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Higgs boson mass bounds in the presence of a heavy fourtlk faraily Attila Nagy

1. Introduction

The existence of the standard model Higgs boson is a negesgaedient for the consistency
of the standard model. Although the mass of the Higgs bosonatabe predicted, bounds on the
Higgs boson mass can be given. A lower bound can be derived thhe requirement of a stable
vacuum while an upper bound can be computed from the triyiafithe theory which leads to the
occurrence of the Landau pole. These mass bounds are usoidputed in perturbation theory and
indeed, perturbative results for the Higgs boson mass oumde obtained in the past. However,
the perturbative analysis may be questioned, since for piperubound, the quartic coupling can
become strong. The lower bound, on the other hand, may betefarof perturbation theory
when looking at Higgs field values far away from the minimuntta potential. These concerns
motivated a non-perturbative and ab initio lattice fieldatyeinvestigation of the mass bounds of
the Higgs boson in a chirally invariant lattice Higgs-Yulkamodel [IL[R].

In the lattice approach it is straightforward to determinese mass bounds also for the case
that there is a fourth, heavy family of quarks. Such an ex¢enis not excluded a priori and further,
a fourth family of fermions offers the possibility of gengrgy sufficient CP violation to fulfil the
Sakharov condition to explain electroweak baryogenesthegarly universe]3].

However, CKMA4 fits and direct searches already make a naiuvgfgeneration scenario quite
improbable [4], especially if the newly discovered pagielith a mass around 126 Ge} [b, 6] turns
out to be the standard model Higgs boson. In this work we peoeidditional general constraints
on the fourth family quark masses by their effect on the Higgson mass bounds.

2. Model and Implementation

We study the Higgs-Yukawa sector of the standard model. Eb@ ¢ontent we consider is a
fermion doublets¥ and a complex scalar doublg¢t The continuum action in this model is given

by:

s .g] = [ a5 (0u0)"(040)+ 5réeTe + 2o (00
+/d4x{t_dt+5(7b+ybou7L¢ by + Yo BBt +he), with§ =ing™. (2.1)

The bare quartic self coupling of the scalar field is givemgymy denotes the bare mass of the
scalar field ang, /n, are the Yukawa couplings of the fermion fields. We want tosstrénat we do
not include any gauge fields in this model neither the gludeigrees of freedom nor electroweak
ones. This is done for computational simplicity and furthverexpect the effect of the gauge fields
to be small for the problems addressed in our work.

We will mostly study the system in the phase with spontansyusmetry breaking where the
scalar field develops a non vanishing vacuum expectatiarev@ey) and three Goldstone modes
emerge. Further we only consider the heaviest fermion aaubince the dynamics of the scalar
field is dominated by the largest Yukawa coupling.
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For the discretized lattice version of the bosonic actiorreverite the scalar doublet as a real
four vector®. With the reparametrisations

2 it A , , 1-2A—8k
a¢_\/2x<¢o_i¢3>, Yo= 7z amg_f (2.2)

the bosonic action can then be written in the compact form:

S[@] = Kk Y Of [Beey+ Dy y] + T OIOHA Y (@, —1)° (2.3)
X X X

Herek denotes the hopping parameter. The subsck@sdx+ u on the scalar fields denote the
scalar field at the space-time poinandx = afi respectively.

For the discretization of the fermions we use the overlapatpeD® [[A, B, [9] with a Wilson
Dirac kernelD":

D°":p{1+

r b—f
A=D"—p, DW:%y“Df,—EDHDM, (2.4)

)

VATA L’
with D{,’b’s being the forward, backward and symmetrized lattice neéareighbor difference op-
erators in directionu. The so-called Wilson parameteris as usual chosen to he= 1. The
dimensionless parameteris free to be chosen in the range<Op < 2r. However, the locality
properties of the free overlap operator in case of vanisgaugge couplings are optimal for the case
of p = 1 [B], which will therefore be the choice in our work. The féamic part of the action is
then:

S0y, @] = § [D+P, @ldiag, Jo)P, + P diag¥i,Yo) &P | Ux,  Sijp = V2K Yo -
X
(2.5)
This action now obeys an exact global &) x U(1)y lattice chiral symmetry with the transfor-
mations:

W—WPY+UW QP Y, ¢—@PQul+gP U], o—UQl o - Qo'u/, (2.6)

forany Q. € SU(2). andUy € U(1)y. The modified chiral projectors are given by:

n 1+vy - 1
PH:TVS, y5:y5<l—ED°"> (2.7)

Even though in principle different masses for the fermiomghe doublet are possible we
restrict ourselves to a mass-degenerate doublet in thig.wbBor the implementation we use a
polynomial Hybrid Monte Carlo algorithm[ TILO] with variousnprovements implemented. For
further details of the implementation s¢e|[11].

To set the scale, i.e. to determine the lattice spaajimge use the phenomenologically known
value of thevevof 246 GeV. Further we define the cutdffas the inverse of the lattice spacing.
Since in finite volume a naive average scalar field would yawishout an external field, we define
the magnetizatiom as the average absolute value of the scalar field:

m=(|®|), q?zv—lzqnx, (2.8)



Higgs boson mass bounds in the presence of a heavy fourtlk faraily Attila Nagy

with V being the volume of the space time lattice. This approachti@same thermodynamical
limit as the application of an external sour§e][12]. The neigation and the renormalizegvare
related as follows:

. m 2K &:2466e\/, A:2466e\{

V, =
T JZs a Vi
The Goldstone and Higgs bosom renormalization const@gts and their masses are computed
from the real part of the Goldstone or Higgs boson propagda®ey respectively:

(2.9)

Z5' = d(f,Z)D (Gs"(p*))

=0. 2.10
- (2.10)

p2:7m(2;> O <GG/1H(p2))
The propagators are computed for discrete lattice momemndditied according a one loop moti-
vated formula derived in lattice perturbation theory. Ity noted, that this approach especially
for the Higgs boson is only valid if the decay width of the paetis small compared to its mass.
However, it was shown in a rigorous resonance analys|s fha},at least in the case of a physical
top quark mass, the pole of the propagator fully agrees Wighésonance mass determinedin [13].
Finally, the masses of the fermiong are computed by means of the time slice correlator

Li—1 R _
Ct(At) = Ltil_g’ t; ;y(m Tr{Pyt+A4t%)-@t,y)P }), (2.11)

which shows a behavior proportional to cgatn; (At — L;/2)) for large time separationft.

In general we observe rather severe finite volume effectgatree almost massless Goldstone
modes, which cause finite volume effects proportional 8 [[[4, [[$] rather than an exponential
falloff with Euclidean time for theories with a mass gap. Soexamples for finite volume effects
can be found in fig{]1. There, one can see, that for a trustwalghermination of the Higgs boson
mass and theevlattice sizes of up to at leakt = 32 are necessary.

In addition to the non-perturbative determination we alsdgrm a perturbative analysis by
means of the constrained effective potential as describefetail in [1]]. Those calculations are
performed within the same lattice regularization as the exiral simulations. We employ discrete
lattice sums for the loop corrections which are then evaldaumerically. The effective potential

V(@) is determined to one loop in the largg limit with the vevand the Higgs boson mass given
by:

V@), V)

de |y de? [,y
In order to have a stable vacuum in the scaling regihﬁei 0.5), we demand the potential to be
concave up everywhere in this region. In this perturbatreenework we can determine the lower
Higgs boson mass bound by finding the lowest possible Higgsrbmass while keeping physical
guantities fixed and still fulfil the required stability catidns.

