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Abstract
A measurement of the cross-section for pp → Z → e+e− is presented using data at√

s = 7TeV corresponding to an integrated luminosity of 0.94 fb−1. The process is
measured within the kinematic acceptance pT > 20 GeV/c and 2 < η < 4.5 for the
daughter electrons and dielectron invariant mass in the range 60–120 GeV/c2. The
cross-section is determined to be

σ(pp → Z → e+e−) = 76.0± 0.8± 2.0± 2.6 pb

where the first uncertainty is statistical, the second is systematic and the third is
the uncertainty in the luminosity. The measurement is performed as a function of
Z rapidity and as a function of an angular variable which is closely related to the
Z transverse momentum. The results are compared with previous LHCb measure-
ments and with theoretical predictions from QCD.
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dUniversità di Cagliari, Cagliari, Italy
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mUniversità della Basilicata, Potenza, Italy
nLIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
oHanoi University of Science, Hanoi, Viet Nam
pMassachusetts Institute of Technology, Cambridge, MA, United States

vi



1 Introduction

The measurement of vector boson production permits a number of tests of electroweak
physics and of quantum chromodynamics (QCD) to be performed. In particular, the
angular acceptance of LHCb, roughly 2 < η < 5 in the case of the main tracking sys-
tem where η denotes pseudorapidity, complements that of the general purpose detectors
ATLAS and CMS. LHCb measurements provide sensitivity to the proton structure func-
tions at very low Bjorken x values where the parton distribution functions (PDFs) are
not particularly well constrained by previous data from HERA (see for example Ref. [1]).

The most straightforward decay modes in which the W± and Z bosons can be studied
using the LHCb data are the muonic channels, Z → µ+µ− and W+ → µ+νµ. Measure-
ments of Z → µ+µ− and of Z → τ+τ− using the LHCb data at

√
s = 7 TeV have already

been presented [2, 3]. To complement these studies, the electron channels Z → e+e−

and W+ → e+νe, which offer statistically independent samples with different sources of
systematic uncertainties, are examined.

The main difficulty with electron1 reconstruction in LHCb is the energy measurement.
A significant amount of material is traversed by the electrons before they reach the mo-
mentum analysing magnet, and their measured momenta are therefore liable to be reduced
by bremsstrahlung. For low energy electrons, the bremsstrahlung photons can frequently
be identified in the electromagnetic calorimeter and their energies added to the measured
momentum of the electron. However, in the case of W± and Z decays, the electrons are of
high momentum and transverse momentum (pT), so that the bremsstrahlung photons of-
ten overlap with the electrons. The LHCb calorimeters were designed so as to optimise the
the measurement of photons and π0s from heavy flavour decays, whose transverse energy
(ET) values are generally well below 10 GeV. As a consequence, individual calorimeter
cells saturate at ET around 10 GeV, so it is not possible to substitute the calorimeter en-
ergy for the momentum measured using the spectrometer. We therefore have a situation
in which the electron directions are well determined, but their energies are underestimated
by a variable amount, typically around 25%. Nevertheless, the available information can
be used to study certain interesting variables.

In this paper, we present a measurement of the cross-section for pp → Z → e+e−

using the data recorded by LHCb in 2011 at
√

s = 7 TeV. Throughout this paper we
use Z → e+e− to refer to the process Z/γ∗ → e+e− where either a virtual photon or a
Z boson is produced and decays to e+e−. For consistency, the measurement is presented
in the same kinematic region as the recent measurement of Z → µ+µ− using the 2010
LHCb data at

√
s = 7 TeV [2]: 2 < η < 4.5 and pT > 20 GeV/c for the leptons and

60 < M < 120 GeV/c2 for the dileptons where M is the invariant mass. Since the rapidity
of the Z boson can be determined to a precision of ∼0.05, the rapidity distribution will
be presented. However, the pT of the Z boson is poorly determined and its distribution
will not be discussed. A similar problem was encountered by the D0 collaboration [4],

