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An angular analysis of Λ0
b → J/ψΛ decays is performed using a data sample corresponding to 1.0 fb−1

collected in pp collisions at
√

s = 7 TeV with the LHCb detector at the LHC. A parity violating asymmetry
parameter characterising the Λ0

b → J/ψΛ decay of 0.05 ± 0.17 ± 0.07 and a Λ0
b transverse production

polarisation of 0.06 ± 0.07 ± 0.02 are measured, where the first uncertainty is statistical and the second
systematic.

© 2013 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

For Λ0
b baryons originating from energetic b-quarks, heavy-

quark effective theory (HQET) predicts a large fraction of the trans-
verse b-quark polarisation to be retained after hadronisation [1,2],
while the longitudinal polarisation should vanish due to parity
conservation in strong interactions. For Λ0

b baryons produced in

e−e+ → Z 0 → bb transitions, a substantial polarisation is mea-
sured [3–5], in agreement with the Z 0bb coupling of the Standard
Model (SM). There is no previous polarisation measurement for Λ0

b
baryons produced at hadron colliders. The transverse polarisation
is estimated to be O(10%) in Ref. [6] while Ref. [7] mentions it
could be as large as 20%. However, for Λ baryons produced in
fixed-target experiments [8–10], the polarisation was observed to
depend strongly on the Feynman variable xF = 2pL/

√
s, pL being

the Λ longitudinal momentum and
√

s the collision centre-of-mass
energy, and to vanish at xF ≈ 0. Extrapolating these results and tak-
ing into account the very small xF ≈ 0.02 value for Λ0

b produced at
the Large Hadron Collider (LHC) at

√
s = 7 TeV, this could imply a

polarisation much smaller than 10%.
In this Letter, we perform an angular analysis of Λ0

b →
J/ψ(→ μ+μ−)Λ(→ pπ−) decays using 1.0 fb−1 of pp collision
data collected in 2011 with the LHCb detector [11] at the LHC at√

s = 7 TeV. Owing to the well-measured Λ → pπ− decay asym-
metry parameter (αΛ) [12] and the known behaviour of the decay
of a vector particle into two leptons, the final state angular distri-
bution contains sufficient information to measure the Λ0

b produc-
tion polarisation and the decay amplitudes [13]. The asymmetry of
the Λ decay (αΛ) is much less precisely measured [12], however
by neglecting possible CP violation effects, which are predicted to
be very small in the SM [14,15], αΛ and −αΛ can be assumed to
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Table 1
Theoretical predictions for the Λ0

b → J/ψΛ decay asymmetry parameter αb .

Method Value Reference

Factorisation −0.1 [16]
Factorisation −0.18 [17]
Covariant oscillator quark model −0.208 [18]
Perturbative QCD −0.17 to −0.14 [19]
Factorisation (HQET) 0.777 [7]
Light front quark model −0.204 [20]

be equal. Similarly, CP violation effects in Λ0
b decays are neglected,

and the decay amplitudes of the Λ0
b and Λ0

b are therefore assumed
to be equal. Inclusion of charge-conjugated modes is henceforth
implied. The asymmetry parameter αb in Λ0

b → J/ψΛ decays,
defined in Section 2, is calculated in many publications as sum-
marised in Table 1. Most predictions lie in the range from −21%
to −10% while Ref. [7] obtains a large positive value using HQET.
Note that the theoretical predictions depend on the calculations of
the form-factors and experimental input that were available at the
time they were made.

It should be noted that Λ0
b baryons can also be produced in

the decay of heavier b baryons [21–23], where the polarisation is
partially diluted [6]. These strong decays are experimentally dif-
ficult to distinguish from Λ0

b that hadronise directly from a pp
collision and therefore contribute to the measurement presented
in this study.

A sufficiently large Λ0
b polarisation would allow the photon he-

licity in Λ0
b → Λγ and Λ0

b → Λ∗γ decays to be probed [6,24,25].
The photon helicity is sensitive to contributions from beyond
the SM.

