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Abstract

Procedures for correcting the beam-beam effects in luminosity measurement at
CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations:

• Correction of the angular counting loss due to the combined Beamstrahlung
and initial-state radiation (ISR) effects, based on the reconstructed velocity of
the collision frame of the Bhabha scattering.

• Deconvolution of the luminosity spectrum distortion due to the ISR emission.
• Correction of the counting bias due to the finite calorimeter energy resolution.

All procedures were tested by simulation. Bhabha events were generated using
BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha
particles in the bunch collisions at CLIC. Residual uncertainties after correction are
listed in a table in the conclusions. The beam-beam related systematic counting
uncertainty in the luminosity peak can be reduced to the order of permille.
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1 Introduction

Luminosity, L, and luminosity spectrum, L (ECM), are key input to analyses of most mea-
surements at a linear collider, including mass and cross-section measurements, as well as the
production-threshold scans. Precision measurement of the luminosity is thus essential for the
physics programme at a linear collider. The standard way to measure luminosity is to count
Bhabha-scattering events recognized by coincident detection of showers in the fiducial volume
(FV) in both halves of the luminometer in the very forward region in a given energy range. The
number of events N is then divided by the Bhabha cross section σ integrated in the corresponding
region of the phase space. This can be formally expressed as follows,

L =
N(Ξ(Ωlab

1,2,E
lab
1,2 ))

σ(Z(ΩCM
1,2 ,E

CM
1,2 ))

, (1)

Here Ξ(Ωlab
1,2,E

lab
1,2 ) is a function describing the selection criteria for counting the detected

events, and Z(ΩCM
1,2 ,E

CM
1,2 ) is a function describing the corresponding region of phase space where

the cross section is integrated. These functions can be expressed as products Ξ = ∏i ξi and Z =

∏i ζi where the functions ξi and ζi are based on specific topological and kinematical properties
of the detected/generated pair. For each i, the physical meaning of ξi and ζi corresponds to
each other, although their mathematical form may be different 1). The set of functions ξi and
ζi includes the angular selection requiring both particles to be detected in the FV, as well as the
energy range selection and possible further cuts to eliminate background.

Bhabha scattering is a well known QED process, for which cross-section calculations with
relative uncertainty better than 10−3 are available [1]. However, at high beam power, the energies
and the polar angles of the Bhabha particles are additionally strongly influenced by the beam-
beam effects [2, 3]. Because of the random and asymmetric momentum loss when electrons
emit Beamstrahlung, the CM frame of the Bhabha process moves with respect to the lab frame
with axial velocity different for every colliding pair. As a consequence, Ξ and Z operate on
kinematical arguments in different reference frames. Thus, if Ξ and Z have the same form,
different regions of the phase space will be covered, leading to a systematic bias in the luminosity
measurement. This systematic bias cannot be neglected at the future linear colliders due to the
high energy and charge density, and is particularly accute at the 3 TeV CLIC.

A way around this problem is to define Ξ and Z such that the counting rate is independent of
the reference frame. Some of the functions ξi and ζi can be defined invariant to the boost along
the beam axis. This is, for example, the case with the cuts on the reconstructed CM energy.
However, the requirement that the outgoing particles hit the FV of the detector on both sides
does not posess such invariance. In this paper, a definition of ξFV and ζFV is proposed such that
both the experimental count N and the cross-section σ are reconstructed in the same reference
frame, namely the collision frame, which will be properly defined in the appropriate section.

The physical processes affecting the luminosity measurement will be outlined and the used
terms and notation defined in Sec. 2. The analysis method with the correction procedures, as
well as the test results will be described in Sec. 3. In the conclusions, the main advantages of
the presented method are restated, and the final uncertainties are listed and briefly discussed.