1The term “electron” is used generically to refer to either e+ or e−.
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who employed a new variable proposed in Ref. [5] depending only on track angles

φ∗ ≡ tan

(
φacop

2

) /
cosh

(
∆η

2

)
≈ pT

Mc
, (1)

where M and pT refer to the lepton pair, ∆η and ∆φ are the differences in pseudorapidity
and azimuthal angles respectively between the leptons, and the acoplanarity angle is
φacop = π − |∆φ|. The pT of the Z boson is correlated with φ∗, and the resolution on φ∗

is excellent, with a precision better than 0.001. The measurement of φ∗ presented here
therefore largely accesses the same physics as a measurement of the Z pT distribution. The
measurement of the distribution of Z rapidity (denoted yZ) is expected to show sensitivity
to the choice of PDFs, while φ∗ is likely to be more sensitive to higher order effects in the
QCD modelling.

After a brief description of the detector, Sect. 3 describes the event selection, and
Sect. 4 outlines the determination of the cross-section. The results are given in Sect. 5
followed by a short summary.

2 LHCb detector

The LHCb detector [6] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed primarily for the study of particles containing b or c quarks.
The detector includes a high precision tracking system consisting of a silicon-strip vertex
detector surrounding the pp interaction region, a large-area silicon-strip detector located
upstream of a dipole magnet with a bending power of about 4 Tm, and three stations
of silicon-strip detectors and straw drift tubes placed downstream. The combined track-
ing system has a momentum resolution ∆p/p that varies from 0.4% at 5 GeV/c to 0.6%
at 100 GeV/c for hadrons and muons, and an impact parameter resolution of 20 µm for
tracks with high transverse momentum. Charged hadrons are identified using two ring-
imaging Cherenkov detectors. Photon, electron and hadron candidates are identified by
a calorimeter system consisting of scintillating-pad (SPD) and preshower (PRS) detec-
tors, an electromagnetic calorimeter (ECAL) and a hadronic calorimeter (HCAL). The
acceptance of the calorimeter system is roughly 1.8 < η < 4.3. Muons are identified by a
system composed of alternating layers of iron and multiwire proportional chambers.

The trigger [7] consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage which applies full event reconstruction. A
significant improvement to the trigger was implemented during August 2011 which affected
the trigger efficiency for Z → e+e−. The data samples before and after this change are
treated separately and will be referred to as data sample I and data sample II. These
correspond to integrated luminosities of 581 ± 20 pb−1 and 364 ± 13 pb−1 respectively,
yielding a total of 945± 33 pb−1.
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3 Event selection

The Z → e+e− sample is initially selected by single-electron triggers, which require elec-
trons to have an ET above a given threshold between 10 and 15 GeV depending on the
data-taking period and specific trigger. The Z → e+e− selection starts from a sample
of e+e− candidates with high invariant mass, which is refined by requiring the following
selection criteria:

• At least one of the candidate electrons must be selected by a high-ET electron
trigger.

• The electrons are both required to have pT > 20 GeV/c and pseudorapidity in the
range 2.0 < η < 4.5. The invariant mass of the e+e− pair should be greater than
40 GeV/c2.

• Requirements on calorimeter information are imposed to provide particle identifica-
tion (PID) of electrons. The particle must satisfy EECAL/pc > 0.1, where p is the
particle momentum, with bremsstrahlung correction if available, and EECAL is the
ECAL energy associated with the particle. The particle is required to lie within the
HCAL acceptance and to satisfy EHCAL/pc < 0.05, where EHCAL is the HCAL en-
ergy associated with the particle. The energy in the preshower detector associated
with the particle is required to satisfy EPRS > 50 MeV. These requirements im-
pose an electromagnetic shower profile, while being loose enough to maintain a high
electron efficiency despite the effects of calorimeter saturation and bremsstrahlung.