2. Angular formalism

The Λ0
b spin has not yet been measured but the quark model

prediction is spin 1
2 . The Λ0

b → J/ψΛ mode is therefore the decay
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Fig. 1. Definition of the five angles used to describe the Λ0
b →

J/ψ(→ μ+μ−)Λ(→ pπ−) decay.

of a spin 1
2 particle into a spin 1 and a spin 1

2 particle. In the
helicity formalism, the decay can be described by four Mλ1λ2 he-
licity amplitudes (M+ 1

2 ,0, M− 1
2 ,0, M− 1

2 ,−1 and M+ 1
2 ,+1) where

λ1 (λ2) is the helicity of the Λ ( J/ψ ) particle. The angular distri-
bution of the decay ( dΓ

dΩ5
) is calculated in Ref. [13] and reported

in Ref. [26]. It depends on the five angles shown in Fig. 1. The
first angle, θ , is the polar angle of the Λ momentum in the Λ0

b
rest-frame with respect to �n = (�pΛ0

b
× �pbeam)/|�pΛ0

b
× �pbeam|, a unit

vector perpendicular to the production plane. The second and third
angles are θ1 and φ1, the polar and azimuthal angles of the pro-
ton in the Λ rest-frame and calculated in the coordinate system
defined by �z1 = �pΛ/|�pΛ| and �y1 = (�n × �pΛ)/|�n × �pΛ|. The re-
maining angles are θ2 and φ2, the polar and azimuthal angles
of the positively-charged muon in the J/ψ rest-frame and calcu-
lated in the coordinate system defined by �z2 = �p J/ψ/|�p J/ψ | and
�y2 = (�n × �p J/ψ )/|�n × �p J/ψ |. The angular distribution also depends
on the four Mλ1λ2 amplitudes, on the αΛ parameter, and on the
transverse polarisation parameter Pb , the projection of the Λ0

b po-
larisation vector on �n.

Assuming that the detector acceptance over φ1 and φ2 is uni-
formly distributed, the analysis can be simplified by integrating
over the two azimuthal angles

dΓ

dΩ3
(cos θ, cos θ1, cos θ2)

=
π∫

−π

π∫
−π

dΓ

dΩ5
(θ, θ1, θ2, φ1, φ2)dφ1 dφ2

= 1

16π

7∑
i=0

f i
(|M+ 1

2 ,0|2, |M− 1
2 ,0|2, |M− 1

2 ,−1|2, |M+ 1
2 ,+1|2

)

× gi(Pb,αΛ)hi(cos θ, cos θ1, cos θ2). (1)

The functions describing the decay only depend on the mag-
nitudes of the Mλ1λ2 amplitudes, on Pb and αΛ , and on cos θ ,
cos θ1, and cos θ2. Using the normalisation condition |M+ 1

2 ,0|2 +
|M− 1

2 ,0|2 + |M− 1
2 ,−1|2 + |M+ 1

2 ,+1|2 = 1, the f i functions can

be written in terms of the following three parameters: αb ≡
|M+ 1

2 ,0|2 −|M− 1
2 ,0|2 +|M− 1

2 ,−1|2 −|M+ 1
2 ,+1|2, r0 ≡ |M+ 1

2 ,0|2 +
|M− 1

2 ,0|2 and r1 ≡ |M+ 1
2 ,0|2 − |M− 1

2 ,0|2. The functions used to

describe the angular distributions are shown in Table 2. Four pa-
rameters (Pb , αb , r0 and r1) have to be measured simultaneously
from the angular distribution. The αb parameter is the parity vio-
lating asymmetry characterising the Λ0

b → J/ψΛ decay.

3. Detector, trigger and simulation

The LHCb detector [11] is a single-arm forward spectrome-
ter covering the pseudorapidity range 2 < η < 5, designed for
the study of particles containing b- or c-quarks. The detector in-
cludes a high precision tracking system consisting of a silicon-

Table 2
Functions used to describe the angular distributions in three dimensions.

i f i(αb, r0, r1) gi(Pb,αΛ) hi(cos θ, cos θ1, cos θ2)

0 1 1 1

1 αb Pb cos θ

2 2r1 − αb αΛ cos θ1

3 2r0 − 1 PbαΛ cos θ cos θ1

4 1
2 (1 − 3r0) 1 1

2 (3 cos2 θ2 − 1)