1See in particular Sec. 3.2 and Eqs. 6 and 7
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2 The physical processes affecting the luminosity
measurement and the outline of the correction procedure

The sequence of physical processes relevant to the present discussion is schematically repre-
sented in Fig. 1. Due to the pinch effect during the bunch collision, both particles may emit
Beamstrahlung photons and so lose energy and momentum before the interaction. Thus in gen-
eral, ECM < E0 ≡ 2Ebeam. The CM energy distribution at this stage is the actual luminosity
spectrum L (ECM). The probability of the Bhabha scattering scales with 1/s ≡ 1/E2

CM , resulting
in the CM energy distribution of the Bhabha events B(ECM) ∝ L (ECM)/E2

CM . The Bhabha pro-
cess is itself accompanied by emission of the initial-state radiation (ISR) that is nearly collinear
with the initial particle momenta, as well as the final-state radiation (FSR) that is approximately
collinear with the outgoing particle momenta. Since the ISR is nearly collinear with the beam
axis, it misses the luminometer, so that the CM energy reconstructed from the detected particles
is ECM,rec < ECM , and the corresponding spectrum is,

h(ECM,rec) =

Emax∫
0

B(ECM)
1

ECM
I (

ECM,rec

ECM
)dECM (2)

where I (x) is the distribution of the fractional CM energy losses due to ISR. I (x) is approx-
imately independent of ECM.

Due to the finite energy resolution of the LumiCal, the reconstructed spectrum is smeared,
which can be represented as a convolution with a normalized Gaussian2).

h∗(ECM,rec) =
1√

2πσ

∞∫
0

h(E ′
CM,rec)exp

(
−
(ECM,rec −E ′

CM,rec)
2

2σ 2

)
dE ′

CM,rec (3)

Figure 1: Schematic representation of the physical processes affecting the luminosity measure-
ment

2Strictly speaking, the smearing width depends on the deposited energy of the showers. However, as only a relatively
narrow energy range is being analyzed here, the smearing width will be treated as being approximately constant.
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The term collision frame will be used here for the frame of the two-electron system3) after
emission of Beamstrahlung and ISR and before emission of the FSR4). The scattering angle in
the collision frame is denoted θ coll . Due to the radiation prior to the collision, the collision frame
has a non-zero velocity ~βcoll , and the outgoing particle angles in the lab frame, θ lab

1 and θ lab
2 ,

are not symmetric. In a significant fraction of the total number of events, the acollinearity is so
large that the two particles are not detected in coincidence within the FV of the LumiCal. In this
way, Beamstrahlung and ISR induce an angular counting loss of Bhabha events.

Finally the electromagnetic deflection (EMD) of the outgoing electrons in the field of the
opposing bunch induces a small additional angular counting loss.

The outline of the procedure of the Bhabha-count analysis is as follows:

1. Reconstruct the CM energy ECM,rec and the collision-frame velocity βcoll for each pair
detected in the FV of the LumiCal, from the angles and the measured particle energies.

2. Assign weight to events to correct for reduced acceptance due to ~βcoll , as shown in Sec.
3.2.

3. Deconvolution of the ISR energy loss I (x) from the spectrum h∗(ECM,rec), in order to
restore the B∗(ECM) CM energy spectrum of the Bhabha events (see Sec. 3.3).

4. Integrate B∗(ECM) in the energy range of measurement.

5. Correct the systematic effect of the finite energy resolution of the LumiCal on the number
of counts in the peak (Sec. 3.4).

The absolute luminosity in the measured energy range is then given by Eq. 1, and the approx-
imate differential form of the luminosity spectrum with the LumiCal energy smearing can be
obtained as L ∗(ECM) = B∗(ECM)E2

CM .

3 Analysis and correction procedures

3.1 Simulation methods used to test the analysis procedure

To test the analysis procedure, Bhabha events in the bunch-collision were simulated with the
Guinea-PIG software [3]. The initial bunch coordinate- and momentum distributions were taken
from the simulation results by D. Schulte et al. [4]. The coordinate distribution covered more
than 10 σ bunch widths both in the horizontal and the vertical directions. The angular distribu-
tion of the particles in the bunch was quasi-Gaussian, with transverse emittance of 660 nm rad in
the horizontal, and 20 nm rad in the vertical direction. The bunch collision was simulated in the
CM frame of the colliding bunches, which is equivalent to a head-on collision with zero cross-
ing angle. The beam overlap reduction due to the crossing angle is offset by the crab-crossing
scheme.

