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We present an antenna shower formalism that includes helicity dependence for massless partons. The

formalism applies to both traditional (global) showers and sector-based variants. We combine the shower

with VINCIA’s multiplicative approach to matrix-element matching, generalized to operate on each helicity

configuration separately. The result is a substantial gain in computational speed for high parton multi-

plicities. We present an implementation of both sector and global showers, with min/max variations, and

helicity-dependent tree-level matching applied through n � 4 for V=H ! q �qþ n partons and through

n � 5 for H ! n gluons.
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I. INTRODUCTION

Multileg amplitudes and their combination with parton
shower resummations, called ME/PS matching, are among
the most active topics in current high-energy phenomenol-
ogy (see Ref. [1] for a review). What ME/PS matching
provides is a calculation that smoothly interpolates
between fixed-order QCD (and QED) amplitudes in the
high-p? region and infinite-order logarithmic approxima-
tions in the low-p? one. Importantly, the output of such
calculations is in the form of fully hadronized ‘‘events,’’
which can be subjected to direct and detailed experimental
comparison.

However, current state-of-the-art multileg ME/PS
methods, such as CKKW-L [2,3], MLM [4], and
MENLOPS [5], are rather computationally intensive, so
that the most complex calculations can only be carried out
on large clusters. The increase in computational time with
the number of legs is partly due to the amplitudes becom-
ing more complicated at each order; but more impor-
tantly, these methods (which we refer to collectively as
‘‘slicing’’ methods [6]) algorithmically treat each multileg
matching step as completely unrelated to all the others: a
separate phase-space integration, event generation, and
event unweighting step is needed for each multiplicity.
As shown in Ref. [7], much faster algorithms can be
constructed by ‘‘nesting’’ the successive matching steps
within each other, starting from the Born level and using
an overestimating (‘‘trial’’) parton shower as the only
additional phase-space generator. The matrix-element
amplitudes can then be imprinted on the final answer by
a simple Monte Carlo veto step. This approach, which we
refer to as the ‘‘multiplicative’’ method, was first devel-
oped for one additional leg in Ref. [8] and was general-
ized to multiple legs in Ref. [9].

In this paper, we develop an additional refinement of the
multiplicative method, which further increases the algo-
rithmic speed that can be achieved when matching to large

parton multiplicities. As a beneficial side effect, the intrin-
sic precision of the underlying parton shower formalism
is increased as well. The main point is to replace the
ordinary (helicity-summed) shower radiation functions
with helicity-dependent ones, such as those given in
Ref. [10]. That is, we shall treat (massless) quarks and
gluons with negative and positive helicities as effectively
being different particles. The resulting shower generates a
LL approximation to each individual multileg helicity
amplitude (squared) separately, and the resulting evolution
can therefore be matched to one single such amplitude at a
time. Thus, instead of taking sums and averages at each
order, we are now effectively sampling helicity space by
Monte Carlo, saving substantial time when matching to
several successive legs.
Note that, up to the matched orders, interference

effects between amplitudes with different internal
helicity structures are still fully taken into account, since
the last matched helicity amplitude does contain a sum
over all contributing internal-line helicities. At subse-
quent orders, however, the helicity-dependent shower
does not generate the equivalent of a full spin-density
matrix treatment (see, e.g., Ref. [11]). Nor are any
explicit azimuth-dependent correlations among succes-
sive emissions manifest in the helicity basis, as would be
the case with linearly polarized Altarelli-Parisi kernels
[12]. The final precision is nevertheless still improved,
since unphysical helicity assignments are not allowed
to contribute.
In Sec. II, we generalize the VINCIA shower and match-

ing formalism [13] to include helicity dependence. In
Sec. III, we derive explicit helicity-dependent QCD
antenna functions, considering both sector and global
antenna types. Finally, in Sec. IV we present a set of
comparisons to matrix elements, speed benchmarks, and
validations on selected LEP distributions, and in Sec. V we
summarize and provide a brief outlook.
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II. THE SHOWER AND MATCHING ALGORITHM

The helicity of a particle is the projection of the spin of
the particle onto its momentum. For massless particles,
helicity is Lorentz invariant and takes the values �s for
particles with total spin s. Typically, in computing matrix
elements, one sums over helicities of the incoming and
outgoing particles, because they are not directly observed.
However, beginning with observations by Parke and Taylor
[14] in the 1980s, it was discovered that individual helicity
amplitudes are significantly simpler in form than are
helicity-summed matrix elements. In addition, chirality
or handedness is important in processes mediated by the
weak interaction. Thus, we expect that a Monte Carlo
parton shower based on the helicity structure of QCD,
rather than summed-over helicities, is faster when match-
ing to matrix elements as well as more accurate, especially
in weak decays.

In this section, we discuss the modifications to the
VINCIA shower and matching algorithms required to take

helicity into account. The antenna functions themselves
will be the topic of Sec. III.

A. Helicity-dependent showering

The helicity-dependent shower algorithm follows the
unpolarized one quite closely [13], with differences enter-
ing only in a few very specific places, as follows:

If VINCIA is asked to shower an event that contains
unpolarized partons, e.g., an unpolarized Z! q �q event,
it first hands the event to a polarizer function, which
searches the VINCIA library for helicity-dependent matrix
elements corresponding to the given process (see Sec. II B
below for a full list). If this search is successful, helicities
for the final-state partons are assigned based on their
relative matrix-element weights. In the example of on-
shell Z! d �d (Z! u �u) decay, a phase-space-dependent
average of 97% (83%) of the events will end up as
qL �qR, with the others being qR �qL. For off-shell Z bosons,
the full eþe� ! ��=Z! q �q matrix elements would be
used instead.

Trial branchings are generated as in the unpolarized
shower, according to the unpolarized trial functions. The
unpolarized trial functions are essentially an overestimat-
ing eikonal term, see Ref. [9], with additional collinear-
singular terms for sector showers [7]. After the selection of
branching invariants, the probability that the branching
will be accepted at all, summed over all possible post-
branching helicities, is computed:

Paccept ¼
aphys

atrial
¼

P
hi;hj;hk

aðhA; hB ! hi; hj; hkÞ
atrial

; (1)

with hA;B being the (fixed) helicities of the parent partons,

hi;j;k the helicities of the daughter ones, and aðhA; hB !
hi; hj; hkÞ a helicity-dependent antenna function, the

precise forms of which will be discussed in Sec. III.

This accept probability is not exactly identical to the un-
polarized one, since the helicities of the parent partons A
and B are not averaged over. Note also that, for sector
showers, the trial function appearing in the denominator
should be the full one containing both the soft-eikonal and
the additional collinear-singular trial terms.
Helicities for the three daughter partons are then as-

signed according to the relative probabilities

PðhA; hB ! hi; hj; hkÞ ¼
aðhA; hB ! hi; hj; hkÞP

hi;hj;hk
aðhA; hB ! hi; hj; hkÞ :

(2)

Note that it is important that the denominator here be
exactly the same as the numerator in Eq. (1).
All other aspects of the showering remain unmodified

(for matching, see below). For completeness, we also note
that, when helicity dependence is switched off, the unpo-
larized antenna functions are obtained as direct helicity
sums over the helicity-dependent ones, averaging over the
parent helicities. The treatments with and without helicity
dependence are thus intimately related, and it is straight-
forward to go from one to the other.
For one showering step, there should therefore also be

little difference between the helicity-dependent and unpo-
larized treatments, up to differences caused by the helicity-
dependent finite terms not being equal to their averages.
However, the chosen helicities at one step then become the
input helicities for the next step. This excludes some un-
physical configurations from the effective helicity average/
sum in the next step, yielding an improvement in accuracy
over the unpolarized case.

B. Matching to matrix elements

The procedure for matching helicity matrix elements to
the helicity-dependent parton shower in VINCIA is similar
for matching to spin-summed matrix elements [9]. At each
step in the shower, the parton shower provides an estimate
for the ratio

Pn ¼ jMnj2
jMn�1j2

; (3)

where jMnj2 is the matrix element after n additional quark
or gluon emissions from the Born-level matrix element.
To match the parton shower to the exact matrix element at
this stage, the emission of the nth parton is accepted with
the probability

Pn
accept ¼ aPhys

aTrial
PME: (4)

Here, aPhys is the antenna for the current branching, and
aTrial is an overestimate antenna that is strictly larger than
aPhys. The matching factor PME is
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PME ¼ jMnj2
jMnj2shower

; (5)

where jMnj2shower is the approximation to the matrix ele-

ment provided by the parton shower:

jMnj2shower ¼
X
i

aijMn�1ij2; (6)

with i running over the possible clusterings and helicities,
and ai being the corresponding antenna for the ith configu-
ration. Note that the form of this approximation depends
on the formulation of the shower (global vs. sector); see
Ref. [7] for details on the differences between global and
sector matching.

The ratio Pn in a helicity-dependent shower has espe-
cially nice and general properties. For decays of colorless
resonances to massless quarks,Pn is independent of theCP
structure of the resonance for helicity matrix elements.
This allows the use of, for example, matrix elements
for Z decay to massless quarks for use in matching pro-
cesses which include W bosons or photons. Only the total
spin of the resonance is relevant for matching to helicity
matrix elements.