5 1
2 (αb − 3r1) Pb

1
2 (3 cos2 θ2 − 1) cos θ

6 − 1
2 (αb + r1) αΛ

1
2 (3 cos2 θ2 − 1) cos θ1

7 − 1
2 (1 + r0) PbαΛ

1
2 (3 cos2 θ2 − 1) cos θ cos θ1

strip vertex detector (VELO) surrounding the pp interaction region,
a large-area silicon-strip detector located upstream of a dipole
magnet with a bending power of about 4 Tm, and three stations
of silicon-strip detectors and straw drift tubes placed downstream.
The combined tracking system provides a momentum measure-
ment with relative uncertainty that varies from 0.4% at 5 GeV/c to
0.6% at 100 GeV/c, and three-dimensional impact parameter (IP)
resolution of 20 μm for tracks with high transverse momentum.
Charged hadrons are identified using two ring-imaging Cherenkov
detectors (RICH) [27]. Photon, electron and hadron candidates are
identified by a calorimeter system consisting of scintillating-pad
and preshower detectors, an electromagnetic calorimeter and a
hadronic calorimeter. Muons are identified by a system composed
of alternating layers of iron and multiwire proportional cham-
bers [28]. The trigger [29] consists of a hardware stage, based on
information from the calorimeter and muon systems, followed by
a software stage, which applies a full event reconstruction.

The hardware trigger selects events containing a muon with
a transverse momentum, pT > 1.48 GeV/c or two muons with a
product of their pT larger than (1.3 GeV/c)2. In the subsequent
software trigger, we require two oppositely-charged muons hav-
ing an invariant mass larger than 2800 MeV/c2 and originating
from the same vertex, or a single muon with pT > 1.3 GeV/c
and being significantly displaced with respect to all the primary
pp interaction vertices (PVs) in the event, or a single muon with
p > 10 GeV/c and pT > 1.7 GeV/c. Displaced muons are identified
by means of their IP and χ2

IP, where the χ2
IP is the χ2 differ-

ence when the PV is fitted with or without the muon track. Fi-
nally, we require two oppositely-charged muons with an invariant
mass within 120 MeV/c2 of the nominal J/ψ mass [12] forming
a common vertex which is significantly displaced from the PVs.
Displaced J/ψ vertices are identified by computing the vertex sep-
aration χ2, the χ2 difference between the PV and the J/ψ vertex.
In the Λ0

b → J/ψΛ selection described below, we use the muon
pairs selected by the trigger.

Simulation is used to understand the detector efficiencies and
resolutions and to train the analysis procedure. Proton–proton col-
lisions are generated using Pythia 6.4 [30] with a specific LHCb
configuration [31]. Decays of hadronic particles are described by
EvtGen [32] in which final state radiation is generated using Pho-

tos [33]. The interaction of the generated particles with the detec-
tor and its response are implemented using the Geant4 toolkit [34]
as described in Ref. [35].

4. Signal selection and background rejection

A first set of loose requirements is applied to select Λ0
b →

J/ψΛ decays. Charged tracks are identified as either protons or
pions using information provided by the RICH system. Candidate
Λ baryons are reconstructed from oppositely-charged proton and
pion candidates. They are reconstructed either when the Λ decays
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Fig. 2. Mass distribution for the Λ0
b → J/ψΛ mode for the (left) downstream and (right) long candidates. The fitted signal component is shown as a solid blue curve while

the background component is shown as a dashed red line.
within the VELO (“long Λ”), or when the decay occurs outside the
VELO acceptance (“downstream Λ”). The latter category increases
the acceptance significantly for long-lived Λ decays. In both cases,
the two tracks are required to have p > 2 GeV/c, to be well sep-
arated from the PVs and to originate from a common vertex. In
addition, protons are required to have pT > 0.5 GeV/c and pi-
ons to have pT > 0.1 GeV/c. Finally, the invariant mass of the Λ

candidates is required to be within 15 MeV/c2 of the nominal Λ

mass [12]. To form J/ψ candidates, two oppositely-charged muons
with pT(μ) > 0.5 GeV/c are combined and their invariant mass is
required to be within 80 MeV/c2 of the nominal J/ψ mass. Sub-
sequently, Λ0

b candidates are formed by combining the Λ and J/ψ

candidates. To improve the Λ0
b mass resolution, the muons from

the J/ψ decay are constrained to come from a common point and
to have an invariant mass equal to the J/ψ mass. We constrain
the Λ and J/ψ candidates to originate from a common vertex
and to have an invariant mass between 5120 and 6120 MeV/c2.
Moreover, Λ0

b candidates must have their momenta pointing to the
associated PV by requiring cos θd > 0.99 where θd is the angle be-
tween the Λ0

