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In high-energy heavy-ion collisions, the correlations between the emitted particles can be used as a
probe to gain insight into the charge creation mechanisms. In this Letter, we report the first results of
such studies using the electric charge balance function in the relative pseudorapidity (�η) and azimuthal
angle (�ϕ) in Pb–Pb collisions at

√
sN N = 2.76 TeV with the ALICE detector at the Large Hadron Collider.

The width of the balance function decreases with growing centrality (i.e. for more central collisions)
in both projections. This centrality dependence is not reproduced by HIJING, while AMPT, a model
which incorporates strings and parton rescattering, exhibits qualitative agreement with the measured
correlations in �ϕ but fails to describe the correlations in �η. A thermal blast-wave model incorporating
local charge conservation and tuned to describe the pT spectra and v2 measurements reported by ALICE,
is used to fit the centrality dependence of the width of the balance function and to extract the average
separation of balancing charges at freeze-out. The comparison of our results with measurements at lower
energies reveals an ordering with

√
sN N : the balance functions become narrower with increasing energy

for all centralities. This is consistent with the effect of larger radial flow at the LHC energies but also
with the late stage creation scenario of balancing charges. However, the relative decrease of the balance
function widths in �η and �ϕ with centrality from the highest SPS to the LHC energy exhibits only small
differences. This observation cannot be interpreted solely within the framework where the majority of the
charge is produced at a later stage in the evolution of the heavy-ion collision.

© 2013 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

According to Quantum ChromoDynamics (QCD), the theory that
describes the strong interaction, at sufficiently high energy densi-
ties and temperatures, a new phase of matter exists in which the
constituents, the quarks and the gluons, are deconfined [1]. This
new state of matter is called the Quark Gluon Plasma (QGP). Its
creation in the laboratory, the corresponding verification of its ex-
istence and the subsequent study of its properties are the main
goals of the ultrarelativistic heavy-ion collision programs. Convinc-
ing experimental evidences for the existence of a deconfined phase
have been published already at RHIC energies [2]. Recently, the
first experimental results from the heavy-ion program of the LHC
experiments provided additional indication [3,4] for the existence
of this state of matter at this new energy regime.

Among the different observables, such as the anisotropic flow
[3] or the energy loss of high transverse momentum particles [4],
the charge balance functions are suggested to be sensitive probes
of the properties of the system, providing valuable insight into the
charge creation mechanism and can be used to address fundamen-
tal questions concerning hadronization in heavy-ion collisions [5].

✩ © CERN for the benefit of the ALICE Collaboration.

The system that is produced in a heavy-ion collision undergoes
an expansion, during which it exhibits collective behavior and can
be described in terms of hydrodynamics [6]. A pair of particles
of opposite charge that is created during this stage is subject to
the collective motion of the system, which transforms the corre-
lations in coordinate space into correlations in momentum space.
The subsequent rescattering phase after the hadronization will also
affect the final measured degree of correlation. The balance func-
tion being a sensitive probe of the balancing charge distribution
in momentum space, quantifies these effects. The final degree of
correlation is reflected in the balance function distribution and
consequently in its width. It was suggested in [5] that narrow dis-
tributions correspond to a system that consists of particles that are
created close to the end of the evolution. It was also suggested that
a larger width may signal the creation of balancing charges at the
first stages of the system’s evolution [5].

The balance function reflects the strength of correlation be-
tween a particle in a bin P1 in momentum space and the accompa-
nying (balancing) particle of opposite charge with momentum P2.
The general definition is given in Eq. (1):

Bab(P2, P1) = 1

2

(
Cab(P2, P1) + Cba(P2, P1)

− Cbb(P2, P1) − Caa(P2, P1)
)
, (1)
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where Cab(P2, P1) = Nab(P2, P1)/Nb(P1) is the distribution of
pairs of particles, of type a and b, with momenta P2 and P1,
respectively, normalized to the number of particles b. Particles a
and b could come from different particle species (e.g. π+–π− ,
K+–K− , p–p). In this Letter, a refers to all positive and b to all
negative particles. This analysis is performed for both particles in
the pseudorapidity intervals |η| < 0.8. We assume that the balance
function is invariant over pseudorapidity in this region, and report
the results in terms of the relative pseudorapidity �η = ηb − ηa

and the relative azimuthal angle �ϕ = ϕb − ϕa , by averaging the
balance function over the position of one of the particles (similar
equation is used for B(�ϕ)):

B+−(�η) = 1

2

(
C+−(�η) + C−+(�η) − C−−(�η) − C++(�η)

)
.