• If more than one Z → e+e− candidate satisfies the above requirements in an event,
just one candidate is used, chosen at random. This only affects around 0.5% of
cases, and in all instances the multiple candidates share one daughter.

A sample of same-sign e±e± combinations, subject to the same selection criteria, is used
to provide a data-based estimate of background. The main background is expected to
arise from hadrons that shower early in the ECAL and consequently fake the signature of
an electron. These will contribute approximately equally to same-sign and opposite-sign
pairs. The contribution from semileptonic heavy flavour decays should be similar to the
small level (∼ 0.2%) estimated for the Z → µ+µ− channel [2]; in any case, subtracting
the same-sign contribution should account for most of this effect.

Simulated event samples of Z → e+e− with M(e+e−) > 40 GeV/c2 are also used to
assess some efficiencies as discussed below. Simulated samples of Z → τ+τ− and of tt are
used to assess possible background contributions. For the simulation, pp collisions are
generated using Pythia 6.4 [8] with a specific LHCb configuration [9] and the CTEQ6L1
PDF set [10]. The interaction of the generated particles with the detector and its response
are implemented using the Geant4 toolkit [11] as described in Ref. [12]. Simulated
samples based on different versions of GEANT and of the detector model are employed,
which allows the reliability of the simulation to be assessed. The simulated events are then
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Figure 1: Invariant mass distribution of Z → e+e− candidates. The data are shown as
points with error bars, the background obtained from same-sign data is shown in red
(dark shading), to which the expectation from signal simulation is added in yellow (light
shading). The Z → e+e− simulated distribution has been normalised to the (background-
subtracted) data.

reconstructed in the same way as the data, including simulation of the relevant trigger
conditions.

The invariant mass distribution of the selected candidates is shown in Fig. 1. The
distribution falls off abruptly above the Z mass and is spread to lower masses by
bremsstrahlung. Good agreement in shape is observed between data and the simulation
sample used in the data correction; this will be further discussed below. The background
estimated from same-sign events amounts to 4.5% of the total number of e+e− candi-
dates. The backgrounds from τ+τ− and tt events are estimated to be around 0.1% and
are neglected.

4 Cross-section determination

In a given bin of Z rapidity or φ∗, the cross-section is calculated using

σ(pp → Z → e+e−) =
N(e+e−)− N(e±e±)

εGEC · εtrig · εtrack · εkin · εPID ·
∫
Ldt

· fFSR · fMZ , (2)

where N(e+e−) is the number of Z candidates selected in data, N(e±e±) is the background
estimated from the number of same-sign candidates and

∫
Ldt is the integrated luminosity.

The cross-section σ(pp → Z → e+e−) denotes the product of the inclusive production
cross-section for the Z or γ∗ and the branching ratio to e+e−. The meaning and estimation
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Table 1: Quantities entering into the cross-section determination, averaged over the range
of Z rapidity used.

Data sample I Data sample II∫
Ldt [ pb−1] 581± 20 364± 13

εGEC 0.947± 0.004
εtrig 0.715± 0.021 0.899± 0.003
εtrack 0.913± 0.015
εkin 0.500± 0.007
εPID 0.844± 0.011
fFSR 1.049± 0.005
fMZ 0.967± 0.001

of the other factors are described below. The values obtained for each, averaged over the
acceptance, are summarised in Table 1.

The luminosity is determined as described in Ref. [13] and has an uncertainty of 3.5%.
The factor fFSR accounts for the effects of final-state electromagnetic radiation, correcting
the measurement to the Born level. As in the Z → µ+µ− analysis [2] it is determined
using Photos [14] interfaced to Pythia [8], with Horace [15] used as a cross-check. An
overall systematic uncertainty of 0.5% is assigned to this correction [16]. The factor fMZ

corrects for e+e− events outside the mass range 60 < M(e+e−) < 120 GeV which pass the
event selection, and is estimated from simulation by examining the true mass for selected
events.