b momentum vector and the direction from the PV to
the Λ0

b vertex. The associated PV is the PV having the smallest χ2
IP

value.
To reduce the combinatorial background, a multivariate selec-

tion based on a boosted decision tree (BDT) [36,37] with eight
variables is used. Five variables are related to the Λ0

b candidate:
cos θd, the χ2

IP, the proper decay time, the vertex χ2 and the ver-
tex separation χ2 between the PV and the vertex. Here, the vertex
separation χ2 is the difference in χ2 between the nominal vertex
fit and a vertex fit where the Λ0

b is assumed to have zero life-
time. The proper decay time is the distance between the associated
PV and the Λ0

b decay vertex divided by the Λ0
b momentum. Two

variables are related to the J/ψ candidate: the vertex χ2 and the
invariant mass of the two muons. The last variable used in the BDT
is the invariant mass of the Λ candidate. The BDT is using sim-
ulation for signal and sideband data (M( J/ψΛ) > 5800 MeV/c2)
for background in its training. The optimal BDT requirement is
found separately for downstream and long candidates by maximis-
ing the signal significance Nsig/

√
Nsig + Nbkg, where Nsig and Nbkg

are the expected signal and background yields in a tight signal
region around the Λ0

b mass. These two yields are estimated us-
ing the signal and background yields measured in data after the
first set of loose requirements and using the BDT efficiency mea-
sured with the training samples. The BDT selection keeps about
90% of the signal while removing about 80% (90%) of the back-
ground events for the downstream (long) candidates. Less back-
ground is rejected in the downstream case due to larger contam-
ination from misreconstructed B0 → J/ψ K 0

S background decays.
Candidates with 5550 < M( J/ψΛ) < 5700 MeV/c2 are used for
the final analysis. In this mass range, the B0 → J/ψ K 0

S back-

ground is found to have a similar shape as the combinatorial back-
ground.

5. Fitting procedure

An unbinned extended maximum likelihood fit to the mass dis-
tribution of the Λ0

b candidates is performed. The likelihood func-
tion is defined as

Lmass = e− ∑
j N j

N! ×
N∏

i=1

(∑
j

N j P j
(
Mi( J/ψΛ)

))
, (2)

where i runs over the events, j runs over the different signal and
background probability density functions (PDF), N j are the yields
and P j the PDFs. The sum of two Crystal Ball functions [38] with
opposite side tails and common mean and width parameters is
used to describe the signal mass distribution. The mean and width
parameters are left free in the fit while the other parameters are
taken from the simulated signal sample. The background is mod-
elled with a first-order polynomial function. The candidates re-
constructed from downstream and long Λ combinations are fitted
separately taking into account that the resolution is worse for the
downstream signal candidates. The results of the fits to the mass
distributions are shown in Fig. 2. We obtain 5346 ± 96 (5189 ± 95)
downstream and 1861 ± 49 (761 ± 36) long signal (background)
candidates. Using the results of this fit, sWeights (wmass) are com-
puted by means of the sPlot technique [39], in order to statistically
subtract the background in the angular distribution.

To ensure accurate modelling of the signal, corrections to the
pT and rapidity (y) spectra are obtained by comparing the simu-
lation with data by means of the sPlot technique. For the Λ0

b and
Λ particles, the simulated data is corrected using two-dimensional
(pT, y) distributions in order to better reproduce the data. These
distributions do not depend on the polarisation and the decay am-
plitudes but have an impact on the reconstruction acceptance. The
same procedure is used on the pion of B0 → J/ψ K 0

S decays and is
subsequently used to calibrate the (pT, y) spectrum of the pion of
the Λ0

b → J/ψΛ decay.
Since the detector acceptance depends on the three decay an-

gles, the acceptance is modelled with a sum of products of Legen-
dre polynomials (Li )

facc =
∑
i, j,k

ci jk Li(cos θ)L j(cos θ1)Lk(cos θ2), (3)

where i and k are chosen to be even or equal to one. Unbinned
maximum likelihood fits to the simulated signal candidates are
performed, separately for downstream and long candidates. The
simulated is produced using a phase-space model and unpolarised
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Fig. 3. Projections of the acceptance function together with the simulated signal data for (top) downstream and (bottom) long candidates.