The proof of this is straightforward. Consider the ratio of
amplitudes

� � Mn

Mn�1
: (7)

This can be written generically as

� ¼ Mn

Mn�1
¼ �uðqfÞOn

gJða� b�5ÞOn
guð �qfÞ

�uðqiÞOn�1
g Jða� b�5ÞOn�1

g uð �qiÞ
; (8)

where qi, qf ð �qi; �qfÞ are the (anti)quark before and after

additional radiation, respectively, J is the current carried
by the resonance, (a� b�5) parametrizes the CP structure
of the current, and On

g is an unspecified operator which

produces additional QCD radiation up to Oðgns Þ.
Irrespective of the form of the current J, the radiation
operators On

g and On�1
g contain an even number of gamma

matrices: one for each quark-gluon vertex and one for each
quark propagator. Then, it is true that

½On
g; �5� ¼ ½On�1

g ; �5� ¼ 0; (9)

which allows us to freely interchange the positions of
(a� b�5) and Og. We then have

� ¼ Mn

Mn�1
¼ �uðqfÞOn

gJOn
gða� b�5Þuð �qfÞ

�uðqiÞOn�1
g JOn�1

g ða� b�5Þuð �qiÞ
: (10)

Helicity spinors are eigenvectors of �5 with eigenvalues
equal to their helicities. The helicity of massless quarks is
preserved in QCD; that is,

�5uð �qÞ ¼ h �quð �qÞ and h �qi ¼ h �qf : (11)

We then find that

� ¼ �uðqfÞOn
gJOn

guð �qfÞða� bh �qÞ
�uðqiÞOn�1

g JOn�1
g uð �qiÞða� bh �qÞ

¼ �uðqfÞOn
gJOn

guð �qfÞ
�uðqiÞOn�1

g JOn�1
g uð �qiÞ

; (12)

proving that Pn is independent of the CP structure of the
resonance. Note that by crossing symmetry, this proof also
holds for particles created in the final state from parton-
parton scattering.
Based on the universality of Pn, the current VINCIA

implementation includes matching to the helicity ampli-
tudes listed in Table I, with V and S denoting generic
colorless spin-1 and spin-0 particles, respectively. The
corresponding massless helicity amplitudes squared were
obtained by modifying MADGRAPH v. 4.4.26 [15] to extract
individual helicity configurations and are evaluated at run-
time using the HELAS libraries [16]. For processes involv-
ing decaying massive vector bosons, the spin of the vector
is summed over in computing the helicity matrix element.
In addition, matching is done for on-shell particles, and so
the mass of the decaying resonance is artificially set to the
center-of-mass energy Q. Note that the HELAS libraries are
so far not included in the VINCIA package itself and must be
downloaded separately. The default VINCIA MAKE target
will automatically attempt to download the MADGRAPH

package and compile the HELAS library from there.
Alternatively, the user has the option of providing a pre-
compiled HELAS library.

C. Massive partons

The helicity-dependent formalism presented in this
paper is limited to massless partons. For massive partons,
VINCIA reverts to the unpolarized massive framework

presented in Ref. [17]. By default, this applies to charm
and heavier quarks. User options are provided that allow
the massive treatment to be applied also to s quarks, or

TABLE I. Matrix elements available in VINCIA for helicity-dependent matching corrections,
with V (S) a generic colorless spin-1 (spin-0) boson with arbitrary couplings.

Decaying Order beyond Born

particle 0 1 2 3 4

V, S q �q q �qg q �qgg, q �qq0 �q0 q �qggg, q �qq �q0g q �qgggg, q �qq0 �q0gg, q �qq0 �q0q00 �q00
S gg ggg gggg ggggg � � �
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to force c and/or b quarks to be treated as massless. For
completeness, we describe here what the code does when
helicity dependence is switched on (as it is by default)
and one or more massive partons are either present in
the Born-level event (e.g., via a Z! b �b decay) or
created during the shower evolution (e.g., via a g! b �b
splitting).

If a massive parton is present already in the Born-level
event, the entire event is treated as unpolarized. That is, all
parton helicities are ignored, including those of massless
partons. The massive shower algorithm described in
Ref. [17] is applied, and hence mass corrections are
included, even if helicity dependence is not.

If no massive parton is present in the Born-level event,
the helicity-dependent shower described in this paper is
applied to the event, but trial splittings of gluons to massive
quarks are still allowed. If such a branching is accepted, all
helicities are then ignored from that point onwards, and the
further event evolution proceeds according to the unpolar-
ized algorithm [17], as above.

A subtlety arises concerning the matching to matrix
elements. As described above, the helicity-dependent for-
malism allows us to use matrix elements for Z decay to
represent any vector boson, and matrix elements for H
decay to represent any scalar. For spin-summed matrix
elements, however, this universality breaks down. The
user should therefore be aware that, while the full range
of matched matrix elements is still available for Z and H0

decays to unpolarized massive particles, the corresponding
corrections for W and Hþ decays to massive partons have
so far not been implemented.

For future reference, we note that phase-space maps for
antennas involving massive particles are available in
Ref. [17], and a set of spin-dependent antenna functions
were defined in Ref. [18].

III. HELICITY-DEPENDENT
ANTENNA FUNCTIONS

Parton showers (including the dipole/antenna varieties)
are governed by the properties of soft and collinear emis-
sions in QCD. The soft and collinear limits of massless
QCD matrix elements are the universal Altarelli-Parisi
splitting functions [19] and take the schematic form

lim
sij!0
jMð1; . . . ; i; j; . . . ; nÞj2

¼ 1

sij
g2sCijP

i;j bijðzÞjMð1; . . . ; bij; . . . ; nÞj2; (13)

where Cij is the color factor, g2s ¼ 4��s is the QCD

coupling, and particles i and j are replaced by bij in the
matrix element on the right. P

i;j bijðzÞ is the splitting

function representing the distribution of energy fraction
z carried by particle i. The Altarelli-Parisi splitting func-
tions for massless quarks and gluons of definite helicity

were given in their original paper and are reproduced in
Table II. Note that rows in Table II sum to the familiar,
unpolarized, Altarelli-Parisi splitting functions.
The VINCIA Monte Carlo is a dipole antenna shower [13]

based on nested 2! 3 splitting processes. This splitting
can be represented as IK ! ijk, for initial partons I, K and
final partons i, j, k. As VINCIA works in the color-ordered
limit of QCD, the initial and final partons are assumed to be
in color order, as well. We will also assume that all partons
are massless, unless otherwise specified. The phase space
for emission is defined by the dimensionless variables yij
and yjk, where

yij ¼
2pi � pj

s
; yjk ¼

2pj � pk

s
; (14)

and s � ðpi þ pj þ pkÞ2 ¼ ðpI þ pKÞ2 is the invariant

mass of the dipole antenna system. The phase space of
the emission is defined by the triangle yij, yjk � 0, yij þ
yjk � 1.

The probability of emission is governed by the antenna
function, which is a function of all relevant momenta;
quantum numbers; and the formulation of the shower.
For the splitting IK ! ijk, the antenna function can be
expressed in the form

a
typeðorderÞ
j=IK ðpi; pj; pkÞ; (15)

where ‘‘type’’ refers to global or sector antennas and
‘‘order’’ is the order in �s to which the antennas are
computed. When obvious from context, the superscripts
will be omitted. In this paper, we will consider exclusively
the lowest-order antenna functions, and so we can define
the color- and coupling-stripped antenna

aj=IKðpi; pj; pkÞ ¼ g2sCj=IK �aj=IKðpi; pj; pkÞ: (16)

For simplicity, we will work with the color- and coupling-
stripped antenna in the following. For massless partons,
�aj=IKðpi; pj; pkÞ is a function of the kinematic invariants yij
and yjk only.

The unpolarized global and sector antennas used in
VINCIA were defined in Refs. [7,9,13]. We wish to extend

TABLE II. Helicity-dependent Altarelli-Parisi splitting func-
tions PðzÞ for splittings a! bc, with z defined as the energy
fraction taken by parton b. The labels in the top row denote the
helicities of the two final particles in the order they appear:
ðhb; hcÞ. The empty columns are forbidden by quark chiral
symmetry. By the P and C invariance of QCD, the same
expressions apply after exchanging � $ þ or q$ �q.

þþ �þ þ� ��
gþ ! gg: 1=zð1� zÞ ð1� zÞ3=z z3=ð1� zÞ 0

gþ ! q �q: � � � ð1� zÞ2 z2 � � �
qþ ! qg: 1=ð1� zÞ � � � z2=ð1� zÞ � � �
qþ ! gq: 1=z ð1� zÞ2=z � � � � � �
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the global and sector antennas to include full helicity
dependence of all partons in the antenna. Our discussion
will only include antennas in which all particles are
massless. Antenna-splitting functions including helicity
dependence were defined in Ref. [10] as ratios of matrix
elements, but here, we will present a general treatment of
the form of the antennas. There are many constraints that
must be imposed on the antennas to determine the singular
terms; most importantly, the helicity-dependent antenna
functions must appropriately reproduce the helicity-
dependent Altarelli-Parisi splitting functions in the col-
linear limits. Note that this only constrains the singular
terms of the antenna; the nonsingular terms are uncon-
strained and can be interpreted as uncertainties in higher
log-order terms. Also, when summed over final parton
helicities, the antenna functions should reproduce the
unpolarized antenna functions, up to terms that are
nonsingular. In the following subsections, we will discuss
the construction of global and sector helicity-dependent
antennas.

Before discussing the global and sector antennas, we
will distinguish the definition and utility of helicity to
define a massless particle’s spin from other definitions
in the literature or used in simulation code. The Les
Houches Accords of 2001 [20] outlined a set of variables
by which to define the properties of particles in
Monte Carlo event simulations. The variable SPINUP was
introduced to quantify the spin of a particle, and is
defined to be

Double SPINUP(I).—Cosine of the angle between

the spin vector of particle I and the 3-momentum of

the decaying particle, specified in the lab frame.

This definition of spin for particles in Monte Carlos
is unfortunately complicated and not widely applicable.
Its use has been mainly restricted to treating polarized
� decays. In this and future work, we propose using
chirality as the basis for defining spin for massive or
massless fermions. Chirality is Lorentz invariant, relevant
in weak decays, and reduces to helicity for massless
fermions.