The probability for a Z → e+e− event to satisfy the trigger and selection requirements
is given by the product of the efficiency factors, ε, as described below.

• Global event cuts (GEC) are applied in the trigger in order to prevent very large
events from dominating the processing time. Their efficiency for selecting signal
events is given by εGEC. In the Z → e+e− case, the most important requirement is
on the multiplicity of SPD hits, NSPD ≤ 600. This is strongly correlated with the
number of primary vertices reconstructed in the event. The inefficiency is assessed
by comparing with Z → µ+µ− candidates recorded in the same running period using
a dimuon trigger for which a less stringent requirement of 900 hits is imposed. A
correction is made for the small difference in the numbers of SPD hits associated with
the electrons and muons themselves. This procedure is adopted for each number of
reconstructed primary vertices and the results are combined to obtain the overall
efficiency.

• The trigger efficiency for events passing the final selection, εtrig, is determined from
data. A sample of events triggered independently of the e+ is identified and used
to determine the efficiency for triggering the e+, and likewise for the e−. Using
the total numbers of candidates for which the single electron trigger is satisfied at
each stage by the e+ (N+), by the e− (N−) and by both (N+−), the efficiency for
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triggering the e+ is given by ε+ = N+−/N−. The overall efficiency is then taken
to be ε− + ε+ − ε−ε+ assuming that the e+ and e− are triggered independently.
The procedure is validated on simulated events. The determination is performed
separately in each bin of Z rapidity and φ∗. In all cases, the statistical uncertainty
on the efficiency is taken as a contribution to the systematic uncertainty on the
measurement.

• The track-finding efficiency, εtrack, represents the probability that both of the elec-
trons are successfully reconstructed. The simulation is used to determine the track-
finding efficiency, in bins of Z rapidity and φ∗, by calculating the probability that,
in a Z → e+e− event whose generated electrons lie within the kinematic acceptance,
both of the electrons are associated with reconstructed tracks that satisfy the track
quality requirements, but not necessarily the kinematic requirements. Its statistical
precision is propagated as a contribution to the systematic uncertainty.
This efficiency is checked in data using a tag-and-probe approach. One electron is
tagged using the standard requirements, and a search is made for an accompanying
cluster of electromagnetic energy having a high ET and forming a high invariant
mass with the tag electron. If such a cluster has no associated track it provides
evidence of a failure to reconstruct the other electron. This sample contains signif-
icant background, which can be discriminated by examining the pT distribution of
the tag electron for cases where the photon candidate is and is not isolated. The
pT distribution of the electrons in signal events in data displays a clear shoulder
extending to ∼ 45 GeV/c while that for background falls monotonically, as shown in
Fig. 2. The number of signal-like events in which a cluster is not associated with
a track can be used to estimate a tracking efficiency, and the ratio of efficiencies
between data and simulation is applied as a correction to the tracking efficiency.
The precision of the test is taken to define a systematic uncertainty, assumed to be
fully correlated between bins of rapidity and φ∗.

• The kinematic efficiency, εkin, represents the probability that, in a Z → e+e− event
whose generated electrons lie within the kinematic acceptance and are associated
with reconstructed tracks, both tracks pass the kinematic selection requirements
2 < η < 4.5 and pT > 20 GeV/c. The efficiency is estimated from simulation, with
its statistical precision being treated as a contribution to the systematic uncertainty.
This determination relies on a correct simulation, which can be tested using data.
For example, underestimation of the amount of material in the simulation would
cause a discrepancy between data and simulation in the pT distributions of the
electrons or the reconstructed mass spectrum shown in Fig. 1. By comparing the
shapes of the reconstructed mass spectrum and other kinematic distributions in
data with different simulation samples, a systematic uncertainty on the momentum
scale and hence on the kinematic efficiency is assigned. This is combined with the
statistical uncertainty mentioned above, with the systematic contribution taken to
be fully correlated between bins of rapidity and φ∗.
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Figure 2: Distribution of pT for the “tag” electron in cases where an isolated cluster
of energy of high ET is found in the electromagnetic calorimeter. This is fitted with
two components obtained from data, the Z → e+e− signal whose shape is taken from
those candidates where the cluster is associated with an identified electron track, and
background whose shape is obtained from candidates where the cluster is not isolated.