3Unless stated otherwise, electron always refers to electron or positron
4In reality, ISR and FSR can not be cleanly separated even theoretically, due to the quantum interference between

them. Thus in practice, the collision frame is defined as the CM frame of the final electrons together with all
radiation within a given tollerance angle with respect to the final electron momenta. The assumption of clean
separation between ISR and FSR introduces a small uncertainty in the final result.
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The Bhabha events were produced using a method resembling that by C. Rimbault et al. [5]:
After generating the initial four-momenta of the colliding e−e+ pairs, the decision is made by
Guinea-PIG whether the Bhabha scattering will be realized in the collision, based on the 1/s
proportionality of the Bhabha cross section. If a Bhabha event is to be realized, the final four-
momenta are picked from a file generated at 3 TeV by the BHLUMI generator [6]. The momenta
are then scaled to the CM energy of the colliding pair, rotated to match the collision axis, and
then boosted back to the lab frame. Finally the outgoing Bhabha electrons are tracked to simulate
the electromagnetic deflection. Nearly four million Bhabha events were generated in the polar
angle region between 10 and 200 mrad in the generator frame, with additional cuts between 37
and 90 mrad in the collision frame.

The interaction with the detector was approximated in the following way:

• The four-momenta of all electrons and photons within 5 mrad of the most energetic shower
were summed together on each side. The 5 mrad criterion corresponds closely to the
Molière radius of the high-energy showers in the LumiCal [7]. The Beamstrahlung pho-
tons were not included as they are emitted close to the beam axis. For synchrotron radi-
ation, the characteristic emission angles are of the order 1/γ , which is smaller than 10−3

mrad for electron energies in the TeV range, therefore photon and electron four-vectors
can be added.

• The energy resolution of the LumiCal was included by adding random fluctuations to
the final particle energies. The random fluctuations were sampled from the Gaussian
distribution with an energy-dependent standard deviation σE = a

√
E, with a = 0.21 [8, 9].

• The finite angular resolution of the LumiCal was included by adding random fluctuations
to the final particle polar angles. The nominal value of σθ = 2.2×10−5 estimated for the
ILC version of LumiCal [7] was used. Higher values for σθ were also tested.

The FV of the LumiCal at CLIC corresponds to the angular range between 43 and 80 mrad
around the respective beam axes.

3.2 Invariant counting in the collision frame

The movement of the collision frame with respect to the lab frame is responsible for the acollinear-
ity leading to the angular counting loss. The velocity of the collision frame with respect to the
lab frame ~βcoll , can be approximately calculated from the measured polar angles. If βcoll is taken
to be collinear with the z-axis, the expressions for the boost of the Bhabha scattering angles into
the lab frame give,

βcoll =
sin(θ lab

1 +θ lab
2 )

sinθ lab
1 + sinθ lab

2
(4)

Eq. 4 does not depend on any assumptions about the number of emitted ISR and Beam-
strahlung photons, nor on their direction, apart from the assumption that the vector sum of their
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momenta is collinear with the z-axis5).
If events from a subset characterized by a given βcoll are plotted in the | tanθ2| vs. | tanθ1|

graph, they lie on a curve displaced from the central diagonal, as schematically represented by
the dashed line in Fig. 2. As can be seen from the figure, the range of accepted scattering angles
decreases with increasing βcoll . The effective limiting angles θ coll

min and θ coll
max for the subset of

events charaterized by a given βcoll are obtained by boosting θmin and θmax into the collision
frame.

Figure 2: Schematic representation of the distortion of the polar angles due to the movement of
the collision frame. The box represents the region in which both electrons hit the FV,
and the dashed line represents the event subset characterized by a given βcoll . θ coll

min and
θ coll

max denote the effective limiting scattering angles for this subset.