Also, polarized splitting functions [12] should be dis-
tinguished from helicity splitting functions. It is first an
issue of semantics. Helicity is the handedness of the cir-
cular polarization of a particle with respect to its momen-
tum. For massless particles, this is Lorentz invariant, as
mentioned earlier. Polarized splitting functions instead
reference the linear polarization of a particle with respect
to the plane of the splitting. They are thus not Lorentz
invariant, even for massless particles. However, polarized
splitting functions can be used to approximate the azimu-
thal correlations between subsequent emissions and the
effect on the energy distribution of the shower. Helicity
splitting functions do not have this property; however, the

azimuthal correlations do, of course, reappear when the
shower is matched to matrix elements.

A. Global antennas

The forms of the global antennas are found by enforcing
several requirements. Global antennas contain the full soft
limit of emitted gluons, but neighboring antennas share
a collinear limit of gluons. To construct the helicity-
dependent global antennas, then, every possible helicity
configuration of neighboring antennas must reproduce the
correct collinear limits. Also, the helicity-dependent anten-
nas can become negative over a significant region of phase
space. For the use of the antenna functions as probability
distributions on phase space, they must be positive on all of
phase space.
For the unpolarized global antennas, it is a straightfor-

ward exercise to incorporate all constraints to determine the
antennas. We present an example of this in Appendix A 1.
The construction of helicity-dependent global antennas is
more subtle, but we employ the following requirements to
simplify the analysis:
(1) Bose-Einstein symmetry. The antenna functions

must be symmetric when gluons of the same helicity
are exchanged.

(2) C and P symmetry of QCD. The expressions for the
antennas are unchanged with þ $ �, q$ �q.

(3) Neighboring antennas sum to reproduce the full
collinear limits.

(4) The singular terms of the helicity-dependent global
antennas must sum to reproduce the singular terms
of the unpolarized global antennas.

(5) Positivity of global antennas. Because the collinear
limits of gluons are constructed from the sum of
neighboring antennas, the antennas are not guaran-
teed to be positive even in the singular regions of
phase space. The positivity requirement must be
enforced in the singular as well as the nonsingular
regions of phase space.

A careful accounting of these requirements produces
helicity-dependent global antennas that depend on three
arbitrary parameters. One of these parameters fixes the
form of the spin-summed or unpolarized antennas, which
we call �, while the other two are artifacts of the prolif-
eration of helicity-dependent antennas. The latter two
parameters can consistenly be set to zero, which we choose
to do in the following. The complete procedure, with fully
general expressions, is described in Appendix A 2. Here,
we just give the forms of the single-parameter antenna
functions implemented in VINCIA, which are defined
in Table III.
To estimate shower uncertainties due to the ambiguous

choice of nonsingular terms, we define a set of ‘‘MIN’’
and ‘‘MAX’’ antenna functions which are smaller and
larger, respectively, over all of phase space than the
default antennas. For the MAX antennas, the finite terms
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of all helicity-dependent antennas are fixed to a large
constant value; we choose to set the constant to be 5.0.
This is large enough to guarantee that all antennas are
positive on phase space. MIN antennas are more subtle,
because some helicity-dependent antennas cannot be de-
creased and remain positive on phase space. To assuage
this, we choose constants to subtract from those helicity-
dependent antennas which are large and positive enough
to allow this. (Specifically, we subtract the minimum
value on the 2! 3 phase space of the singular pieces
of the given antenna.) This procedure guarantees that,
when summed over helicities, the MIN antennas are
smaller than the default antennas in VINCIA. We present
the choice of MIN antennas in Table IV.

B. Sector antennas

The helicity-dependent sector antennas are defined by
reproducing the appropriate Altarelli-Parisi splitting func-
tions as the emitted particle becomes collinear with respect

to either of the initial particles. This requirement uniquely
fixes the singular components of all sector antennas but
still allows for freedom in the choice of nonsingular
terms in the antennas. The nonsingular terms can be chosen
so that the sector antennas reproduce matrix elements
for particular processes, which was done, for example,
in Ref. [10]. Positivity of the sector antenna functions
is guaranteed in the singular regions, because the
antennas reproduce the universal Altarelli-Parisi functions.
However, for some antennas, nonsingular pieces must be
added to keep the antennas positive in the nonsingular
regions of phase space.
Defining the antenna functions by a ratio of matrix

elements is one prescription for choosing the nonsingular
terms that are necessary to enforce positivity of the antenna
on all of phase space. Our prescription for the choice of
nonsingular terms for the sector antennas is to add only the
minimal terms necessary. For antennas whose singular
terms are positive on all of phase space, we choose to set
the nonsingular terms to zero. For those antennas which
require the addition of nonsingular terms for positivity, we
choose to add constants where possible and only include
higher-order terms in yij and yjk if necessary for simplicity.

An example of the construction of sector antennas from the
collinear limits and positivity is given in Appendix A 3,
and the coefficients of the terms in the sector antennas are
given in Table V.
To estimate shower uncertainties due to the ambiguous

choice of nonsingular terms, we define a set of MIN and
MAX antenna functions, as in the global shower case.
For simplicity, the finite terms for the sector MIN and
MAX antennas are chosen to be the same as those in the
global case.
In the VINCIA code, the sector antennas are derived from

the global antennas. Note from Tables III and V that much
of the structure of the sector antennas is captured by the
global antennas if� ¼ 1. To construct a sector antenna, the
corresponding global antenna with the same helicity and
flavor structure is evaluated with � ¼ 1 and the missing

TABLE III. Table of coefficients for helicity-dependent global
antenna functions. By the C and P invariance of QCD, the same
expressions apply with þ $ �, q$ �q. All other antennas are
zero. The parameter � determines the form of the spin-summed
global antennas. The default choice in VINCIA is � ¼ 0, which
corresponds to the Gehrmann—De Ridder, Gehrmann, and
Glover (GGG) spin-summed antennas [21]. The finite terms
are chosen so that the antennas are positive on all of final-state
phase space.

	 1
yijyjk

1
yij

1
yjk

yjk
yij

yij
yjk

y2
jk

yij

y2ij
yjk

1 yij yjk

q �q! qg �q

þþ ! þþþ 1 0 0 0 0 0 0 0 0 0

þþ ! þ�þ 1 �2 �2 1 1 0 0 2 0 0

þ� ! þþ� 1 0 �2 0 1 0 0 0 0 0

þ� ! þ�� 1 �2 0 1 0 0 0 0 0 0

qg! qgg

þþ ! þþþ 1 0 ��þ 1 0 2�� 2 0 0 0 0 0

þþ ! þ�þ 1 �2 �3 1 3 0 �1 3 0 0

þ� ! þþ� 1 0 �3 0 3 0 �1 0 0 0

þ� ! þ�� 1 �2 ��þ 1 1 2�� 2 0 0 0 0 0

gg! ggg

þþ ! þþþ 1 ��þ 1 ��þ 1 2�� 2 2�� 2 0 0 0 0 0

þþ ! þ�þ 1 �3 �3 3 3 �1 �1 3 1 1

þ� ! þþ� 1 ��þ 1 �3 2�� 2 3 0 �1 0 0 0

þ� ! þ�� 1 �3 ��þ 1 3 2�� 2 �1 0 0 0 0

qg! q �q0q0

þþ ! þþ� 0 0 0 0 0 0 1
2 0 0 0

þþ ! þ�þ 0 0 1
2 0 �1 0 1

2 0 0 0

þ� ! þþ� 0 0 1
2 0 �1 0 1

2 0 0 0

þ� ! þ�þ 0 0 0 0 0 0 1
2 0 0 0

gg! g �qq

þþ ! þþ� 0 0 0 0 0 0 1
2 0 0 0

þþ ! þ�þ 0 0 1
2 0 �1 0 1

2 0 0 0

þ� ! þþ� 0 0 1
2 0 �1 0 1

2 0 0 0

þ� ! þ�þ 0 0 0 0 0 0 1
2 0 0 0

TABLE IV. Table of coefficients for MIN helicity-dependent
global antenna functions. In this table, � has been set to zero,
which is the default choice in VINCIA. Only those antennas with
nonzero finite terms are shown.

	 1
yijyjk

1
yij

1
yjk

yjk
yij

yij
yjk

y2
jk

yij

y2ij
yjk

1

q �q! qg �q

þþ ! þþþ 1 0 0 0 0 0 0 �4
þþ ! þ�þ 1 �2 �2 1 1 0 0 2

qg! qgg

þþ ! þþþ 1 0 1 0 �2 0 0 �3
þþ ! þ�þ 1 �2 �3 1 3 0 �1 3

gg! ggg

þþ ! þþþ 1 1 1 �2 �2 0 0 �4
þþ ! þ�þ 1 �3 �3 3 3 �1 �1 3.7
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terms added to recover the full sector antenna. The precise
relationship between the sector ( �asct) and global ( �agl)
antennas for � ¼ 1 for gluon emission is

�a sct
j=IKðyij; yjkÞ ¼ �aglj=IKðyij; yjkÞ

þ �Ig�hKhk

�
�hIhi�hIhj

�1þ yjk þ y2jk
yij

�

þ �hIhj

�
1

yijð1� yjkÞ �
1þ yjk þ y2jk

yij

��

þ �Kg�hIhi

�
�hIhj�hKhk

�1þ yij þ y2ij
yjk

�

þ �hKhj

�
1

yjkð1� yijÞ �
1þ yij þ y2ij

yjk

��
:

Here, �Ig is 1 if I is a gluon and 0 otherwise, and �hihj is 1 if

the helicity of particles i and j are the same and 0

otherwise. For antennas with gluons splitting to quarks,
the sector antennas are twice the global antennas.