_— (2.12)

3. Results

Let us shortly summarize the strategy to determine massdsofor the Higgs boson in our
analysis. In total we have three free parameters, namelbahe quartic self coupling, the
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Figure1: We show finite volume effects for the magnetization, the guaass and the Higgs boson mass at a
cutoff of about 1.5 TeV. The data shown correspond to sinanatperformed at infinite bare quartic coupling
and fermion masses in the range ~ 200...700 GeV. The lattice sizes shown dre= 12,16,20,24, 32.
The red lines indicate linear fits involving only data frormmoutations withLg > 20 the grey lines show
guadratic fits over the whole range of lattice extents.

hopping parametex and the Yukawa coupling. We fix the Yukawa coupling such to obtain the
desired mass for the fermions and tunéo retrieve the cutoff at which we want to investigate the
mass bounds. Then it can be shofh[J1, 2], that with the cutudftae fermion mass fixed, the
smallest accessible Higgs boson mass is obtained for a‘rg)fbs't 0 while the Higgs boson mass
is the largest fol = oo. In earlier works we investigated the cutoff dependencéeiHiggs boson
mass bounds for the case of a fermion doublet at the physipajuark massy ~ 175 GeV [1L[P]
and for a very heavy doublet with a mass around~ 676 GeV [1§]. The results can be found in
fig. B. While the upper Higgs boson mass bound is only incakatightly, the lower mass bound
for the Higgs boson increased by a factor around 5 when timeidermass is increased. To obtain
a better understanding of the increase in the mass boundeyestigated those bounds for several
fermion masses at a cutoff around~ 1.5 TeV. Those results are shown in fig] 3a. One clearly
observes the smooth increase of the lower mass bound of tigsHioson with increasing quark
mass. Our results suggest that a Higgs boson mass of 126 Geld altow heavy quarks only up
to approximately 300 GeV.

In fig. Bd we also show the lower Higgs boson mass bound olotdioen the perturbative
effective potential calculations. It is remarkable, howliviiee perturbative result agrees quali-
tatively with the non-perturbative findings up to quark nesssf about 700 GeV (corresponding
to a Yukawa coupling around 3). This lets us assume, that théehmay be perturbative in a
wide region of the parameter space. This finding allows ugs$b perturbatively whether adding
a dimension-6 operator, i.e. &¢® term, to the bosonic action may have an impact on the lower
bound. To this end, we determined the lower bound at a citeff2 TeV for various quark masses
with and without a dimension-6 operator at two differentglings Ag. Those results are shown in
fig. B. We clearly see that the additional operator has ribleismpact on the lower Higgs boson
mass bound.
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Figure 2: We show the cutoff dependence of the Higgs boson mass boondwd masses of a mass
degenerate quark doublet. On the left graph we show the datiad physical top quark mass while the right
graph corresponds to a very heavy mass around 676 GeV.
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Figure 3: We show Higgs boson mass bounds at fixed cutoff. On the leftrgn@n-perturbative data are

shown for the upper and lower mass bound. (For the red trgantjle infinite volume extrapolation has
not been carried out yet). The data points for the lower baanedcompared to findings in a perturbative
effective potential calculation. The right-hand plot caargs perturbative results for the lower bound with
and without a dimension-6 operator included at a cutoff 2 TeV.

4. Conclusion and Outlook

We performed a non-perturbative determination of Higgsobomass bounds in a Higgs-
Yukawa model with a physical top quark mass and a heavy quarkldt. We found that a 126 GeV
Standard Model Higgs boson excludes a naive fourth geoerati quarks if their mass exceeds
300 GeV. Further we gave perturbative arguments, that thisd is stable against the inclusion of
higher dimensional operators. However, we plan to adddetss finding also non-perturbatively
in the future. Further, our setup allows to test whether adegenerate doublet could alter the
mass bounds, since a mass splitting of upnig/my ~ 0.9 is possible[[]7]. Another interesting
direction would be to include an additional scalar field, aggested in[[18], which could have an
impact on the Higgs boson mass bound.
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