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Abstract

Changes in the transverse momentum distributions with beam energy are
studied using the Tsallis distribution as a parameterization. The dependence
of the Tsallis parameters q, T and the volume are determined as a function
of beam energy. The Tsallis parameter q shows a weak but clear increase
with beam energy with the highest value being approximately 1.15. The
Tsallis temperature and volume are consistent with being independent of
beam energy within experimental uncertainties.
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1. Introduction

There exists a rich and wide variety of distributions covering a large range
of applications [1, 2, 3]. Those having a power law behaviour have attracted
considerable attention in physics in recent years but there is a a long history
in other fields such as biology and economics [4].

In high energy physics power law distributions have been applied in [5, 6,
7, 8, 9] to the description of transverse momenta of secondary particles pro-
duced in p− p collisions. Indeed the available range of transverse momenta
has expanded considerably with the advent of the Large Hadron Collider
(LHC). Collider energies of 8 TeV are now available in p − p collisions and
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transverse momenta of hundreds of GeV are now common. Applications of
the Tsallis distribution to high energy e+ − e− annihilation has been con-
sidered previously in [10]. A recent review of power laws in elementary and
heavy-ion collisions can be found in [11]. The Tsallis distribution has the
advantage of being connected, via the entropy, to thermodynamics which is
not the case for other power-law distributions [12, 13]. In this paper the focus
is on the energy dependence of the Tsallis parameters describing the trans-
verse momenta at mid-rapidity in high energy p− p collisions. The rapidity
distributions contain more dynamics, e.g. strong longitudinal expansion, and
will not be considered in this paper which is limited to mid-rapidity.

2. Choice of Distribution

In the analysis of the new data, a Tsallis-like distribution gives excellent
fits to the transverse momentum distributions as shown by the STAR [5] and
PHENIX [6] collaborations at RHIC and by the ALICE [7], ATLAS [8] and
CMS [9] collaborations at the LHC. In this paper we review the parameteri-
zation used by these groups and propose a slightly different one which leads
to a more consistent interpretation and has the bonus of being thermody-
namically consistent.

In the framework of Tsallis statistics [14, 15, 16, 17, 18, 19, 20] the particle
number, N , the energy density ǫ and the pressure P are given by correspond-
ing integrals over the Tsallis distribution

N = gV

∫

d3p

(2π)3

[

1 + (q − 1)
E − µ

T

]

−
q

q−1

, (1)

ǫ = g

∫

d3p

(2π)3
E

[

1 + (q − 1)
E − µ

T

]

−
q

q−1

, (2)

P = g

∫

d3p

(2π)3
p2

3E

[

1 + (q − 1)
E − µ

T

]

−
q

q−1

, (3)

ǫ+ P = Ts+ µn. (4)

where T and µ are the temperature and the chemical potential, V is the
volume and g is the degeneracy factor. These expressions are thermodynam-
ically consistent, e.g. it can be easily shown [18] that consistency relations
of the type

N = V
∂P

∂µ

∣

∣

∣

∣

T

, (5)
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are indeed satisfied. The parameter q might be treated as a sort of an anoma-
lous dimension, while the parameter T characterizes a soft dimensionfull
scale.

Note the extra power of q compared to other forms of the Tsallis distri-
bution, this is necessary in order to have thermodynamic consistency. The
motivation for using the above expressions has been presented in detail in [18]
and will not repeated here. Other proposals have been made in the literature,
see e.g. [21, 22, 23] and using a mean field approach [24]. The particular form
of the Tsallis distribution presented above has been referred to as Tsallis-B
distribution in [18]. Following from (1), the momentum distribution is given
by,

d3N

d3p
=

gV

(2π)3

[

1 + (q − 1)
E − µ

T

]

−q/(q−1)

, (6)

or, expressed in terms of transverse momentum, pT , the transverse mass,
mT ≡

√

p2T +m2, and the rapidity y

d2N

dpT dy
= gV

pTmT cosh y

(2π)2

[

1 + (q − 1)
mT cosh y − µ

T

]

−q/(q−1)

. (7)

At mid-rapidity, y = 0, and for zero chemical potential, as is relevant at the
LHC, this reduces to

d2N

dpT dy

∣

∣

∣

∣

y=0

= gV
pTmT

(2π)2

[

1 + (q − 1)
mT

T

]

−q/(q−1)

. (8)