To account for the smaller acceptance of the events characterized by a given βcoll , every event
has to be weighted with the appropriate correction factor. In this way, the number of events
between θmin and θmax in the collision frame is recovered for each βcoll subset separately. The
weighting factor is defined in the following way:

5 Strictly speaking, ~βcoll has a small radial component βρ , which is larger than 0.01 in only about 5 permille of
cases. However, the influence of βρ on the polar angles of the Bhabha pair is almost indistinguishable from
an additional axial boost. Thus for the purpose of recovering the counting loss due to the acollinearity, βcoll is
approximately treated as a scalar quantity.
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w(βcoll) =

θmax∫
θmin

dσ
dθ dθ

θ coll
max∫

θ coll
min

dσ
dθ dθ

. (5)

The FV selection function is thus defined as6),

ξFV =

{
w ;θ lab

1,2 ∈ FV
0 ;otherwise

(6)

Using this FV selection function, the number of events N satisfying the condition θ coll ∈
(θmin,θmax) in the collision frame is reconstructed. The corresponding function ζFV for the
cross-section integration is thus,

ζFV =

{
1 ;θ coll ∈ (θmin,θmax)
0 ;otherwise

(7)

3.2.1 Test of the collision-frame counting method

To test the counting method, histograms of ECM,rec reconstructed from kinematic parameters of
the detected particles were generated in the following way:

Control histogram : All events with the scattering angle in the collision frame θ coll such that
θmin < θ coll < θmax are accepted. Therefore this histogram is not affected by counting
losses due to Beamstrahlung and ISR. This is, of course, only possible in the simulation.

Uncorrected histogram : Events hitting the FV of the LumiCal in the lab frame.

Corrected histogram : Events hitting the FV of the LumiCal in the lab frame, stored with
the weight w calculated according to Eq. 5

The full kinematical information, including the particle energy, was used for the reconstruc-
tion of the CM energy. The four-momenta of collinear photons were added to the electron
four-momenta as described in Sec. 3.1. Apart from the collinearity criterion, no distinction was
made between the ISR and the FSR photons.

To calculate the correction weight w, the approximate expression for the angular differential
cross section dσ/dθ ≈ θ−3 was used.

The results are shown in Fig. 3. The control spectrum is plotted in black, red is the spectrum
affected by the counting loss, green is the corrected spectrum.

The blue line represents the events inaccessible to the correction due to the high value of βcoll .
In the subsets of events characterized by βcoll above a certain treshold, at least one electron is
always lost (see Fig. 2). However, for such events, the Beamstrahlung-ISR energy loss is also

6By the standard definition of the polar angle θ , the interval corresponding to the FV on side of the IP is (θmin,θmax),
and on the other side of the IP, (π −θmax,π −θmin)
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above a certain minimum, so that they are only present in significant number below 2200 GeV.
A small number of high-βcoll events are also present at energies above 2200 GeV, as seen in the
zoomed figure (Fig. 3, right), where these events are scaled by a factor 100. In these events,
~βcoll has a relatively high radial component, due to the off-axis radiation before collision. This
increases the acollinearity of such events relative to other events with similar energy loss (see
footnote 5). The relative contribution of these events to the peak integral above 95% of the
nominal CM energy is of the order of 2×10−5.

Before correction, the counting loss in the peak integral above 95% of the nominal CM energy
was 3.8%. After correction, the residual relative deviation in the peak with respect to the control
spectrum is (−0.1± 0.4(stat.))× 10−3. In the tail between 80% and 90% of the nominal CM
energy, the counting loss before correction was 43.1%. After correction, the residual relative
deviation in the tail is (−3.6±1.8(stat.))×10−3, which includes a deviation of (−2.7±0.1)×
10−3 due to the lost events in the tail. The statistical uncertainty of the residual deviation was
estimated taking into account the correlations between the corrected and the control spectra. The
precision of the Beamstrahlung-ISR correction is of the order of permille despite the presence
of the following sources of systematic uncertainty of the correction:

• The assumption that the deformation of the Bhabha angles induced by Beamstrahlung and
ISR is well described as a Lorentz boost along the beam axis (this is the source of the
”lost” events in the peak),

• The use of the approximate angular differential cross section for the Bhabha scattering in
the calculation of w,

• Assumption that all ISR is lost, and all FSR is detected (this assumption has, in principle,
an influence on the calculation of βcoll , and consequently of w).
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Figure 3: Correction of the counting loss due to Beamstrahlung and ISR. Left: whole spectrum;
right: zoom on energies above 2200 GeV. Black: Simulated control spectrum with-
out counting loss due to Beamstrahlung and ISR; red: Reconstructed ECM spectrum
affected by the counting loss; green: Reconstructed spectrum with correction for the
counting loss due to Beamstrahlung and ISR; blue: events inaccessible to the correc-
tion due to high βcoll (see text).
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Table 1: Dependence of the uncorrected and the corrected peak-count deviations on the polar-
angle uncertainty of the LumiCal

∆θ (mrad) Uncorrected (10−3) Corrected (10−3)
0.010 −38.1±0.3 −0.0±0.4
0.022 −38.2±0.3 −0.1±0.4
0.05 −38.3±0.3 −0.1±0.4
0.10 −38.8±0.3 −0.3±0.4
0.20 −40.1±0.4 −0.4±0.4
0.50 −46.8±0.4 −1.6±0.4

A test of this method for the case of ILC at nominal CM energies of 0.5 and 1 TeV, and for a
wide range of beam-parameter uncertainties is reported in Ref. [10]. After correction of the lost
events, precision of a fraction of permille is achieved in the upper 80% of energy, independently
of the precision with which the beam parameters are known.

3.2.2 Effect of the particle energy- and polar-angle resolution on the
Beamstrahlung-ISR counting loss

The relative energy resolution of a calorimeter can be parametrized as a quadratic sum of an
energy-dependent stochastic term and a constant shower leakage term [11].

σE

E
=

√
a2

E
+b2 (8)

The 40-layer design of the LumiCal for CLIC is assumed to be well described by the paramet-
rization with the constant term b equal to zero [8]. A conservative limit for the constant term can
be taken to be 1.1%, based on the analysis in Ref. [11], made for the ILC version of LumiCal,
with only 30 layers (implying considerable leakage at 1.5 TeV). The correction procedure was
therefore tested with three different values of the constant term b: 0, 0.35% and 1.1%, while the
stochastic term was kept at a = 0.21. In all these tests, both the uncorrected Beamstrahlung-ISR
counting loss, and the residual deviation after correction agree within their respective statistical
uncertainties. Only results for b = 0 are presented in this paper.

Tests were also performed with different values of the polar-angle uncertainty of the LumiCal
in the range between 0.01 mrad and 0.5 mrad, beside the nominal value of 0.022 mrad [7]. The
results of these tests are shown in Tab. 1. One may note that the uncorrected counting loss
increases significantly when the polar-angle uncertainty increases above 0.1 mrad. The effect on
the count deviation in the corrected peak is, however, about six times smaller.

3.3 Deconvolution of the ISR energy loss

After correcting for the angular counting loss, the ISR energy loss can be deconvoluted from
the resulting spectrum h(ECM,rec) to restore the CM energy spectrum of the Bhabha events
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B∗(ECM)7). When Eq. 2 is binned in N sufficiently narrow bins, it takes approximately the
discrete form,

hi ≈
N

∑
j=1

Ii jB
∗
j (9)

Where,

hi =

i∆E∫
(i−1)∆E

h(ECM,rec)dECM,rec

B∗
j =

j∆E∫
( j−1)∆E

B∗(ECM)dECM

Ii j =

i−1/2
j−1∫

i−1/2
j

I (x)dx (10)

As the Ii j matrix has triangular form, eq. 9 can be solved for B∗
j exactly, using the Jacobi

method. The solution proceeds from high-energy towards the lower-energy bins, indroducing an
increasing uncertainty towards lower energies.