• The PID efficiency, εPID, represents the probability that, in a Z → e+e− event with
reconstructed electron tracks satisfying the kinematic requirements, both tracks ful-
fil the calorimeter energy requirements for identified electrons. This includes the
probability that the tracks are within the calorimeter acceptance and have been
successfully associated with calorimeter information. Because of the acceptance
contribution, the efficiency has a strong dependence on the Z rapidity. This depen-
dence is taken from simulation, while the overall normalisation of the PID efficiency
is estimated directly from data, using a tag-and-probe method.
Starting from a sample which requires just one high pT electron, events are selected
by applying the usual criteria except that only one of the e+ and e− (the “tag”)
is required to pass the calorimeter-based electron identification requirements. The
other track is used as a “probe” to test the PID efficiency. The requirement of only
one identified electron admits a significant level of background, which is assessed
similarly to the tracking efficiency by examining the pT distribution of the tag or
alternatively the pT of the probe electron or the invariant mass of the two particles.
The size of the signal component can be used to define the number of Z events which
fail the PID, and hence to determine the PID efficiency and its uncertainty.

A systematic uncertainty is also assigned to the same-sign background subtraction.
The assumption that same-sign e±e± combinations model background in e+e− events is
tested by selecting events which satisfy all criteria except that one of the particles fails
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the calorimeter energy requirements. This sample should be dominated by background,
and shows an excess of ∼8% of opposite-sign events over same-sign events. Accordingly
a systematic uncertainty amounting to 8% of the number of same-sign events is assigned
to the measurements.

5 Results

Using the efficiencies described above, the event yields detailed in Table 2 and Eq. (2)
separate cross-section measurements for the two data-taking periods are obtained. Since
these are in good agreement, the results are combined using a weighted average, and as-
suming their uncertainties are fully correlated apart from the statistical contribution and
the uncertainty in the trigger efficiency. Data sample II has a smaller integrated lumi-
nosity but a higher and more precisely estimated trigger efficiency. The weighting of the
two samples is chosen to minimise the total uncertainty on the cross-section integrated
over Z rapidity. The values of the differential cross-sections obtained are given in Table 2.
Correlation matrices may be found in the Appendix. The bin 4.25 < yZ < 4.5 is empty in
data, and is expected to have close to zero detection efficiency since the calorimeter ac-
ceptance extends only slightly beyond 4.25. Hence no measurement is possible. However,
the QCD calculations discussed below predict a cross-section below ∼0.01 pb in this bin,
which is negligibly small, so comparisons with the Z→ µ+µ− results or with theoretical
calculations in the range 2 < yZ < 4.5 are still meaningful.

The cross-section integrated over Z rapidity is obtained by summing the cross-sections
of all bins of yZ, taking the uncertainties associated with the GEC and the luminosity
to be fully correlated between bins, along with parts of the tracking, kinematic and PID
efficiencies, and treating the other contributions as uncorrelated. The cross-section is
measured to be

σ(pp → Z → e+e−) = 76.0± 0.8 (stat.)± 2.0 (syst.)± 2.6 (lumi.)± 0.4 (FSR) pb,

where the first uncertainty is statistical, the second is the experimental systematic un-
certainty, the third is the luminosity uncertainty and the last represents the uncertainty
in the FSR correction. Since the results have been corrected to the Born level using the
factor fFSR, it is possible to compare this measurement with that found in the Z→ µ+µ−

analysis [2] using 37 pb−1 of data, namely 76.7± 1.7 (stat.)± 3.3 (syst.)± 2.7 (lumi.) pb.
Accounting for correlated uncertainties, the ratio of cross-sections is

σ(pp → Z → e+e−)

σ(pp → Z → µ+µ−)
= 0.990± 0.024 (stat.)± 0.044 (syst.).