IV. RESULTS

A. Comparison to matrix elements

In order to examine the quality of the approximation
furnished by a shower based on the antennas derived above
independently of the shower code, we follow the approach
used for global and sector unpolarized antennas in
Refs. [7,9,17,22]. We use RAMBO [23] (an implementation
of which has been included in VINCIA) to generate uni-
formly distributed four-, five-, and six-parton phase-space
points. At each phase-space point, we use MADGRAPH v.
4.4.26 [15] and the HELAS libraries [16] to evaluate the
leading-color, helicity-dependent matrix element. As with
matching, the MADGRAPH code has been modified to ex-
tract individual helicity configurations and color structures.
For each phase-space point and helicity configuration,

the corresponding antenna shower approximation to the
matrix element is then computed. This is done by using a
clustering algorithm that contains the exact inverse of the
default VINCIA 2! 3 kinematics map [13]. This 3! 2
clustering procedure is continued until the desired matched
order is reached. At each step in the kinematic clustering
procedure, the antennas corresponding to all possible in-
termediate spins that could have been generated by the
helicity-dependent shower are summed over. To match the
global shower to matrix elements requires summing over
all possible kinematic clustering histories. The sector
shower, by contrast, has a unique kinematic history. To
determine which sector is clustered in each step, a parti-
tioning variable must be used. Our default sector decom-
position prescription is based on the variable Q2

sj , defined

in Ref. [7]. The three-parton configuration with the small-
est value ofQ2

sj gets clustered. This procedure produces the

shower approximation to the matrix element as a nested
product of helicity-dependent antenna functions.
To compare the shower to matrix elements, we will

consider Z and H decays to quarks with additional radia-
tion. We begin by directly comparing the helicity matrix
elements to the helicity shower approximation. In the
comparison, we will organize the helicity configurations
by their complexity. We refer to processes with the maxi-
mum number of like helicities with the standard name of
‘‘maximally helicity violating’’ (MHV). Processes with
one spin flip with respect to MHV we refer to as ‘‘next to
MHV’’ (NMHV), and similarly for more complex spin
configurations. We will see that the helicity-dependent
shower approximates the MHV helicity matrix elements
very well, and the accuracy of the shower decreases as the
helicity structure becomes more complicated. However,
NMHVand higher helicity configurations are subdominant
contributions to the spin-summed process, in general.
Thus, when summing over spins, we expect the helicity

TABLE V. Table of coefficients for helicity-dependent sector
antenna functions. By the C and P invariance of QCD, the same
expressions apply with þ $ �, q$ �q. All other antennas are
zero. These are the default assignments in VINCIA. The finite
terms are chosen so that the antennas are positive on all of final-
state phase space.

	 1
yijyjk

1
yij

1
yjk

yjk
yij

yij
yjk

y2
jk

yij

y2ij
yjk

1
yjkð1�yijÞ

1
yijð1�yjkÞ 1 yij yjk

q �q! qg �q

þþ ! þþþ 1 0 0 0 0 0 0 0 0 0 0 0

þþ ! þ�þ 1 �2 �2 1 1 0 0 0 0 2 0 0

þ� ! þþ� 1 0 �2 0 1 0 0 0 0 0 0 0

þ� ! þ�� 1 �2 0 1 0 0 0 0 0 0 0 0

qg! qgg

þþ ! þþþ 1 0 0 0 0 0 0 1 0 0 0 0

þþ ! þ�þ 1 �2 �3 1 3 0 �1 0 0 3 0 0

þþ ! þþ� 0 0 �1 0 �1 0 �1 1 0 0 0 0

þ� ! þþ� 1 0 �3 0 3 0 �1 0 0 0 0 0

þ� ! þ�� 1 �2 0 1 0 0 0 1 0 0 0 0

þ� ! þ�þ 0 0 �1 0 �1 0 �1 1 0 0 0 0

gg! ggg

þþ ! þþþ 1 0 0 0 0 0 0 1 1 0 0 0

þþ ! þ�þ 1 �3 �3 3 3 �1 �1 0 0 3 1 1

þþ ! þþ� 0 0 �1 0 �1 0 �1 1 0 0 0 0

þþ ! �þþ 0 �1 0 �1 0 �1 0 0 1 0 0 0

þ� ! þþ� 1 0 �3 0 3 0 �1 0 1 0 0 0

þ� ! þ�� 1 �3 0 3 0 �1 0 1 0 0 0 0

þ� ! þ�þ 0 0 �1 0 �1 0 �1 1 0 0 0 0

þ� ! �þ� 0 �1 0 �1 0 �1 0 0 1 0 0 0

qg! q �q0q0

þþ ! þþ� 0 0 0 0 0 0 1 0 0 0 0 0

þþ ! þ�þ 0 0 1 0 �2 0 1 0 0 0 0 0

þ� ! þþ� 0 0 1 0 �2 0 1 0 0 0 0 0

þ� ! þ�þ 0 0 0 0 0 0 1 0 0 0 0 0

gg! g �qq

þþ ! þþ� 0 0 0 0 0 0 1 0 0 0 0 0

þþ ! þ�þ 0 0 1 0 �2 0 1 0 0 0 0 0

þ� ! þþ� 0 0 1 0 �2 0 1 0 0 0 0 0

þ� ! þ�þ 0 0 0 0 0 0 1 0 0 0 0 0
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shower to have comparable accuracy to the spin-summed
matrix element as for MHV configurations.

In Fig. 1, we compare the parton shower approximation
to the matrix element for the process H ! qggg �q for
different spin configurations of the gluons. As expected,
the MHV configuration is best approximated by the helic-
ity shower. Also, note that the global shower is more

accurate than the sector shower for the same spin configu-
ration. Note, however, that flat phase space is unphysical,
and the effective accuracy of the shower will actually be
significantly better for realistic phase-space weighting.
It is interesting to compare the relative weight of the spin

configurations generated by the helicity shower. In Fig. 2,
we plot the ratio of the matrix element approximation from
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FIG. 1 (color online). Accuracy of individual configurations in the shower approximation compared to helicity-dependent LO matrix
elements for H ! qggg �q. Distributions of log 10ðPS=MEÞ in a flat phase-space scan, normalized to unity.
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normalized to unity.
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the global helicity shower to the spin-summed matrix
element approximation for both H and Z decay processes.
The corresponding plots for the sector shower are similar.
As expected, the MHV-type matrix elements are most of
the spin-summed result. This is most evident in the plot for
the H decay. Because the H is a scalar, the helicity of the
quark decay products must be the same, and so the MHV
configuration consists of all quarks and gluons with the
same helicity. By contrast, because the Z is a vector, the
helicities of the quarks are different, and so the MHV
configuration already has one spin flipped.

We now compare spin-summed matrix elements to sum-
ming over spin configurations in the helicity shower and to
an unpolarized antenna shower as in Refs. [7,9]. As men-
tioned earlier, we expect some level of accuracy improve-
ment with the spin-summed helicity shower as compared to
the unpolarized shower. In the helicity shower, some spin
configurations are not allowed to contribute, while the
unpolarized shower gives equal weight to every possible
spin configuration. To compare the two approaches, we
will focus on the singular behavior of the shower, as the
nonsingular terms are arbitrary anyway. To do this, we will
demand that at least one pair of adjacent partons have a
small invariant; namely, we require that yij < 0:01 for

neighbors i and j. The ratio of the parton shower approxi-
mation to the matrix elements is plotted in Fig. 3 for the
global shower and in Fig. 4 for the sector shower. Note that

there is a small decrease in the width of the distributions for
the spin-summed helicity shower with respect to the un-
polarized shower, especially at higher multiplicities.
However, we do not expect that the helicity-dependent

shower will be more accurate than the unpolarized shower
when considering matrix elements with gluons splitting
to quarks. From Tables III and V, the gluon-splitting anten-
nas reproduce the unpolarized antennas by summing
over the final spins for a given initial spin configuration
as well as by summing over the initial spins for a final
spin configuration. This implies that, for example, the
approximation to the spin-summed matrix element for
the process H ! q �qq0 �q0 is exactly the same in the helicity
shower as in the unpolarized shower (up to nonsingular
terms). We therefore do not include comparisons between
the two.
It is also useful to see the dependence of the accuracy of

the shower on the choice of arbitrary finite terms in the
antennas. In Fig. 5, we plot the spin-summed helicity
shower with the default, MIN, and MAX definitions of
the nonsingular terms in the antennas from Sec. III. Even
with these rather extreme choices for the finite terms in the
antennas (especially for MAX), the shower still gives a
good approximation to the matrix elements. As the multi-
plicity increases, the finite terms become less important.
The previous plots served to illustrate the behavior of

the shower expansions, starting from three partons and
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FIG. 3 (color online). Global showers. Spin-summed helicity-dependent and unpolarized shower approximations compared to LO
matrix elements for H ! q �qþ gluons (above) and Z! q �qþ gluons (below). Distributions of log 10ðPS=MEÞ in a flat phase-space
scan, normalized to unity, with hard configurations excluded.
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making a comparison to the tree-level matrix element
result at each successive multiplicity. However, in the
Giele-Kosower-Skands (GKS) matching algorithm imple-
mented in VINCIA, the matrix element corrections are ac-
tually performed sequentially, order by order. That is, the
correction to four partons is applied before the evolution
goes on to five partons, and so on. In that context, what is
relevant for, say, the six-parton correction factor is there-
fore not the pure shower expansion but rather the approxi-
mation obtained from a single branching step starting from
the five-parton matrix element. Moreover, most of the
previous plots focused on the shower-dominated regions
of phase space. In real life, events will be obtained with a
continuous distribution of scales, from hard to soft. To
illustrate the distribution of correction factors in actual
VINCIA runs, without any phase-space cuts (apart from

the hadronization scale), we make use of the fact that
VINCIA stores several internal diagnostic histograms during

running, when the verbosity parameter VINCIA:VERBOSE is
set to values � 2. These make use of PYTHIA’s simple
histogramming utility and can be printed at the end of
a run by invoking the command VINCIASHOWER::