To obtain Ii, j, the function I (x) was parametrized by the beta distribution used for the
parametrization of the beam spectra of linear colliders [12],

I (x) = a0δ (x−1)+
{

a1xa2(1− x)a3 ;x < 1
0 ;x ≥ 1

(11)

The parameters were obtained by fitting Eq. 11 to the fractional CM energy distribution
after ISR, reconstructed from the same BHLUMI data set as used in Guinea-PIG. The fit was
performed with variable binning in order to have sufficiently fine binning near x = 1, while
avoiding large differences in statistical uncertainties for individual bins. The data histogram
was first normalized to the unit integral. The results are shown in Fig. 4. The parameter a0
was obtained as the ratio of the number of counts in the narrow peak above x = 0.99995 to the
number of counts in the entire spectrum, and the remaining coefficients were obtained by fitting
the function to the data in the range (0.7, 0.99995) 8) 9).

7The Bhabha-event spectrum is marked with a star here, because it is smeared by the finite energy resolution of the
LumiCal. See Sec. 3.4.

8 The angular cuts in the lab frame cause significant losses in the distribution for x < 0.5 because high energy loss in
ISR emission correlates with high acollinearity. This affects the overall normalization, and thus the value of a0.
The value of a0 obtained here is appropriate for the deconvolution of the simulated spectrum where the same set
of BHWIDE samples was used. However, for the analysis of the real experimental data, the distribution without
cuts in the lab frame should be used.

9The functional form of Eq. 11 suggests that the ratio a0/a1 can be fixed by the normalization requirement. How-
ever, the beta distribution fails to properly describe the form of I (x) for x < 0.7 (regardless of the angular cuts
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Figure 4: Fit of the relative energy-loss distribution due to the ISR.

From the normalization of the data histogram, it follows that, a0 +Ca1 = 1, from which
the covariance of a0 and a1 was calculated as cov(a0,a1) = 〈(a0−< a0 >)(a1−< a1 >)〉 =
−(1/C)

〈
(a0−< a0 >)2

〉
= −(1/C)σ 2

0 = −a1/(1− a0)σ 2
0 , where σ0 is the statistical uncerat-

inty of the parameter a0. The correlation of a0 with a2 and a3 was assumed to be zero, and the
correlation coefficients between the fitted parameters a1,2,3 were calculated from the covariance
matrix obtained in the fit procedure. The nonzero correlation coefficients are the following:
ρ0,1 =−13%, ρ1,2 = 83%, ρ1,3 = 96%, ρ2,3 = 75%.

3.3.1 Test of the deconvolution procedure

In this test, the following histograms were generated:

Control histogram was filled with simulated CM energies before ISR emission, and then
smeared with a normalized Gaussian with constant width corresponding to the LumiCal
energy-resolution at the peak energy.

Histogram with ISR energy loss h(ECM,rec) is the same as the control histogram from Sec.
3.2 – filled with energies reconstructed from the final-state kinematics, and with inclusion
of the LumiCal energy resolution.

Deconvoluted histogram was obtained by solving the system of linear equations repre-
sented by Eq. 9, taking the binned data of the affected histogram as h j.

For each histogram, event selection was made on the scattering angles in the collision frame,
so that the Beamstrahlung-ISR angular counting loss is not present. This was done in order to
assess the accuracy of the deconvolution separately from the Beamstrahlung-ISR counting-loss
correction. Results are shown in Fig. 5.

Before deconvolution, the relative counting loss in the peak above 95% of the nominal CM
energy was 23.4%. After deconvolution, the relative residual deviation of the peak integral with

in the lab frame discussed above), so that the overall norm is different than the integral of the beta distribution
extrapolated from the fit. Therefore, a1 was allowed to vary freely in the fit.