Fig. 4. Projections of the angular distribution of the background subtracted and acceptance corrected Λ0
b → J/ψΛ data for the (top) downstream and (bottom) long candi-

dates. The fit is shown as solid lines.
Λ0
b baryons. The three angular distributions are therefore uni-

formly generated. Acceptances of the Λ0
b and Λ0

b decays are found
to be statistically consistent. A common acceptance function is
therefore used. The maximum orders of the Legendre polynomi-
als are chosen by comparing the fit probability. The requirements
i < 5, j < 4, k < 5 and i + j + k < 9 are chosen. The results of the
fit to the acceptance distributions are shown in Fig. 3.

We then perform an unbinned likelihood fit to the (cos θ ,
cos θ1, cos θ2) distribution. Each candidate is weighted with wtot =
wmass × wacc where wmass subtracts the background and wacc =
1/ facc(cos θ, cos θ1, cos θ2) corrects for the angular acceptance [40].
The sum of the wmass weights over all the events is by construc-
tion equal to the signal yield, and wtot is normalised in the same
way. Since the weighting procedure performs background subtrac-
tion and corrects for acceptance effects, only the signal PDF has to
be included in the fit of the angular distribution. The detector res-
olution is neglected in the nominal fit as it is found to have little
effect on the results. It will be considered as source of systematic
uncertainty. The likelihood is therefore

Lang =
N∏

i=1

wi
tot

dΓ

dΩ3

(
cos θ i, cos θ i

1, cos θ i
2

)
, (4)

where i runs over all events. A simultaneous fit to the angular dis-
tributions of the downstream and long samples is performed. The
αΛ parameter is fixed to its measured value, 0.642 ± 0.013 [12].

The accurate modelling of the acceptance is checked with a
similar decay, B0 → J/ψ K 0

S . Here, the angular distribution is
known, and B0 mesons are unpolarised. These decays are selected
in the same way as signal, and the fitting procedure described
above is performed. Agreement with the expected (cos θ , cos θ1,
cos θ2) distribution is obtained.

6. Results

The results of the fits to the angular distributions of the
weighted Λ0

b → J/ψΛ data are shown in Fig. 4. We obtain the fol-
lowing results: Pb = 0.06±0.06, αb = 0.00±0.10, r0 = 0.58±0.02
and r1 = −0.58 ± 0.06, where the uncertainties are statistical
only.

The polarisation could be different between Λ0
b and Λ0

b due
to their respective production mechanisms. The data are separated
according to the Λ0

b flavour and fitted using the same amplitude
parameters but different parameters for the Λ0

b and Λ0
b polarisa-

tions. As compatible results are obtained within statistical uncer-
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Table 3
Absolute systematic uncertainties on the measured parameters.

Source Pb αb r0 r1

Acceptance 0.02 0.04 0.006 0.03
Simulated data calibration 0.01 0.04 0.006 0.03
Fit bias 0.004 0.04 0.001 0.02
Angular resolution 0.002 0.01 < 0.001 0.005
Background subtraction 0.001 0.006 0.001 0.005
αΛ 0.002 < 0.001 < 0.001 0.01

Total (quadratic sum) 0.02 0.07 0.01 0.05

tainties, the polarisations of Λ0
b and Λ0

b baryons are assumed to be
equal.

A possible bias is investigated by fitting samples of generated
experiments with sizes and parameters close to those measured
in data. We generate many samples varying αb between −0.25
to 0.25 while keeping r0 equal to −r1, thus keeping |M+ 1

2 ,+1|2
and |M+ 1

2 ,0|2 equal to zero. We find that the fitting procedure

biases all parameters toward negative values, slightly for Pb and
r0 (∼ 10% of their respective statistical uncertainties) and more
significantly for αb and r1 (∼ 40% of their respective statistical
uncertainties). For Pb and r0, the biases do not change signifi-
cantly when changing the value of αb used to generate the sim-
ulated samples. On the other hand, the biases on αb and r1 do
change, and the observed discrepancies are treated as systematic
uncertainties. Moreover, the statistical uncertainties on the four fit
parameters are underestimated: again slightly for Pb and r0 and
significantly, by a factor of ∼ 1.7, for αb and r1.

We correct the measured values and statistical uncertainties of
the four fit parameters. The corrected statistical uncertainties are
obtained by multiplying the covariance matrix with a correction
matrix obtained from the study of the simulated samples. This cor-
rection matrix contains on its diagonal the squares of the widths
of the pull distributions of the four fit parameters. The remaining
entries of this matrix are set to zero as the correlation matrix com-
puted with the results of the fits of the generated samples is found
to be very close to the correlation matrix calculated when fitting
the data.