(2)

Each term of Eq. (2), is corrected for detector and tracking in-
efficiencies as well as for acceptance effects and can be written as
Cab = (Nab/Nb)/ fab . The factors fab (where in the case of charged
particles, a and b correspond to the charge i.e. f+− , f−+ , f++
and f−−) represent the probability that given a particle a is recon-
structed, a second particle emitted at a relative pseudorapidity or
azimuthal angle (�η or �ϕ , respectively), would also be detected.
These terms are defined as the product of the single particle track-
ing efficiency ε(η,ϕ, pT) and the acceptance term α(�η,�ϕ). The
way they are extracted in this analysis with a data driven method
is described in one of the following sections.

For a neutral system, every charge has an opposite balancing
partner and the balance function would integrate to unity. How-
ever, this normalization does not hold if not all charged particles
are included in the calculation due to specific momentum range or
particle type selection.

The width of the balance function distribution can be used to
quantify how tightly the balancing charges are correlated. It can
be characterized by the average 〈�η〉 or 〈�ϕ〉 in case of studies
in pseudorapidity or the azimuthal angle, respectively. The mathe-
matical expression for the case of correlations in pseudorapidity is
given in Eq. (3) (similar for 〈�ϕ〉),

〈�η〉 =
k∑

i=1

[
B+−(�ηi) · �ηi

]
/

k∑
i=1

B+−(�ηi), (3)

where B+−(�ηi) is the balance function value for each bin �ηi ,
with the sum running over all bins k.

Experimentally, the balance function for non-identified parti-
cles was studied by the STAR Collaboration in Au–Au collisions
at

√
sN N = 130 GeV [7], followed by the NA49 experiment in

Pb–Pb collisions at the highest SPS energy [8]. Both experiments
reported the narrowing of the balance function in �η in more
central compared to peripheral collisions. The results were qual-
itatively in agreement with theoretical expectations for a system
with a long-lived QGP phase and exhibiting delayed hadroniza-
tion. These results triggered an intense theoretical investigation of
their interpretation [9–15]. In [9], it was suggested that the balance
function could be distorted by the excess of positive charges due
to the protons of the incoming beams (unbalanced charges). This
effect is expected to be reduced at higher collision energy, leav-
ing a system at mid-rapidity that is net-baryon free. Also in [9],
it was proposed to perform balance function studies in terms of
the relative invariant momentum of the particle pair, to eliminate
the sensitivity to collective flow. In [10], it was shown that purely
hadronic models predict a modest broadening of the balance func-
tion for central heavy-ion collisions, contrary to the experimen-
tally measured narrowing. It was also shown that thermal models

were in agreement with the (at that time) published data, con-
cluding that charge conservation is local at freeze-out, consistent
with the delayed charged-creation scenario [10]. Similar agreement
with the STAR data was reported in [11], where a thermal model
that included resonances was used. In [12], the author showed
that the balance function, when measured in terms of the relative
azimuthal angle of the pair, is a sensitive probe of the system’s
collective motion and in particular of its radial flow. In [13], it was
suggested that radial flow is also the driving force of the narrow-
ing of the balance function in pseudorapidity, with its width being

inversely proportional to the transverse mass, mT =
√

m2 + p2
T. In

parallel in [14,15], the authors attributed the narrowing of the bal-
ance function for more central collisions to short range correlations
in the QGP at freeze-out.

Recently, the STAR Collaboration extended their balance func-
tion studies in Au–Au collisions at

√
sN N = 200 GeV [16], con-

firming the strong centrality dependence of the width in �η but
also revealing a similar dependence in �ϕ , the latter being mainly
attributed to radial flow. Finally, in [17] the authors fitted the ex-
perimentally measured balance function at the top RHIC energies
with a blast-wave parameterization and argued that in �ϕ the
results could be explained by larger radial flow in more central col-
lisions. However the results in �η could only be reproduced when
considering the separation of charges at freeze-out implemented
in the model. They also stressed the importance of performing a
multi-dimensional analysis. In particular, they presented how the
balance function measured with respect to the orientation of the
reaction plane (i.e. the plane of symmetry of a collision defined by
the impact parameter vector and the beam direction) could probe
potentially one of the largest sources of background in studies re-
lated to parity violating effects in heavy-ion collisions [18].