11



 (GeV)CME
2200 2400 2600 2800 3000

co
un

t

310

410

 (no ISR)CM,simE
 (with ISR)CM,recE
 deconvolutedCM,recE

Figure 5: Deconvolution of the ISR deformation of the luminosity spectrum. Yellow: the con-
trol histogram – simulated ECM before emission of ISR, smeared with a normalized
Gaussian; black: the histogram affected by the ISR energy loss – reconstructed ECM

from the detected showers, green: deconvoluted spectrum

respect to the control histograms is (+1.3± 2.1)× 10−3. In the tail between 80% and 90% of
the nominal CM energy, the ISR energy loss increases the count by 14.5%. After deconvolution,
the remaining deviation in the tail is (−2.3±3.9)×10−3.

The contributions from the uncertainties of the fitted parameters of the ISR energy-loss func-
tion I (x) were added to the statistical uncertainty of the residual deviation after deconvolution.
The full covariance matrix of the fit parameters was used, together with the partial derivatives of
the count estimated by variation of the fit parameters by one sigma, one parameter at a time. With
the statistic of about four million generated Bhabha events, the uncertainties due to the fit pa-
rameters are (δN/N)peak,ISR f it = 0.53×10−3 for the peak, and (δN/N)tail,ISR f it = 0.07×10−3.

When the deconvolution step is tested with a non-zero leakage term in the LumiCal energy
resolution, the residual uncertainties agree with the ones presented above within the statistical
uncertainties.

3.4 Effect of the LumiCal energy resolution on the counting rate in the
peak

The finite energy resolution of the LumiCal introduces a counting bias in two ways:

1. By asymmetric redistribution of events from each side of the sharp energy cut Ecut used to
define the peak, due to the slope of the underlying distribution at the position of the cut.

2. By cutting off a portion of the low-energy tail of the quasi-Gaussian bell formed by the
smearing of the inherent shape of the luminosity peak due to the LumiCal resolution.

The second effect is difficult to precisely correct because of the strong dependence on the
position of the energy cut, and because of the uncertainties of the inherent width of the lumi-
nosity peak and of the energy resolution, as well as the strong correlations between the fitted
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parameters that dominate the spectrum in the peak area (see Eqs. 12 and 13). However, if the
energy cut is made at a sufficient distance from the peak, the second effect becomes negligible,
and the energy-resolution effect can be precisely corrected based on the parametrization of the
functional form of the experimental spectrum after deconvolution of the ISR.

B∗(ECM) =
1

σ
√

2π

∞∫
0

B(E ′)exp
(
−(ECM −E ′)2

2σ 2

)
dE ′ (12)

If the inherent width of the luminosity peak is neglected, B(ECM) can be parametrized by the
beta distribution,

B(ECM) = b0δ (ECM −E0)+

{
b1Eb2

CM(E0 −ECM)b3 ;ECM < E0
0 ;ECM ≥ E0

(13)

One may recall here that the use of a constant standard deviation σ in Eq. 12 is an approxima-
tion, as σ depends on the particle energy, and is thus different for different ECM. The systematic
error induced by the energy resolution of LumiCal can now be expressed as,

δNEres

N
=

∞∫
Ecut

E2
CM
E2

0
(B∗(ECM)−B(ECM))dECM

∞∫
Ecut

E2
CM
E2

0
B(ECM)dECM

(14)

This expression can now be estimated by numerical integration based on the fitted parameters
of B∗(ECM) (Eqs. 12 and 13). Even though the reproduction of the integral count by integration
of the fitted function has in principle limited accuracy, rather accurate prediction of the relative
error (Eq. 14) is achieved. The fit was performed on the deconvoluted histogram with the
fixed parameters E0 = 3 TeV and σ = 13.7 GeV, while b0−3 were varying freely. The resulting
parameter values with the associated errors and the correlation matrix are shown below.