PRINTHISTOS(). Part of these diagnostics histograms contain

theME/PS weight ratios for both trial and accepted branch-
ings. The latter accurately reflects the distribution of ME/
PS correction factors for each physical branching that
occurs in the evolution. Note, though, that the ratio is

here inverted, from PS/ME to ME/PS; above, we were
interested to know whether the shower over- or under-
counted the matrix element. For GKS matching, we are
interested in the size of the correction factor, which is
proportional to ME/PS.
Figure 6 shows a compilation of such plots, for Z! 4, 5,

and 6 partons, using the default global helicity-dependent
showers. The left-hand pane shows gluon emission distri-
butions, the three curves representing Z! q �qgg, Z!
q �qggg, and Z! q �qgggg, respectively. The central dashed
line represents perfect agreement (the matrix-element cor-
rection factor is unity), while the two solid lines represent a
factor-2 deviation in each direction. Despite the fact that
we are now including hard as well as soft branchings, and
that the matching factors now also include components
designed to absorb the subleading color corrections [9],
the distributions are still quite narrow. Importantly, we do
not observe any substantial degradation of the correction
factor with multiplicity, suggesting that the GKS matching
strategy is quite stable.
In the right-hand pane of Fig. 6, we show the equivalent

distributions for events involving g! q �q splittings. (In
absolute terms, these events are, of course, less frequent
than the gluon emission ones, but here we normalize all
plots to unity.) As expected, the distributions are broader,
reflecting the fact that the uncorrected cascade is less
precise for this type of branching, due to the less singular
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nature of the g! q �q antenna functions. The consequence
of this is that relatively large trial overestimates need to be
used for g! q �q splittings so that the tail of large correc-
tions does not lead to unitarity violations. Nevertheless, the
method appears to remain stable even after multiple g!
q �q splittings (the dotted curve shows the comparison to the
Z! qqq �q �q �q matrix element).

The effect of the GKS matrix element corrections is
to transform the distributions in Fig. 6 back to delta func-
tions (corrected PS ¼ ME) at each order. In particular, the
amount and distribution of g! q �q splittings in the
matrix-element-corrected cascade should thus be sub-
stantially more accurate than would be the case in the
pure shower.

(PS/ME)
10

log
-2 -1 0 1

F
ra

ct
io

n 
of

 P
ha

se
 S

pa
ce

-410

-310

-210

-110

1

10
q q g g →H

Vincia 1.029

Finite terms variation
 3→global, matched to H 

CENTRAL

MAX

MIN

(PS/ME)
10

log
-2 -1 0 1

q q g g →H

Vincia 1.029

Finite terms variation
 3→sector, matched to H 

CENTRAL

MAX

MIN

-

(PS/ME)
10

log
-2 -1 0 1

F
ra

ct
io

n 
of

 P
ha

se
 S

pa
ce

-410

-310

-210

-110

1

10
q q g g →Z

Vincia 1.029

Finite terms variation
 3→global, matched to Z 

CENTRAL

MAX

MIN

(PS/ME)
10

log
-2 -1 0 1

q q g g →Z

Vincia 1.029

Finite terms variation
 3→sector, matched to Z 

CENTRAL

MAX

MIN

FIG. 5 (color online). Central, MIN, and MAX variations of the antennas for the global and sector shower approximations to
LO matrix elements for H ! q �qþ gluons and Z! q �qþ gluons. Distributions of log 10ðPS=MEÞ in a flat phase-space scan,
normalized to unity.

(ME/PS)
10

log
-2 0 2

R
at

e

-410

-310

-210

-110

1

10

210
ME/PS

Vincia 1.029 + MadGraph 4.426 +  Pythia 8.171

q g g  q →Z

q g g g  q →Z

q g g g g  q →Z

V
 I 

N
 C

 I 
A 

R
 O

 O
 T

(ME/PS)
10

log
-2 0 2

R
at

e

-410

-310

-210

-110

1

10

210
ME/PS

Vincia 1.029 + MadGraph 4.426 +  Pythia 8.171

qq  q  q →Z

q g q  q  q →Z

q g g q  q  q →Z

qq  q q  q  q →Z

V
 I 

N
 C

 I 
A 

R
 O

 O
 T

FIG. 6 (color online). Global showers. Distributions of the ME/PS correction factors in actual VINCIA runs, for decays of unpolarized
Z bosons to massless quarks, using helicity-dependent antenna functions. Left: Correction factors for gluon emission. Right:
Correction factors for events involving g! q �q splittings.

HELICITY-DEPENDENT SHOWERS AND MATCHING WITH . . . PHYSICAL REVIEW D 87, 054033 (2013)

054033-11



B. Speed

A central point of the helicity-based approach presented
here is that high computational speeds can be obtained,
even when including matching to quite large partonic
multiplicities. There are essentially three important rea-
sons for this:

(1) The initialization time is essentially zero. In the
GKS matching scheme [9], only the Born-level
cross section needs to be precomputed, and only a
Born-level fixed-order phase-space generator needs
to be initialized, resulting in essentially vanishing
initialization times (of the order of fractions of a
second). This is in contrast to slicing-based strat-
egies like L-CKKW [2,3], MLM [4], and others
[5,24] for which the inclusive cross section for
each matched multiplicity must be precomputed
and a corresponding n-parton phase-space generator
initialized (‘‘warmed up’’) before event generation
can begin.

(2) In all (unweighted) fixed-order calculations, and
consequently also in slicing-based matching strat-
egies, one faces the problem that QCD amplitudes
beyond the first few partons have quite complicated
structures in phase space. This means that even
fairly clever multichannel strategies have a hard
time achieving high efficiency over all of it. In
GKS, this problem is circumvented by generating
the phase space by a (trial) shower algorithm, which
is both algorithmically fast and guaranteed to get at
least the leading QCD singularity structures right.1

Since those structures give the largest contributions,
the fact that the trials are less efficient for hard
radiation has relatively little impact on the overall
efficiency.2 Combining this with the clean proper-
ties of the antenna phase-space factorization and
with matching at the preceding orders, the trial
phase-space population at any given parton multi-
plicity is already very close to the correct one, and
identical to it in the leading singular limits, produc-
ing the equivalent of very high matching and un-
weighting efficiencies.

(3) Finally, the addition of helicity dependence to the
trial generation in this paper allows us to match to
only a single helicity amplitude at a time, at each
multiplicity. This gives a further speed gain relative
to the older approach [9], in which one had to sum
over all helicity configurations at each order. In
addition, the MHV-type helicity configurations
tend to give the dominant contribution to the

spin-summed matrix element. MHV amplitudes are
also those best described by the shower, because
they contain the maximum number of soft and col-
linear singularities.

The speed of the old (helicity-independent) VINCIA

algorithm was examined in Ref. [7], for the process of Z
decay to quarks plus showers, and was there compared to
SHERPA [27], as an example of a slicing-based multileg

matching implementation. In Fig. 7, we repeat this com-
parison, including now the helicity-dependent VINCIA im-
plementations as well. Needless to say, other factors play in
when comparing two completely different programs such
as SHERPA and vinciaþ pythia. We do not attempt to account
fully for differences in code structures and optimizations
here, so the absolute values shown in Fig. 7 should not be
taken too seriously. Nonetheless, we may take the results
obtained with SHERPA as representative of the scaling
exhibited by slicing-based strategies in general, and those
by VINCIA of multiplicative ones.
For SHERPA, we used the COMIX [28] matrix element

generator, while VINCIA’s matrix elements come from
MADGRAPH 4 [15] and HELAS [16]. A matching scale of

5 GeV was imposed for all matched multiplicities in
SHERPA. In VINCIA, matching is normally carried out over

all of phase space; for this comparison, we limited the
highest matched matrix elements to the region above
5 GeV, while lower multiplicities were still matched over
all of their respective phase spaces. In both programs,
bottom quarks were treated as massive, and lighter quarks
as massless. The tests were run on a single 3.05-GHz CPU
(with 4 GB memory) using gcc 4.6 with O2 optimization.

FIG. 7 (color online). Comparison of computation speeds be-
tween SHERPA v. 1.4.0 [27] and vinciav:1:029þ pythiav:8:171, as a
function of the number of legs that are matched to matrix
elements, for hadronic Z decays. Left: Initialization time (to
precompute cross sections, warm up phase-space grids, etc.,
before event generation). Right: Time to generate 1000 parton-
level showered events (not including hadronization), with
VINCIA’s global and sector showers shown separately, with and

without (‘‘old’’) helicity dependence. For comparison, the
average time it takes to hadronize such events with PYTHIA’s
string hadronization model [49] is shown as a dashed horizontal
line. Further details on the setup used for these runs are given in
the text.

1A related type of phase-space generator is embodied by the
SARGE algorithm [25], and there are also similarities with the
forward-branching scheme proposed in Ref. [26].

2As long as all of phase space is covered and the trials remain
overestimates over all of it, something which we have paid
particular attention to in VINCIA; see Ref. [9].
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Hadronization and initial-state photon radiation were
switched off.

The point about initialization time is clearly illustrated
in the left-hand pane of Fig. 7; in the CKKW-based match-
ing strategy implemented in SHERPA, the integration of
each additional higher-leg matrix element and the warmup
of the corresponding phase-space generator takes progres-
sively more time at startup (note the logarithmic scale),
while VINCIA’s initialization time is independent of the
desired matching level.

In the right-hand pane of Fig. 7, the time required to
generate (unweighted) events in CKKW also starts by
rising rapidly, but then eventually levels off and appears
to saturate at
6 partons. We interpret the reason for this to
be that, while it still takes a long time to compute the total
six-jet cross section (reflected in the left-hand pane), the
actual value of that cross section is quite small, and hence
only a small fraction of the generated events will actually
be of the six-jet variety. The precise behavior, of course,
depends on the choice of matching scale.