In this Letter we report the first results of the balance function
measurements in Pb–Pb collisions at

√
sN N = 2.76 TeV with the

ALICE detector [19,20]. The Letter is organized as follows: Section 2
briefly describes the experimental setup, while details about the
data analysis are presented in Section 3. In Section 4 we discuss
the main results followed by a detailed comparison with different
models in Section 5. In the same section we present the energy de-
pendence of the balance function. We conclude with the summary
and a short outlook.

2. Experimental setup

ALICE [20] is the dedicated heavy-ion detector at the LHC,
designed to cope with the high charged-particle densities mea-
sured in central Pb–Pb collisions [21]. The experiment consists of
a large number of detector subsystems inside a solenoidal mag-
net (0.5 T). The central tracking systems of ALICE provide full az-
imuthal coverage within a pseudorapidity window |η| < 0.9. They
are also optimized to provide good momentum resolution (≈ 1% at
pT < 1 GeV/c) and particle identification (PID) over a broad mo-
mentum range, the latter being important for the future, particle
type dependent balance function studies.

For this analysis, the charged particles were reconstructed using
the Time Projection Chamber (TPC) [22], which is the main tracking
detector of the central barrel. In addition, a complementary anal-
ysis relying on the combined tracking of the TPC and the Inner
Tracking System (ITS) was performed. The ITS consists of six lay-
ers of silicon detectors employing three different technologies. The
two innermost layers are Silicon Pixel Detectors (SPD), followed by
two layers of Silicon Drift Detectors (SDD). Finally the two outermost
layers are double-sided Silicon Strip Detectors (SSD).

The position of the primary interaction was determined by the
TPC and by the SPD, depending on the tracking mode used. A set
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of forward detectors, namely the VZERO scintillator arrays, were
used in the trigger logic and also for the centrality determina-
tion [23]. The VZERO detector consists of two arrays of scintillator
counters, the VZERO-A and the VZERO-C, positioned on each side
of the interaction point. They cover the pseudorapidity ranges of
2.8 < η < 5.1 and −3.7 < η < −1.7 for VZERO-A and VZERO-C, re-
spectively.

For more details on the ALICE experimental setup, see [20].

3. Data analysis

Approximately 15 × 106 Pb–Pb events, recorded during the first
LHC heavy-ion run in 2010 at

√
sN N = 2.76 TeV, were analyzed. A

minimum bias trigger was used, requiring two pixel chips hit in
the SPD in coincidence with a signal in the VZERO-A and VZERO-
C detectors. Measurements were also made with the requirement
changed to a coincidence between signals from the two sides of
the VZERO detectors. An offline event selection was also applied in
order to reduce the contamination from background events, such
as electromagnetic and beam–gas interactions. All events were re-
quired to have a reconstructed vertex position along the beam axis
(V z) with |V z| < 10 cm from the nominal interaction point.

The data were sorted according to centrality classes, reflecting
the geometry of the collision (i.e. impact parameter), which span
0–80% of the inelastic cross section. The 0–5% bin corresponds to
the most central (i.e. small impact parameter) and the 70–80%
class to the most peripheral (i.e. large impact parameter) collisions.
The centrality of the collision was estimated using the charged par-
ticle multiplicity distribution and the distribution of signals from
the VZERO scintillator detectors. Fitting these distributions with a
Glauber model [24], the centrality classes are mapped to the cor-
responding mean number of participating nucleons 〈Npart〉 [25].
Different centrality estimators (i.e. TPC tracks, SPD clusters) were
used to investigate the systematic uncertainties. Further details on
the centrality determination can be found in [23].

To select charged particles with high efficiency and to minimize
the contribution from background tracks (i.e. secondary particles
originating either from weak decays or from the interaction of
particles with the material), all selected tracks were required to
have at least 70 reconstructed space points out of the maximum
of 159 possible in the TPC. The 〈χ2〉 per degree of freedom the
momentum fit was required to be below 2. To further reduce the
contamination from background tracks, a cut on the distance of
closest approach between the tracks and the primary vertex (dca)
was applied (dcaxy/dxy)

2 + (dcaz/dz)
2 < 1 with dxy = 2.4 cm and

dz = 3.2 cm. In the parallel analysis, with the combined track-
ing of the TPC and the ITS, the values of dxy = 0.3 cm and
dz = 0.3 cm were used, profiting from the better dca resolution
that the ITS provides. Finally, we report the results for the region
of |η| < 0.8 and 0.3 < pT < 1.5 GeV/c. The pT range is chosen to
ensure a high tracking efficiency (lower cut) and a minimum con-
tribution from (mini-)jet correlations (upper cut).