E0 = 3000

σ = 13.7

b0 = (676.3±5.3)×103

b1 = 539±23

b2 =−0.66±0.15

b3 =−0.446±0.010

(15)

ρi, j =


1 0.75 0.64 0.80

0.75 1 0.95 0.98
0.64 0.95 1 0.90
0.80 0.98 0.90 1
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Figure 6: Left: relative deviation of the peak count induced by the LumiCal energy resolution
in the reconstructed spectrum as a function of the peak region expressed as fraction
of the nominal CM energy E0, compared to the predicted value based on the fitted
spectrum. Right: histogram of the normalized residual deviations of the peak count
after correction (see text), for Ecut more than 2.5% away from E0.

The relative deviation of the count in the reconstructed peak is shown in the left pane of Fig.
6 as a function of the relative distance of the energy cut to the peak energy in percent (black
line). The predicted deviation according to Eq. 14 is also shown for comparison (blue line).
There is an excellent agreement between the predicted and the simulated deviations. To take
a safe distance from the peak, only points for which Ecut is more than 2.5% away from E0,
corresponding to about 5 σ of the fitted peak, will be considered in the following.

The fluctuations of the simulated deviation curve in Fig. 6 are of statistical nature. These
fluctuations can be used as an external measure of the statistical uncertainty of the counting bias
in the simulation. In the right pane in Fig. 6, the histogram of these fluctuations is shown,
calculated as residual deviations after correction, for Ecut more than 2.5% away from E0. The
RMS of the fluctuations corresponds to a relative statistical uncertainty of 0.24× 10−3 with
respect to the the peak count in the top 5%. The relative deviation in the top 5% estimated from
Eq. 14 is −0.29×10−3. The mean residual bias after correction is (0.05±0.03)×10−5.

Similar procedure was applied to estimate the relative bias and the residual uncertainty in the
tail region from 80% to 90% of E0. The RMS of the fluctuations is 0.79×10−3, the uncorrected
deviation is +0.32×10−3, and the residual deviation after correction is (0.09±0.09)×10−3.

3.5 The Electromagnetic Deflection

To estimate the counting loss due to the EMD, the angular selection was applied once before and
once after the deflection in the simulation, and the relative difference in the resulting number
of events was calculated. The EMD counting loss above 95% of the nominal CM energy is
(−0.50±0.05)×10−3. In the tail from 80 to 90% of the nominal CM energy, the EMD counting
loss is (−1.08±0.08)×10−3.
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4 Conclusions

A method of invariant counting of Bhabha events was presented. The number of Bhabha events
within a given range of scattering angles in the collision frame, and in a given range of ECM

is reconstructed. The corresponding limits can be used for the cross-section integration in a
straightforward way. In this way the luminosity expression (Eq. 1) is essentially insensitive to
the beam-beam effects.

The residual systematic uncertainties of the Bhabha count with the presented methods were
estimated by MC simulations. In addition, the systematic uncertainty due to the EMD-induced
counting loss was estimated and found to be small. The residual relative errors in the top 5%, as
well as in the tail from 80 to 90% of the nominal CM energy are listed in Tab. 2. Beam-beam
effects in the luminosity measurement at CLIC can be corrected with a few permille precision.

The luminosity spectrum from 2.2 TeV to the maximum CM energy can be reconstructed
from the deconvoluted Bhabha-event spectrum (Fig. 5).

Table 2: Relative residual error after correction of different systematic effects in luminosity mea-
surement in the peak above 95% and the tail from 80 to 90% of the nominal CM energy.

# Effect Top 5% 80 - 90% of E0
(10−3) (10−3)

1 Beamstrahlung-ISR angular loss −0.1 ±0.4 −3.6 ±1.8
2 High βcoll

a −0.019±0.008 −2.7 ±0.1
3 ISR energy-loss 1.3 ±2.0 −2.3 ±3.9
4 Energy resolution 0.05 ±0.03 0.09±0.09
5 EMD counting loss (uncorrected) −0.50 ±0.05 −1.08±0.08

Total 1.4 ±2.0 4.4 ±4.3
Total (corrected for #2) a 1.4 ±2.0 2.7 ±4.3

a The bias under #2 is included in #1.
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