Finally, the corrected result is Pb = 0.06 ± 0.07, αb = 0.05 ±
0.17, r0 = 0.58 ± 0.02, r1 = −0.56 ± 0.10, where the uncertainties
are statistical only. The corrected statistical correlation matrix be-
tween the four fit parameters (Pb , αb , r0, r1) is⎛
⎜⎝

1 0.10 −0.07 0.13
1 −0.63 0.95

1 −0.56
1

⎞
⎟⎠ .

Large correlations are not seen between the polarisation and the
amplitude parameters. On the other hand, the amplitude parame-
ters are strongly correlated with respect to each other, αb and r1
being almost fully correlated.

7. Systematic uncertainties and significance

The systematic uncertainty on each measured physics parame-
ter is evaluated by repeating the fit to the data varying its input
parameters assuming Gaussian distributions and taking into ac-
count correlations when possible. The systematic uncertainties are
summarised in Table 3. They are dominated by the uncertainty
arising from the acceptance function, the calibration of the simu-
lated signal sample and the fit bias. The uncertainty related to the
acceptance function is obtained by varying the coefficients of the
Legendre function within their uncertainties and taking into ac-
count their correlations. For the calibration of our simulated data,

the uncertainty is obtained when changing the (pT, y) calibrations
of the Λ0

b , Λ and pion particles within their uncertainties and ob-
taining a new acceptance function. The function that is used to
fit the data does not include the effect of the angular resolution.
The angular resolution, obtained with simulated samples, is neg-
ligible for θ and θ2. However, it is large, up to ∼ 70%, for small
values of θ1. The systematic uncertainty is obtained by fitting sim-
ulated samples in which the resolution effect is introduced. Effects
of the deviation from an uniform acceptance in φ1 and φ2 as-
sumed in Eq. (1) are found to be negligible. The simplification
to use only one component to describe the background is found
not to bias the result. Other systematic uncertainties are small or
negligible. These are related to the signal mass PDF parameters,
the background subtraction and αΛ . The uncertainty related to the
background subtraction are obtained when varying the obtained
result of the mass fit and computing the wmass weights again.
The αΛ parameter is varied within its measurement uncertain-
ties [12].

To compare our results with a prediction on a parameter p,
we compute the significance with respect to a ptest value using a
profile along p of the likelihood function, i.e. the likelihood value
obtained when varying p and minimising with respect to the other
parameters. A Monte Carlo integration is performed to include the
systematic uncertainties in the likelihood profiles. We perform the
fit to the data when varying all systematic uncertainties and ob-
tain a likelihood profile for each fit of the data. The likelihood
profile which includes all systematic uncertainties is then the av-
erage of all the obtained profiles. The significance is defined as
S(p = ptest) = √

2(logL(ptest) − logL(p0)), where L(p0) is the
likelihood value of the nominal fit. Significances are given in the
concluding section of this Letter.

8. Conclusion

We have performed an angular analysis of about 7200 Λ0
b →

J/ψ(→ μ+μ−)Λ(→ pπ−) decays. The Λ0
b → J/ψΛ decay am-

plitudes are measured for the first time, and the Λ0
b production

polarisation for the first time at a hadron collider. The results are

Pb = 0.06 ± 0.07 ± 0.02,

αb = 0.05 ± 0.17 ± 0.07,

r0 = 0.58 ± 0.02 ± 0.01,

r1 = −0.56 ± 0.10 ± 0.05,

which correspond to the four helicity amplitudes

|M+ 1
2 ,0|2 = 0.01 ± 0.04 ± 0.03,

|M− 1
2 ,0|2 = 0.57 ± 0.06 ± 0.03,

|M− 1
2 ,−1|2 = 0.51 ± 0.05 ± 0.02,

|M+ 1
2 ,+1|2 = −0.10 ± 0.04 ± 0.03,

where the first uncertainty is statistical and the second system-
atic. The reported polarisation and amplitudes are obtained for the
combination of Λ0

b and Λ0
b decays. More data are required to probe

any possible difference.
Our result cannot exclude a transverse polarisation at the order

of 10% [6]. However, a value of 20% as mentioned in Ref. [7] is
disfavoured at the level of 2.7 standard deviations.

For the Λ0
b asymmetry parameter, our result is compatible with

the predictions ranging from −21% to −10% [16–20] but does not
agree with the HQET prediction of 77.7% [7] at 5.8 standard devi-
ations.
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