4. Results

As discussed in the introduction, the correction factors f+− ,
f−+ , f++ , and f−− are needed to eliminate the dependence of the
balance function on the detector acceptance and tracking ineffi-
ciencies. The tracking efficiency is extracted from a detailed Monte
Carlo simulation of the ALICE detector based on GEANT3 [26].
It depends on the particle’s transverse momentum, rising steeply
from 0.2 up to 0.5 GeV/c, where it reaches the saturation value of
85%. The acceptance part of the correction factors, α(�η,�ϕ), is
extracted from mixed events. The mixed events are generated by
taking all two-particle non-same-event combinations for a collec-

Fig. 1. (Color online.) The correction factor f+−(�η,�ϕ) for the 5% most central
Pb–Pb collisions, extracted from the single particle tracking efficiencies ε(η,ϕ, pT)

and the acceptance terms α(�η,�ϕ) (see text for details).

tion of a few (≈ 5) events with similar values of the z position of
the reconstructed vertex (|�V z| < 5 cm). In addition, the events
used for the event mixing belonged to the same centrality class
and had multiplicities that did not differ by more than 1–2%, de-
pending on the centrality. Fig. 1 presents the correction factor for
the distribution of pairs of particles with opposite charge as a func-
tion of the relative pseudorapidity and azimuthal angle differences
for the 5% most central Pb–Pb collisions. The maximum value is
observed for �η = 0 and is equal to the pT-integrated single par-
ticle efficiency. The distribution decreases to ≈ 0 near the edge of
the acceptance i.e. |�η| ≈ 1.6. This reduction reflects the decrease
of the probability of detecting both balancing charges as the rel-
ative pseudorapidity difference increases. The correction factor is
constant as a function of �ϕ .

The measured balance function is averaged over positive and
negative values of �η (�ϕ) and reported only for positive values.
The integrals of the balance function over the reported region are
close to 0.5, reflecting the fact that most of the balancing charges
are distributed in the measured region.

Fig. 2 presents the balance functions as a function of the rela-
tive pseudorapidity �η for three different centrality classes: the
0–5% (most central), the 30–40% (mid-central) and the 70–80%
(most peripheral) centrality bins. It is seen that the balance func-
tion, in full circles, gets narrower for more central collisions. Fig. 2
presents also the balance functions for mixed events, not corrected
for detector effects, represented by the open squares. These bal-
ance functions, fluctuate around zero as expected for a totally un-
correlated sample where the charge is not conserved.

Fig. 3 presents the balance functions as a function of the rel-
ative azimuthal angle for the same centrality classes as in Fig. 2.
The balance functions calculated using mixed events and not cor-
rected for the tracking efficiency exhibit a distinct modulation orig-
inating from the 18 sectors of the TPC. This modulation is more
pronounced for more central collisions, since the charge depen-
dent acceptance differences scale with multiplicity. The efficiency-
corrected balance functions, represented by the full markers, in-
dicate that these detector effects are successfully removed. Nar-
rowing of the balance function in more central events has been
also observed in this representation. A decrease of the balance
function at small �ϕ (i.e. for �ϕ � 10◦) can be observed for
the mid-central and peripheral collisions. This can be attributed
to short-range correlations between pairs of same and opposite
charge, such as HBT and Coulomb effects [17].

In both Figs. 2 and 3 as well as in the next figures, the error bar
of each point corresponds to the statistical uncertainty (typically
the size of the marker). The systematic uncertainty is represented
by the shaded band around each point. The origin and the value
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Fig. 2. (Color online.) Balance function as a function of �η for different centrality classes: 0–5% (a), 30–40% (b) and 70–80% (c). Mixed events results, not corrected for the
detector effects, are shown by open squares. See text for details.

Fig. 3. (Color online.) Balance function as a function of �ϕ for different centrality classes: 0–5% (a), 30–40% (b) and 70–80% (c). Mixed events results, not corrected for the
detector effects, are shown by open squares. See text for details.
of the assigned systematic uncertainty on the width of the balance
function, calculated for each centrality and for both �η and �ϕ ,
will be discussed in the next paragraph.