This may be regarded as a cross-check of the analyses. Assuming lepton universality,
the two cross-sections can be combined in a weighted average so as to minimise the total
uncertainty, yielding

σ(pp → Z → `+`−) = 76.1± 0.7 (stat.)± 1.8 (syst.)± 2.7 (lumi.)± 0.4 (FSR) pb.
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Table 2: Event yields and measurements for the differential cross-section of
pp → Z → e+e− at

√
s =7 TeV as a function of Z rapidity, yZ, and of φ∗. The first

uncertainty is statistical, the second and third are the uncorrelated and correlated ex-
perimental systematic uncertainties respectively, and the fourth is the uncertainty in the
FSR correction. The common luminosity uncertainty of 3.5% is not explicitly included
here. The results are given for the combined data sample. The right-hand column gives
the values used for the FSR correction factor.

yZ N(e+e−) N(e±e±) dσ/dyZ [pb] fFSR

2.00–2.25 988 40 13.6± 0.7± 0.4± 0.3± 0.1 1.049± 0.004
2.25–2.50 3064 121 39.4± 1.0± 0.6± 0.8± 0.2 1.046± 0.002
2.50–2.75 4582 202 56.7± 1.2± 0.7± 1.3± 0.3 1.050± 0.002
2.75–3.00 5076 214 63.2± 1.3± 0.8± 1.5± 0.3 1.049± 0.002
3.00–3.25 4223 181 59.9± 1.4± 0.8± 1.6± 0.3 1.056± 0.002
3.25–3.50 2429 135 43.8± 1.3± 0.8± 1.1± 0.2 1.054± 0.003
3.50–3.75 906 61 20.5± 1.0± 0.7± 0.6± 0.1 1.030± 0.006
3.75–4.00 143 18 5.9± 0.8± 0.5± 0.3± 0.1 1.074± 0.029
4.00–4.25 9 2 0.66± 0.44± 0.30± 0.04± 0.02 1.074± 0.029
4.25–4.50 0 0 —

φ∗ N(e+e−) N(e±e±) dσ/dφ∗ [pb] fFSR

0.00–0.05 9696 363 693± 10± 6± 17± 3 1.059± 0.001
0.05–0.10 4787 219 326± 7± 4± 8± 2 1.047± 0.002
0.10–0.15 2382 115 164± 5± 3± 4± 1 1.039± 0.002
0.15–0.20 1384 80 99.1± 4.0± 2.0± 2.2± 0.5 1.043± 0.003
0.20–0.30 1434 82 49.6± 2.0± 1.1± 1.0± 0.3 1.042± 0.003
0.30–0.40 707 39 25.5± 1.4± 0.8± 0.6± 0.1 1.049± 0.004
0.40–0.60 583 41 10.8± 0.7± 0.4± 0.3± 0.1 1.052± 0.005
0.60–0.80 217 13 4.05± 0.38± 0.20± 0.09± 0.03 1.054± 0.005
0.80–1.00 91 9 1.41± 0.23± 0.11± 0.03± 0.02 1.051± 0.009
1.00–2.00 119 9 0.41± 0.06± 0.03± 0.01± 0.02 1.035± 0.011

A recent measurement in Z → τ+τ− decays which has a larger statistical uncertainty [3]
can also be combined with the electron and muon channels, yielding

σ(pp → Z → `+`−) = 75.4± 0.8 (stat.)± 1.7 (syst.)± 2.6 (lumi.)± 0.4 (FSR) pb.