In the limit where the parameter q goes to 1 it is well-known that this reduces
the standard Boltzmann distribution:

lim
q→1

d2N

dpT dy
= gV

pTmT cosh y

(2π)2
exp

(

−mT cosh y − µ

T

)

. (9)

The parameterization given in Eq. (7) is close to the one used e.g. by the
ALICE and other collaborations [5, 6, 7, 8, 9]:

d2N

dpT dy
= pT

dN

dy

(n− 1)(n− 2)

nC(nC +m0(n− 2))

[

1 +
mT −m0

nC

]

−n

, (10)

where n and C are fit parameters. This formula can also be understood as an
interpolation between low transverse momenta exponential fall-off and high
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momenta QCD power law behaviour [12, 13]. This corresponds to substitut-
ing

n → q

q − 1
, (11)

and

nC → T +m0(q − 1)

q − 1
. (12)

After this substitution Eq. (10) becomes

d2N

dpT dy
= pT

dN

dy

(n− 1)(n− 2)

nC(nC +m0(n− 2))
[

T

T +m0(q − 1)

]

−q/(q−1)

[

1 + (q − 1)
mT

T

]

−q/(q−1)

. (13)

At mid-rapidity y = 0 and zero chemical potential, this has the same depen-
dence on the transverse momentum as (8) apart from an additional factor
mT on the right-hand side of (7). However, the inclusion of the rest mass
in the substitution Eq. (12) is not in agreement with the Tsallis distribution
as it breaks mT scaling which is present in Eq. (7) but not in Eq. (10). The
inclusion of the factor mT leads to a more consistent interpretation of the
variables q and T .
It is to be noted the variables (T, V, q, µ) in the distribution function Eq. (6)
have a redundancy for µ 6= 0 and are not independent. Indeed, let T = T0

and V = V0 at µ = 0 and fixed values of q. Comparing Eq. (6) written for
µ = 0 and the same equation written for finite values of µ, we obtain

T0 = T
[

1− (q − 1)
µ

T

]

, µ ≤ T

q − 1
, (14)

V0 = V
[

1− (q − 1)
µ

T

]
q

1−q

. (15)

Therefore, the variables T and V are functions of µ at fixed values of q and
they can be calculated if the parameters (T0, V0) and q are known. This
redundancy is not present when µ = 0, which is the case relevant for the
LHC due to the particle-antiparticle symmetry.

A very good description of transverse momenta distributions at RHIC
has been obtained in Refs [25, 26] on the basis of a coalescence model where
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the Tsallis distribution is used for quarks. In this paper we use the Tsallis
distribution for hadrons, not for quarks.

A Tsallis fit has also been considered in Ref. [27] but a different power
law in the Tsallis function was considered by these authors.
Interesting results were obtained in Refs. [28, 29, 30, 31] where spectra for
identified particles were analyzed and the resulting values for the parameters
q and T were considered. These authors did not consider the energy depen-
dence which is the main focus of the present paper.
The transverse momentum distribution in connection with the multiplicity
in different events was consider in Ref. [32].
The energy dependence of the transverse momentum spectra has been stud-
ied on the basis of gluon collisions in Ref. [33].

3. Energy Dependence of Transverse Momentum Distributions

The energy dependence in p− p collisions can be determined by studying
data at beam energies of 0.54 [34], 0.9, 2.36 and 7 TeV [8, 9]. These involve
distributions summed over charged particles. The fits were performed using
a sum of three Tsallis distributions, the first one for π+, the second one for
K+ and the third one for protons p. The relative weights between these were
simply determined by the corresponding degeneracy factors, i.e. 1 for for π+

and K+ and 2 for protons. The fit was taken at mid-rapidity and for µ = 0
using the following expression:

1

2πpT

d2N(charged particles)

dpTdy

∣

∣

∣

∣

y=0

=
2V

(2π)3

3
∑

i=1

gimT,i

[

1 + (q − 1)
mT,i

T

]

−
q

q−1

,

(16)
where i = (π+, K+, p) and gπ+ = 1, gK+ = 1 and gp = 2. The factor 2 in front
of the right hand side of this equation takes into account the contribution
of the antiparticles (π−, K−, p̄). The resulting values of the parameters are
shown in Table 1.

The Tsallis parameter q has a tendency to increase slowly but clearly
with increasing energy.