In addition, on the right-hand pane of Fig. 7, the solid
VINCIA curves represent the new (helicity-dependent) for-

malism, for global (triangle symbols) and sector (diamond
symbols) showers, respectively. The dashed curves shown
in lighter shades give the corresponding results without
helicity dependence. At two partons—i.e., without any
matching corrections—we see that the VINCIA showers
are currently slightly slower than the SHERPA ones. This
was not the case in Ref. [7], and is due to the trial-
generation machinery in VINCIA having been rewritten in
a simpler form, which is slightly more wasteful of random
numbers, an optimization point we intend to return to in the
future. The main point of our paper, however, is the scaling
with the number of additional matched legs exhibited by
the helicity-dependent GKS matching formalism, which
is almost flat in the sector case, and still significantly
milder in the global case than for the CKKW-based
SHERPA comparison.

C. Validation

To complete the validation of the new helicity-
dependent framework, we include a set of comparisons to
LEP measurements at the event, jet, and particle levels,
respectively. These comparisons were carried out using the
default settings for VINCIA v. 1.029, which include a slight
reoptimization of the hadronization parameters in a new
default tune called ‘‘Jeppsson 5,’’ with parameters given in
Appendix B. For reference, comparisons to default PYTHIA
v. 8.172 (with VINCIA switched off) are provided as well. In
all cases, we consider hadronic decays of unpolarized Z
bosons, at Ecm ¼ 91:2 GeV, corrected for initial-state pho-
ton radiation effects, and letting particles with c� >
100 mm be stable.

All plots were made using VINCIA’s ROOT-based run-
time displays [9,29], which can be saved to graphics files

using the VINCIAROOT::SAVEDISPLAYS() command. VINCIA
is shown with solid (blue) lines and filled dot symbols.
PYTHIA is shown with solid (red) lines and open circle

symbols. Experimental data are shown with black squares
and black crosshairs that correspond to one standard de-
viation. Where applicable, two crosshairs are overplotted
on one another, corresponding to statistical-only and total
(statþ sys, summed in quadrature) uncertainties. Light
gray vertical extensions of the crosshairs illustrate two
standard deviations. The uncertainties on the MC runs
are statistical only, and are shown at the 2� level to be
conservative. In the ratio panes below the main plots, we
show theory/data; the inner (green) shaded bands show
1� deviation contours, and the outer (yellow) ones show
2� contours.3

Since we only apply the helicity-dependent formalism to
massless partons, we begin by focusing on light-flavor
tagged events. A very useful such set of measurements
was performed by the L3 Collaboration [30]. In Fig. 8,
we show how default VINCIA v. 1.029 compares to that
data set, for the Thrust, C, and D parameters (top row),
and for the Wide and Total Jet Broadening (bottom row);
see Ref. [30] for definitions. No significant deviations are
observed, hence the code passes this validation step. As in
previous VINCIA studies [7,9] (and PYTHIA ones [31–33]),
however, one should note that this agreement comes at the
price of using a rather large value for �sðMZÞ,

�sðMZÞ ¼ 0:139; (17)

which, with one-loop running (the default in VINCIA),
corresponds to a five-flavor �QCD value of

�ð5ÞQCD ¼ 0:25 GeV: (18)

In a pure parton shower, such a large value could perhaps
be interpreted as an attempt to compensate for missing
hard higher-multiplicity matrix element corrections. With
VINCIA, however, we find that such an interpretation cannot

be thewhole story, since the default VINCIA settings include
LO matrix-element corrections through Z! 5 partons.
In our view, there are two factors contributing to the

large �s value favored by the PYTHIA and VINCIA tunings.
Firstly, the �s value extracted from a Monte Carlo tuning is

not guaranteed to be directly interpretable as an MS value.
Indeed, CMW argued [34] that a rescaling of the effective
�QCD value by a factor of 1.57 (for five flavors) is appro-

priate when translating fromMS to a coherent Monte Carlo
shower scheme. With the caveat that the original CMW
argument was based on two-loop running while VINCIA

currently defaults to one-loop running, a naive application
to the value found above would reduce the equivalent

MS value to

3For completeness, an additional very slight shading variation
inside each band shows the purely statistical component, where
applicable.
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�ð5ÞMS
QCD 


0:25 GeV

1:57
¼ 0:16 GeV; (19)

corresponding to a (one-loop) value for �sðMZÞ of

0:129. Secondly, this still rather high value should
then be seen in the context of an LOþ LL extraction.
The inclusion of the full next-to-leading-order (NLO)
correction to Z! 3 jets, which is the topic of a forth-
coming paper [35], generates additional order-10% cor-
rections to hard radiation, which should bring the
extracted value further down, and the expectation is that
the tuned value would then be in accordance with other
NLO extractions. We shall return to this issue in more
detail in Ref. [35].

Passing now from event shapes to jets, the first five panes
of Fig. 9 show a comparison to the two-, three-, four-, five-,
and six-jet resolution scales measured by the ALEPH
Collaboration [36] (now including also Z! b �b events),
using the Durham kT clustering algorithm [37] with dis-
tance measure

yij ¼
2min ðE2

i ; E
2
j Þð1� cos �ijÞ
E2
vis

; (20)

for which we use the FASTJET implementation [38].
Formally, Evis is the total visible energy, but since the
ALEPH data were corrected for the distortions caused by
neutrinos escaping detection, we here include neutrinos in
the inputs passed to FASTJET. Hard scales have values
ln ðyÞ 
 0 and hence appear towards the left edge of the
plots in Fig. 9, while soft scales appear towards the
right-hand edges. Nonperturbative effects are expected
to dominate below roughly 1 GeV, corresponding to
ln ð1=yÞ 
 ln ð912=12Þ 
 9. Above this scale, i.e., in the
perturbative region, we observe no disagreement between
the ALEPH data and VINCIA. [Note that the distributions
are affected by the kinematics of B decays starting already
from ln ð1=yÞ 
 ln ð912=52Þ 
 5:8, but these decays are
modeled adequately by PYTHIA, and hence do not trouble
this comparison. The feature at ln ð1=yÞ 
 10 in the five-
and six-jet resolutions corresponds to clustering scales
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FIG. 8 (color online). Event shapes measured in light-flavor tagged events by the L3 experiment at the Z pole [30], compared to
default VINCIA v. 1.029 and PYTHIA v. 8.172.
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below 1 GeV and hence is likely to be associated with a
combination of string breaking and hadron decays.]

As a verification that the perturbative mass corrections
for heavy quarks have not been altered by the new imple-
mentation, the last pane in Fig. 9 shows the ratio of b to
light-quark three-jet resolutions measured by DELPHI
[39], which also appeared as one of the validation plots
in our dedicated study of mass effects [17]. The distribu-
tion is essentially unchanged with respect to the previous
study, and retains its nontrivial shape.

Lastly, we turn to distributions at the individual particle
level. The top row of Fig. 10 shows the charged particle
multiplicity and momentum spectra, again for light flavor
tagged L3 events [30], with no significant deviations
between VINCIA and the data. [The feature around
ln ð1=xÞ 
 6 corresponds to momentum scales close to
the pion mass and is also seen in standalone PYTHIA, hence
we interpret it as an issue with the nonperturbative hadro-
nization model.]

The bottom row of Fig. 10 shows the relative fractions
of various identified particles, normalized by the average
charged particle multiplicity. The experimental numbers
are here labeled ‘‘LEP’’ and represent our own esti-
mates, using a combination of inputs from PDG [40]
and HEPDATA [41]. The two leftmost panes show meson
and baryon fractions, respectively. The meson fractions
are somewhat better described than the baryon ones, and
slightly different tuning priorities are evident between
PYTHIA and VINCIA, but in no case do we see a signifi-

cant deviation from the data. One remark is worth
making, though, that the production of strange and mul-
tistrange baryons tends to be at the lower limit of what
is allowed by the data. We have addressed this by
removing any strange baryon suppression relative to
light flavor ones in the string fragmentation flavor se-
lection, but note that the data might even prefer a slight
enhancement, which is currently not a technical possi-
bility in PYTHIA.
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FIG. 9 (color online). From Top Left: Jet resolution distributions measured by the ALEPH experiment at the Z pole [36]. Bottom
Right: The ratio of three-jet rates in b vs. light flavor tagged events, as a function of Durham y23, measured by the DELPHI experiment
[39]. Comparisons to default VINCIA v. 1.029 and PYTHIA v. 8.172.
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As an additional piece of information less relevant to the
study performed here, the last pane of Fig. 10 shows a
comparison to charm meson fractions. Though the total
amount of charm meson production is reasonably well
described, there appears to be a slight overproduction of
D� mesons in PYTHIA, and both VINCIA and PYTHIA exhibit
an excess of J=c resonances (the four data points corre-
spond to each of the four LEP experiments) and an under-
production of 	c1 and c ð3685Þ. Especially the latter rare
states are certainly not expected to be perfectly described
out of the box, and hencewe mostly include this comparison
as a hint of where future improvements might be useful.

Finally, we should also mention that the code performs
several internal self-consistency checks during initializa-
tion. In particular, the soft and collinear limits of all
antenna functions are checked against the respective eiko-
nal and (helicity-dependent) Altarelli-Parisi kernels, and a
verification is made that the antenna functions remain
positive over all of the physical phase space.

V. CONCLUSIONS

Our development of a helicity-based shower in VINCIA

shows that significant speed gains are obtained when
matching to helicity matrix elements as compared to
matching an unpolarized shower to spin-summed matrix
elements. One reason for this is that the MHV-type helicity
configurations tend to be the dominant contribution to the
spin-summed matrix element. MHV amplitudes are also
those best described by the shower because they contain
the maximum number of soft and collinear singularities.
In addition, the intrinsic accuracy of the helicity shower
is increased with respect to the unpolarized shower for
essentially the same reason.
There are several directions in which the helicity

formalism developed here can be extended in VINCIA.
First, as mentioned in Sec. II C, mass effects can be
included using the phase-space maps from Ref. [17] and
the massive splitting functions from Ref. [18]. In the
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FIG. 10 (color online). Top Row: Inclusive charged particle multiplicity and momentum spectra in light flavor tagged events
measured by the L3 experiment at the Z pole [30]. Bottom Row: Meson, Baryon, and Charm-Meson fractions (normalized to the
average charged multiplicity). Comparisons to default VINCIA v. 1.029 and PYTHIA v. 8.172.
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massive case, the spin of a particle does not have an
unambiguous definition, and so one must take care in
defining the spin in a consistent manner. We advocate for
defining the spin of a massive fermion by its chirality;
however, the spin can also be defined by a projection
onto a reference vector. Both have subtleties: chirality is
Lorentz invariant, but it can flip from mass insertions.
Using a reference vector to define spin breaks Lorentz
invariance, so one must be careful to use the same refer-
ence vector for all calculations so that the final result, when
summed over spins, is Lorentz invariant. Our advocation
for using chirality is based on its Lorentz invariance as well
as its importance in weak decays. Mass effects are particu-
larly important in top quark decays where all of these
effects can be studied.