The results may be compared with theoretical calculations similar to those used in the
interpretation of the Z → µ+µ− analysis [2]. These calculations are performed at NNLO
(O(α2

S)) with the program FEWZ [17] version 2.1.1 and using the NNLO PDF sets of
MSTW08 [18], NNPDF21 [19] or CTEQ (CT10 NNLO) [20]. In Fig. 3 we present the
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Figure 3: Cross-section for pp → Z → e+e− at
√

s = 7 TeV measured in LHCb, shown as
the yellow band. The inner (darker) band represents the statistical uncertainty and the
outer the total uncertainty. The measurement corresponds to the kinematic acceptance,
pT > 20 GeV/c and 2 < η < 4.5 for the leptons and 60 < M < 120 GeV/c2 for the dilepton.
The points show the various theoretical predictions with their uncertainties as described
in the text.

measured cross-section and in Fig. 4(a) the measurements of the Z rapidity distribution,
compared in each case with the three calculations. The uncertainties in the predictions
include the effect of varying the renormalisation and factorisation scales by factors of two
around the nominal value, which is set to the Z mass, combined in quadrature with the
PDF uncertainties at 68% confidence level. The data agree with expectations within the
uncertainties.

The differential cross-section as a function of φ∗ is shown in Fig. 4(b), compared with
the predictions of QCD to NNLO. Figure 5(a) displays the ratios of these predictions to
the measurements. The NNLO calculations tend to overestimate the data at low φ∗ and
to underestimate the data at high φ∗. It is expected that the φ∗ distribution, like that
of pT, is significantly affected by multiple soft gluon emissions, which are not sufficiently
accounted for in fixed order calculations. A QCD calculation which takes this into account
through resummation is provided by Resbos [21].2 Another resummed calculation [22]
has been compared with ATLAS data [23] in the central region of rapidity, but is not
yet available for the LHCb acceptance. Alternatively, Powheg [24] provides a framework
whereby a NLO QCD (O(αS)) calculation can be interfaced to a parton shower model such
as Pythia which can approximate higher order effects. Comparisons with these models,
and with the LHCb version [9] of Pythia [8] are shown in Fig. 5(b). The Resbos and
Powheg distributions are normalised to their own cross-section predictions, while the
Pythia distribution is normalised to the cross-section measured in data. It is seen that
Resbos gives a reasonable description of the φ∗ distribution. Powheg shows that the
combination of a parton shower with the O(αS) QCD prediction significantly improves
the description of data in the low φ∗ region, while in the high φ∗ region the data are still

2The P branch of Resbos is used with grids for LHC at
√

s = 7TeV based on CTEQ6.6.
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underestimated. Pythia models the data reasonably well. Overall, Resbos and Pythia
seem to be the more successful of the calculation schemes considered here.
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Figure 4: Differential cross-section for pp → Z → e+e− as a function of (a) Z rapidity
and (b) φ∗. The measurements based on the

√
s = 7 TeV LHCb data are shown as the

yellow bands where the inner (darker) band represents the statistical uncertainty and the
outer the total uncertainty. NNLO QCD predictions are shown as points with error bars
reflecting their uncertainties as described in the text.
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Figure 5: Ratios of various QCD calculations to data for the differential cross-section
for pp → Z → e+e− as a function of φ∗. The measurements based on the

√
s = 7 TeV

LHCb data are shown as the yellow band centred at unity where the inner (darker) band
represents the statistical uncertainty and the outer the total uncertainty. (a) NNLO QCD
predictions shown as points with error bars reflecting their uncertainties as described in
the text. Small lateral displacements of the theory points are made to improve clarity.
(b) Ratios of the predictions of Pythia, Resbos and Powheg to the data shown as
points, with error bars that reflect the statistical uncertainties in the predictions. For
most points, these errors are so small that they are not visible.
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6 Summary

A measurement of the pp → Z → e+e− cross-section in pp collisions at
√

s = 7 TeV using
0.94 fb−1 of data recorded by LHCb is presented. Although the characteristics of the LHCb
detector prevent a sharp mass peak from being seen, a clean sample of events is identified
with less than 5% background. Within the kinematic acceptance, pT > 20 GeV/c and
2 < η < 4.5 for the leptons and 60 < M < 120 GeV/c2 for the dielectron, the cross-section
is measured to be

σ(pp → Z → e+e−) = 76.0± 0.8 (stat.)± 2.0 (syst.)± 2.6 (lumi.)± 0.4 (FSR) pb.