The radius is listed instead of the volume V in Eq. (16) and is defined as

R ≡
[

V 3
4π

]1/3
. Note that the volume can contain dynamical factors, e.g. for a

cylindrical expansion along the beam axis the volume could be interpreted as
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√
s, TeV T , MeV R, fm q

0.54 (UA1) 77.59 ± 1.40 4.25±0.10 1.1175 ± 0.0014
0.9 (ALICE) 75.45 ± 3.18 4.55±0.26 1.1305 ± 0.0031
0.9 (ATLAS) 83.89 ± 1.35 3.91±0.11 1.1217 ± 0.0007
2.36 (ATLAS) 75.79 ± 4.01 4.46±0.37 1.1419 ± 0.0025
7 (ATLAS) 82.42 ± 1.30 4.34±0.11 1.1479 ± 0.0008

Table 1: Parameters for the Tsallis fit

.

the transverse surface multiplied by the lifetime, τ , of the system, e.g. πR2τ

as would be more appropriate for a scenario with longitudinal scaling [35].
The value of R should therefore not be considered in a full dynamical model.
It is not necessarily related to the size of the system as deduced from a HBT
analysis [36, 37, 38] but serves to fix the normalization of the distribution.
The radius (volume) and the temperature do not show any significant change
between the lowest beam energy considered (0.54 TeV) and the highest one
(7 TeV) as can be seen from Fig. 1 and Fig. 3.

The energy dependence of the various parameters is displayed in Figs. 1, 2
and 3.

In Fig. 4 we show the charged hadron yields as a function of the trans-
verse momentum pT at four different energies. The experimental data points
are from the ATLAS collaboration [8] for pp collisions at energies

√
s =

0.9, 2.36, 7 TeV and from the UA1 collaboration in pp̄ collisions at
√
s = 0.54

TeV [34]. The curves represent fits of Eq. (16) to the data.
The extremely large range of pT described by Tsallis distribution makes

it applicable in the region usually considered to be the domain of QCD hard
scattering. This may be interpreted as a manifestation of the “duality” be-
tween the statistical and dynamical description of strong interactions [39, 40].
In this sense Tsallis statistics may be considered as an effective theory al-
lowing for an extension of the region of applicability of perturbative QCD
from large to low pT . It is not unnatural, as approximate scale invariance
manifested in QCD both at large and small momentum scales is qualita-
tively similar to power law statistics. It remains to be understood whether
any further relations can be found, like the dynamical origins of thermal
spectra [41]. Note, that the application of the duality to the longitudional
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Figure 1: (Color online) Energy dependence of the Tsallis temperature T appearing in the
Tsallis distribution. Square points are from the ATLAS collaboration [8], the round point is
from the ALICE collaboration [7] and the triangle point is from the UA1 collaboration [34].
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Figure 2: (Color online) Energy dependence of the Tsallis parameter q appearing in the
Tsallis distribution. Square points are from the ATLAS collaboration [8], the round point is
from the ALICE collaboration [7] and the triangle point is from the UA1 collaboration [34].
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Figure 3: (Color online) Energy dependence of the Tsallis radiusR appearing in the volume
factor. Square points are from the ATLAS collaboration [8], the round point is from the
ALICE collaboration [7] and the triangle point is from the UA1 collaboration [34].
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spectra should be performed at the level of parton distributions, where the
natural temperature scale is defined by the corresponding intrinsic trans-
verse momentum [42], rather than hadrons directly, which would lead to the
“temperature” of beam energy scale order.

The Tsallis parameter q shows a clear but weak energy dependence which
we have parameterized as

q(s) = 1.12567
(√

s
)0.011211

(17)

On the basis of these changes with energy we have attempted a prediction
for the transverse momentum distribution at invariant energy of 8 and 14
TeV which are presented in Fig. 4. A different parameterization has been
proposed by Wibig [43, 44], the values obtained there are systematically
below the values obtained here. The fits are also very good at low transverse
momenta as can be seen from Fig. 5. The curves are calculations using
Eq. (16) at mid-rapidity y = 0 and zero chemical potential µ = 0 for the
parameters of the Tsallis fit in Table 1.

4. Discussion and Conclusions

As has been noticed in other publications, the Tsallis distribution leads
to excellent fits to the transverse momentum distributions in high energy
p − p collisions. By comparing results from UA1 [34] to results obtained at
the LHC [7, 8, 9] it has been possible to extract the parameters q, T and V

for a wide range of energies. A consistent picture emerges from a comparison
of fits using the Tsallis distribution to high energy p− p collisions.
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