While there are many subtleties in extending VINCIA to
include initial state radiation for hadron collisions [42] or
next-to-leading-order (NLO) matching [35], implementing
the helicity shower within these frameworks should be
straightforward. The helicity antennas described here
would work in the initial state as well, with the possible
caveat that the finite terms in the antennas might need to be
changed to guarantee positivity in the initial-state phase
space. Matching the shower in hadron collisions to helicity
amplitudes would maintain the speed gains illustrated here.
However, the matching procedure would have to be
changed because, for hadron collisions, it would no longer
be practical to develop a complete library of matrix ele-
ments to which to match. A hybrid approach in which
matrix elements are computed dynamically as well as
extracting some matrix elements from libraries would be
necessary. A similar procedure exists in SHERPA, where
tree-level helicity amplitudes are computed from
Berends-Giele [43] recursion relations in COMIX [28] and
by Feynman diagrams in AMEGIC++ [44]. Matching to
NLO matrix elements would require utilizing the libraries
from BLACKHAT [45], for example, in which the individual
helicity components to the process can be extracted. A
recent study [46] showed that the most efficient method
for calculating helicity amplitudes depends on the spin
configuration as well as the number of external particles.
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APPENDIX A: ANTENNA CONSTRUCTION

1. Construction of unpolarized global antennas

In this section, we present the construction of the
unpolarized global antennas as an illustration of the more
general procedure for determining the helicity-dependent
global antennas. To determine the singular terms in spin-
dependent global antenna functions, it suffices to consider
the gg! ggg emission and gg! g �qq splittings only.
The gluon-splitting antennas are the same as their
sector counterparts, decreased by a factor of 2 because
of the two antennas which contribute. The global gluon
emission antennas are significantly more complicated.
We first use the constraints described in Sec. III A to
determine the spin-summed global antenna functions to
see how they can be used to reproduce familiar results.
The procedure will naturally generalize to the spin-
dependent case.
To analyze the collinear limits of two gluons j and k, it

suffices to consider the configuration of four ordered glu-
ons i, j, k, and l. There are two splittings that contribute to
the collinear limit of j and k:

iðĵ l̂ Þ ! iðjklÞ; ðî k̂ Þl! ðijkÞl:
Here, the parentheses associate the 2! 3 splitting in the
gluon configuration. The singular terms of the antenna for
the first splitting can be written as

ĵ l̂! jkl ¼ 2

yjkykl
þ f1ðyklÞ

yjk
þ f2ðyjkÞ

ykl
(A1)

for some polynomials f1 and f2. Similarly, the second
splitting can be expressed as

î k̂! ijk ¼ 2

yijyjk
þ f3ðyjkÞ

yij
þ f4ðyijÞ

yjk
(A2)

for some polynomials f3 and f4. Note that by Bose sym-
metry, f1 ¼ f3 and f2 ¼ f4. Further, all fi’s are actually
equal because of the symmetric initial and final splitting
states. Thus, we will replace fi � f.
Now, consider the limit where j k k. In this limit, we set

yij ¼ z and ykl ¼ 1� z. Then, the two antennas can be

written as

ĵ l̂! jkl ¼ 1

yjk

�
2

1� z
þ fð1� zÞ

�
; (A3)

î k̂! ijk ¼ 1

yjk

�
2

z
þ fðzÞ

�
: (A4)

Without loss of generality, we can write fðzÞ in the form

fðzÞ ¼ ð�2� �Þ þ �1zþ �2z
2 (A5)
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for some coefficients �, �1, and �2. For consistency, the
sum of these splitting amplitudes must reproduce the
Altarelli-Parisi splitting function:

Pgg gðzÞ ¼ 2

�
1� z

z
þ z

1� z
þ zð1� zÞ

�

¼
�

2

1� z
þ fð1� zÞ

�
þ

�
2

z
þ fðzÞ

�
: (A6)

This requirement enforces �2 ¼ �1 and �1 ¼ 1þ 2� so
that fðzÞ ¼ ð�2� �Þ þ ð1þ 2�Þz� z2. Note that the
GGG partitioning of global antennas [21] corresponds to
� ¼ 0, while the ARIADNE partioning [47,48] corresponds
to � ¼ 1. However, both are special cases of a one-
parameter family of possibilities.

Positivity of the splitting function in the singular regions
can be studied by taking, for example, the limit of the

antenna îk̂!ijk, where yjk ! 0 and yij ! 1. In this limit,

for the antenna to be non-negative, the function f must
satisfy 2þ fð1Þ � 0, or � � 0. Then, the global antenna
for gluon emission is

aðgg! gggÞ ¼ 2

yijyjk
þ�2� �þ ð1þ 2�Þyjk � y2jk

yij

þ�2� �þ ð1þ 2�Þyij � y2ij
yjk

: (A7)

For 0 � � & 4, this antenna is positive on all of final-state
phase space without the addition of any nonsingular terms.
The Laurent coefficients for generic partitioning of the
unpolarized global antennas are presented in Table VI.

2. Construction of global helicity-dependent antennas

In this section, we will provide details for the
construction of the helicity-dependent global antennas.
We will assume that the only possible nonzero gg! ggg
global antennas are those which also have corresponding
nonzero sector antennas. That is, antennas such as þþ !
��� will be set to zero.4 Otherwise, we will assume the
antennas are nonzero. Without loss of generality, all pos-
sible nonzero antennas can be expressed as

þþ ! þþþ ¼ 1

yijyjk
þ fðyjkÞ

yij
þ fðyijÞ

yjk
; þþ ! þ�þ ¼ 1

yijyjk
þ gðyjkÞ

yij
þ gðyijÞ

yjk
;

þþ ! �þþ ¼ h1ðyjkÞ
yij

þ h2ðyijÞ
yjk

; þþ ! þþ� ¼ h2ðyjkÞ
yij

þ h1ðyijÞ
yjk

;

þ� ! þþ� ¼ 1

yijyjk
þ a1ðyjkÞ

yij
þ a2ðyijÞ

yjk
; þ� ! þ�� ¼ 1

yijyjk
þ b1ðyjkÞ

yij
þ b2ðyijÞ

yjk
;

þ� ! þ�þ ¼ c1ðyjkÞ
yij

þ c2ðyijÞ
yjk

; þ� ! �þ� ¼ c2ðyjkÞ
yij

þ c1ðyijÞ
yjk

for some quadratic polynomials f, g, h1, h2, a1, a2, b1, b2,
c1, c2. All other antennas are related by C or P symmetry of
QCD. Note that an antenna only has a nonzero soft limit if
the helicity of the outer gluons in the antenna is conserved.

As in the unpolarized case in the previous section, we
consider the configuration of four ordered gluons i, j, k, l
and study the limit j k k. There are 16 distinct 3! 4 gluon
splittings which could produce these gluons, which are not
related by C or P, which can be used to constrain the form
of the functions defined in the antennas. Demanding that
the eight splitting functions above reproduce the correct
soft and collinear limits for each of these 3! 4 splittings
leads to the requirements that

fðzÞ ¼�fð1� zÞ; a1ðzÞ ¼ b2ðzÞ ¼ fðzÞ;

a2ðzÞ ¼ b1ðzÞ ¼ gðzÞ; h1ðzÞ ¼ c2ðzÞ ¼ z3� 1

1� z
�gð1� zÞ;

(A8)

and that the functions h2ðzÞ and c1ðzÞ be unconstrained.
One example of the constraints is given by, say,þþþ !
þþ�þ splitting. There are two 2! 3 splittings that
contribute to the j k k limit:

ðþþÞþ ! ðþþ�Þþ; þðþþÞ ! þðþ�þÞ:

Demanding that these two splittings give the correct col-
linear limit for j k k corresponding to a þ ! þ� gluon
splitting demands that

4These antennas must vanish by imposing the collinear limit
constraints along with the positivity constraints.

TABLE VI. Singular spin-summed global Laurent coefficients
for the general case. � ¼ 1 is ARIADNE partitioning, and � ¼ 0
is GGG partitioning.