The cross-section is also measured in bins of the rapidity of the Z and of the angular
variable φ∗. The measurements of the rapidity distribution and of the integrated cross-
sections are consistent with previous measurements using Z decays to µ+µ− and τ+τ−

and show good agreement with the expectations from NNLO QCD calculations. The φ∗

distribution, related to the Z pT distribution, is better modelled by calculations which
approximately include the effects of higher orders.
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Appendix

Table A.1: Correlation coefficients for the differential cross-section of Z → e+e− at 7 TeV
between bins of Z rapidity, yZ. Both statistical and systematic contributions are included.

yZ bin 2.–2.25 2.25–2.5 2.5–2.75 2.75–3. 3.–3.25 3.25–3.5 3.5–3.75 3.75–4. 4.–4.25
2.00–2.25 1
2.25–2.50 0.47 1
2.50–2.75 0.50 0.70 1
2.75–3.00 0.51 0.70 0.75 1
3.00–3.25 0.50 0.69 0.74 0.75 1
3.25–3.50 0.45 0.62 0.66 0.67 0.66 1
3.50–3.75 0.35 0.49 0.52 0.52 0.51 0.46 1
3.75–4.00 0.20 0.27 0.29 0.29 0.29 0.26 0.20 1
4.00–4.25 0.05 0.07 0.08 0.08 0.08 0.07 0.06 0.03 1

Table A.2: Correlation coefficients for the differential cross-section of Z → e+e− at 7 TeV
between bins of φ∗. Both statistical and systematic contributions are included.

φ∗ bin 0.–0.05 0.05–0.1 0.1–0.15 0.15–0.2 0.2–0.3 0.3–0.4 0.4–0.6 0.6–0.8 0.8–1. 1.–2.
0.00–0.05 1
0.05–0.10 0.80 1
0.10–0.15 0.73 0.67 1
0.15–0.20 0.63 0.58 0.53 1
0.20–0.30 0.62 0.58 0.53 0.45 1
0.30–0.40 0.51 0.48 0.43 0.38 0.38 1
0.40–0.60 0.46 0.43 0.39 0.34 0.34 0.28 1
0.60–0.80 0.34 0.31 0.29 0.25 0.25 0.20 0.18 1
0.80–1.00 0.21 0.20 0.18 0.16 0.15 0.13 0.11 0.08 1
1.00–2.00 0.23 0.21 0.19 0.17 0.17 0.14 0.12 0.09 0.06 1

14



References

[1] R. Thorne, A. Martin, W. Stirling, and G. Watt, Parton distributions and QCD at
LHCb, arXiv:0808.1847.

[2] LHCb collaboration, R. Aaij et al., Inclusive W and Z production in the forward
region at

√
s = 7 TeV, JHEP 1206 (2012) 058, arXiv:1204.1620.

[3] LHCb collaboration, R. Aaij et al., A study of the Z production cross-section in pp
collisions at

√
s = 7 TeV using tau final states, arXiv:1210.6289.

[4] D0 collaboration, V. M. Abazov et al., Precise study of the Z/γ∗ boson transverse
momentum distribution in pp̄ collisions using a novel technique, Phys. Rev. Lett. 106
(2011) 122001, arXiv:1010.0262.

[5] A. Banfi et al., Optimisation of variables for studying dilepton transverse momentum
distributions at hadron colliders, Eur. Phys. J. C71 (2011) 1600, arXiv:1009.1580.

[6] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST
3 (2008) S08005.

[7] R. Aaij et al., The LHCb trigger and its performance, arXiv:1211.3055.
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