%
Λ+

c background in D0 → K − K + 0.03%

Quadratic sum 0.14%

vative upper bound for the asymmetry observed in the exclu-
sively reconstructed Λ+

c decays, a small bias of 0.03% is seen
in the measured asymmetry. This bias is taken as a systematic
uncertainty.

The systematic uncertainties are summarised in Table 3. The
effects from higher-order corrections to Eq. (3) and of the uncer-
tainty in the average mistag rate are found to be negligible. The
overall systematic uncertainty on �ACP , obtained by adding the
individual contributions in quadrature, is 0.14%.

8. Cross-checks

Many cross-checks have been performed to verify the stabil-
ity of the result. In particular, the raw asymmetries and �ACP

are found to be stable when applying fiducial cuts in the two-
dimensional space of the muon momentum and its horizontal
component, when comparing different trigger decisions and when
applying tighter particle identification requirements on the D0

daughters or on the muons. The stability of the raw asymmetries
and �ACP is also investigated as a function of all possible recon-
structed quantities, for instance the D0 decay time, the b-hadron
flight distance, the reconstructed D0-muon mass, the angle be-
tween the muon and D0 daughters, and the (transverse) momenta
and pseudorapidity of the muon and D0 meson. No significant de-
pendence is observed in any of these variables. For example, Fig. 5
shows �ACP and the raw asymmetries in the D0 → K −K + and
D0 → π−π+ modes as a function of pT and η of the D0 meson,
which are the variables that are used in the weighting procedure.
To check for a possible time dependence of the detection asym-
metry the data taking period is divided into six parts of roughly
equal integrated luminosity. The six parts are separated by periods
without beam and changes in the magnet polarity. No significant
variation of the raw asymmetries is observed.

9. Conclusion

The difference in CP asymmetries between the D0 → K −K +
and D0 → π−π+ modes is measured using D0 mesons produced
in semileptonic B decays and is found to be

�ACP = (
0.49 ± 0.30 (stat) ± 0.14 (syst)

)
%.

This result takes into account the muon mistag probability and
differences in the kinematic distributions of D0 → K −K + and
D0 → π−π+ decays. When neglecting indirect CP violation the
difference between this result and the previous published LHCb
result using prompt D0 decays [5] is 3.2 standard deviations, as-
suming that the uncertainties have a Gaussian distribution. The
discrepancy, however, is reduced to 2.2 standard deviations com-
paring to a preliminary update of the previous result [26]. This
result does not confirm the evidence for direct CP violation in the
charm sector.
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