	 1
yijyjk

1
yij

1
yjk

yjk
yij

yij
yjk

y2
jk

yij

y2ij
yjk

q �q! qg �q 2 �2 �2 1 1 0 0

qg! qgg 2 �2 �2� � 1 1þ 2� 0 �1
gg! ggg 2 �2� � �2� � 1þ 2� 1þ 2� �1 �1
qg! q �qq 0 0 1

2 0 �1 0 1

gg! g �qq 0 0 1
2 0 �1 0 1
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h1ðzÞ þ 1

1� z
þ gð1� zÞ ¼ z3

1� z
: (A9)

In addition to the collinear limit constraints, wemust also
demand that the spin-dependent antennas sum to reproduce
the spin-summed antennas as listed in Table VI, as well as
the positivity requirements. First, considering the spin-
summed requirement, the numerators of the splitting func-
tions must sum appropriately:

� 2� �þ ð1þ 2�Þz� z2

¼ fðzÞ þ h1ðzÞ þ a1ðzÞ þ c1ðzÞ;
¼ fðzÞ þ h2ðzÞ þ a2ðzÞ þ c2ðzÞ;
¼ gðzÞ þ h2ðzÞ þ b1ðzÞ þ c2ðzÞ;
¼ gðzÞ þ h1ðzÞ þ b2ðzÞ þ c1ðzÞ: (A10)

Here, � is the parameter of the spin-summed global anten-
nas as defined in the previous section. The positivity require-
ments can be applied to each antenna function individually,

and, in general, the two collinear limits can be used
to constrain each antenna; namely, yij ! 0, yjk>0 and

yjk!0, yij > 0. This leads to the following inequalities:

1

z
þ fðzÞ � 0;

1

z
þ a1ðzÞ � 0;

1

z
þ a2ðzÞ � 0; c1ðzÞ � 0;

c2ðzÞ � 0;
1

z
þ gðzÞ � 0;

1

z
þ b1ðzÞ � 0;

1

z
þ b2ðzÞ � 0;

h1ðzÞ � 0; h2ðzÞ � 0;

(A11)

where 0< z � 1 in the final-state shower phase space.
Imposing all constraints from Eq. (A8), (A10), and

(A11), the singular terms in the helicity-dependent global
antennas for gluon emission can be written as

þþ ! þþþ ¼ 1

yijyjk
þ ð�1 � �þ 1Þ � 2ð�1 � �þ 1Þyjk

yij
þ ð�1 � �þ 1Þ � 2ð�1 � �þ 1Þyij

yjk
;

þþ ! þ�þ ¼ 1

yijyjk
þ�ð�1 þ 3Þ þ ð2�1 þ 3� 
1Þyjk � ð�1 þ 1� 
1Þy2jk

yij

þ�ð�1 þ 3Þ þ ð2�1 þ 3� 
1Þyij � ð�1 þ 1� 
1Þy2ij
yjk

;

þþ ! �þþ ¼ 
1yjk þ ð�1 � 
1Þy2jk
yij

;

þþ ! þþ� ¼ 
1yij þ ð�1 � 
1Þy2ij
yjk

;

þ� ! þþ� ¼ 1

yijyjk
þ ð�1 � �þ 1Þ � 2ð�1 � �þ 1Þyjk

yij
þ�ð�1 þ 3Þ þ ð2�1 þ 3� 
1Þyij � ð�1 þ 1� 
1Þy2ij

yjk
;

þ� ! þ�� ¼ 1

yijyjk
þ�ð�1 þ 3Þ þ ð2�1 þ 3� 
1Þyjk � ð�1 þ 1� 
1Þy2jk

yij
þ ð�1 � �þ 1Þ � 2ð�1 � �þ 1Þyij

yjk
;

þ� ! þ�þ ¼ 
1yij þ ð�1 � 
1Þy2ij
yjk

;

þ� ! �þ� ¼ 
1yjk þ ð�1 � 
1Þy2jk
yij

for the parameters �, �1, and 
1. Here, � is the
spin-summed parameter which can be set appropriately
to compare the spin-dependent antennas to the corre-
sponding spin-summed or unpolarized antennas. The
constraints on positivity are that � � 0, 0 � �1 � �,
and 
1 � 0.

We also must impose the constraint that all antennas are
positive in the nonsingular regions of phase space. This
requires that finite terms be added to some spin-dependent
antennas. The procedure for determining the nonsingular
terms will be discussed in the following section, and simi-
lar nonsingular terms are found in the global case as in the
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sector case. These nonsingular terms are included in
Table III.

3. Construction of helicity-dependent
sector antennas

In this section, we will provide an example of how the
sector antennas are constructed from their singular limits.
Consider the splitting gþgþ ! gþg�gþ to three final-
state gluons i, j, and k, respectively. The singular terms
of the sector antenna for this splitting can be written in the
generic form as

aðgþgþ ! gþg�gþÞ ¼ 1

yijyjk
þ fðyjkÞ

yij
þ fðyijÞ

yjk
(A12)

for some function fðzÞ. The form of this antenna is
constrained by its soft and collinear limits. The eikonal
term, 1=yijyjk, is required by the existence of a soft limit

for the emission of the negative helicity gluon for this
splitting. The other terms are constrained by the form of
the collinear limits. Note that the splitting is symmetric
under the interchange of gluons i and k, which demands
that the numerator of the terms proportional to 1=yij and

1=yjk be identical. Thus, to determine the full form of

the singular terms, we only need to consider a single
collinear limit.

In the limit that i k j, the antenna must reproduce the
splitting function:

aðgþgþ ! gþg�gþÞ!ikj 1

yij
Pg�gþ gþðzÞ ¼

1

yij

ð1� zÞ3
z

;

(A13)

where z is the energy fraction of the emitted negative
helicity gluon. In this limit, yij ! 0 and yjk ! z, and this

constrains the function fðzÞ:

aðgþgþ ! gþg�gþÞ!ikj 1

yij

�
1

z
þ fðzÞ

�
¼ 1

yij

ð1� zÞ3
z

:

(A14)

It follows that fðzÞ ¼ �3þ 3z� z2, and thus the
antenna is

aðgþgþ ! gþg�gþÞ ¼ 1

yijyjk
� 3

yij
� 3

yjk
þ 3

yjk
yij

þ 3
yij
yjk
� y2jk

yij
� y2ij

yjk

þ non-singular terms: (A15)

This form of the antenna produces the correct limiting
behavior. However, to be able to use the antenna in a
Markov-chain Monte Carlo, it must also have the interpre-
tation as a probability density, and so must be non-negative
on all of phase space. Currently, VINCIA only showers the
final state, so we will only consider the final-state phase
space for this antenna. Note that, for example, at the point
yij ¼ yjk ¼ 1=2, the singular terms of the antenna sum to

the value �3. Therefore, we must carefully add nonsingu-
lar terms to the antenna to guarantee positivity.
To do this, we will find the minimum of the antenna on

final-state phase space and add theminimal nonsingular terms
necessary to guarantee positivity. By the symmetry of the
antenna, the minimum lies on the line yij¼yjk¼x. Along

this line, the derivative of the singular terms of the antenna is

d

dx
aðgþgþ ! gþg�gþÞsing ¼ � 2

x3
þ 6

x2
� 2: (A16)

Demanding that the derivative be zero at the minimum pro-
duces a cubic equation with an irrational solution on phase
space. To simplify this, we add the nonsingular term yij þ yjk
to the original antenna. This term removes the �2 from the
derivative, producing a very simple equation to find the
minimum of the modified antenna. The minimum is located
at x ¼ 1=3, where the modified antenna takes the value�3.
Therefore, the following antenna is used for the splitting
gþgþ ! gþg�gþ in the sector shower in VINCIA:

aðgþgþ ! gþg�gþÞ ¼ 1

yijyjk
� 3

yij
� 3

yjk
þ 3

yjk
yij

þ 3
yij
yjk
� y2jk

yij
� y2ij

yjk

þ 3þ yij þ yjk: (A17)

This is non-negative on all of final-state phase space.

APPENDIX B: JEPPSSON 5 TUNE PARAMETERS

Note: the Jeppsson 5 parameter set is optimized for use with VINCIA, and to some extent depends on the behavior of that
shower model near the hadronization cutoff. It is therefore not advised to use this parameter set directly for standalone
PYTHIA 8.

! * alphaS

Vincia:alphaSvalue ¼ 0:139 ! alphaS(mZ) value

Vincia:alphaSkMu ¼ 1:0 ! Renormalization-scale prefactor

Vincia:alphaSorder ¼ 1 ! Running order

Vincia:alphaSmode ¼ 1 ! muR ¼ pT: emit and Q:split

Vincia:alphaScmw ¼ off ! CMW rescaling of Lambda on/off
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! * Shower evolution and IR cutoff

Vincia:evolutionType ¼ 1 ! pT-evolution

Vincia:orderingMode ¼ 2 ! Smooth ordering

Vincia:pTnormalization ¼ 4. !QT ¼ 2pT
Vincia:cutoffType ¼ 1 ! Cutoff taken in pT

Vincia:cutoffScale ¼ 0:6 ! Cutoff value (in GeV)

! * Longitudinal string fragmentation parameters

StringZ:aLund ¼ 0:38 ! Lund FF a (hard fragmentation supp)

StringZ:bLund ¼ 0:90 ! Lund FF b (soft fragmentation supp)

StringZ:aExtraDiquark ¼ 1:0 ! Extra a to suppress hard baryons

! * pT in string breakups

StringPT:sigma ¼ 0:275 ! Soft pT in string breaks (in GeV)

StringPT:enhancedFraction ¼ 0:01 ! Fraction of breakups with enhanced pT

StringPT:enhancedWidth ¼ 2:0 ! Enhancement factor

! * String breakup flavor parameters

StringFlav:probStoUD ¼ 0:215 ! Strangeness-to-UD ratio

StringFlav:mesonUDvector ¼ 0:45 ! Light-flavor vector suppression

StringFlav:mesonSvector ¼ 0:65 ! Strange vector suppression

StringFlav:mesonCvector ¼ 0:80 ! Charm vector suppression

StringFlav:probQQtoQ ¼ 0:083 ! Diquark rate (for baryon production)

StringFlav:probSQtoQQ ¼ 1:00 ! Optional Strange diquark suppression

StringFlav:probQQ1toQQ0 ¼ 0:031 ! Vector diquark suppression

StringFlav:etaSup ¼ 0:68 ! Eta suppression

StringFlav:etaPrimeSup ¼ 0:11 ! Eta’ suppression

StringFlav:decupletSup ¼ 1:0 ! Optional Spin-3=2 Baryon Suppression

[1] A. Buckley, J. Butterworth, S. Gieseke, D. Grellscheid,
S. Hoche et al., Phys. Rep. 504, 145 (2011).

[2] S. Catani, F. Krauss, R. Kuhn, and B. Webber, J. High
Energy Phys. 11 (2001) 063.
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