The data sample was analyzed separately for two magnetic field
configurations. The two data samples had comparable statistics.
The maximum value of the systematic uncertainty, defined as half
of the difference between the balance functions in these two cases,
is found to be less than 1.3% over all centralities. In addition, we
estimated the contribution to the systematic uncertainty originat-
ing from the centrality selection, by determining the centrality not
only with the VZERO detector but alternatively using the multi-
plicity of the TPC tracks or the number of clusters of the second
SPD layer. This resulted in an additional maximum contribution
to the estimated systematic uncertainty of 0.8% over all centrali-
ties. Furthermore, we investigated the influence of the ranges of
the cuts in parameters such as the position of the primary vertex
in the z coordinate (|V z| < 6–12 cm), the dca (dxy < 1.8–2.4 cm
and dz < 2.6–3.2 cm), and the number of required TPC clusters
(Nclusters(TPC) > 60–90). This was done by varying the relevant
ranges, one at a time, and again assigning half of the difference be-
tween the lower and higher value of the width to the systematic
uncertainty. The maximum contribution from these sources was
estimated to be 1.3%, 1.1% and 1.3% for the three parameters, re-
spectively. We also studied the influence of the different tracking

modes used by repeating the analysis using tracks reconstructed
by the combination of the TPC and the ITS (global tracking). The
resulting maximum contribution to the systematic uncertainty of
the width from this source is 1.1%, again over all centralities. Fi-
nally, the applied acceptance corrections result in large fluctuations
of the balance function points for some centralities towards the
edge of the acceptance (i.e. large values of �η), which originates
from the division of two small numbers. To account for this, we
average over several bins at these high values of �η to extract
the weighted average. This procedure results in an uncertainty
that has a maximum value of 5% over all centralities. All these
contributions are summarized in Table 1. The final systematic un-
certainty for each centrality bin was calculated by adding all the
different sources in quadrature. The resulting values for the 0–5%,
30–40% and 70–80% centrality bins were estimated to be 2.5%, 3.0%
and 3.6%, respectively, in 〈�η〉 (1.9%, 1.2% and 2.4%, respectively,
in 〈�ϕ〉).

5. Discussion

5.1. Centrality dependence

The width of the balance function (Eq. (3)) as a function of
the centrality percentile is presented in Fig. 4. Central (peripheral)
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Table 1
The maximum value of the systematic uncertainties on the width of the balance
function over all centralities for each of the sources studied.

Systematic uncertainty

Category Source Value (max)

Magnetic field (++)/(−−) 1.3%
Centrality estimator VZERO, TPC, SPD 0.8%
Cut variation dca 1.3%

Nclusters(TPC) 1.1%
�V z 1.3%

Tracking TPC, Global 1.1%
Binning Extrapolation to large �η 5.0%

Fig. 4. (Color online.) The centrality dependence of the width of the balance function
〈�η〉 and 〈�ϕ〉, for the correlations studied in terms of the relative pseudorapidity
(a) and the relative azimuthal angle (b), respectively. The data points are compared
to the predictions from HIJING [27], and AMPT [28].

collisions correspond to small (large) centrality percentile. The
width is calculated in the entire interval where the balance func-
tion was measured (i.e. 0.0 < �η < 1.6 and 0◦ < �ϕ < 180◦).
Both results in terms of correlations in the relative pseudorapid-
ity (〈�η〉-upper panel, Fig. 4(a) and the relative azimuthal angle
(〈�ϕ〉-lower panel, Fig. 4(b) are shown. The experimental data
points, represented by the full red circles, exhibit a strong cen-
trality dependence: more central collisions correspond to narrower
distributions (i.e. moving from right to left along the x-axis) for
both �η and �ϕ . Our results are compared to different model
predictions, such as HIJING [27] and different versions of a multi-
phase transport model (AMPT) [28]. The error bars in the results
from these models represent the statistical uncertainties.

The points from the analysis of HIJING Pb–Pb events at
√

sN N =
2.76 TeV, represented by the blue triangles, show little central-
ity dependence in both projections. The slightly narrower balance
functions for central collisions might be related to the fact that
HIJING is not just a simple superposition of single pp collisions;
jet-like effects as well as increased resonance yields in central col-
lisions could be reflected as additional correlations. The balance
function widths generated by HIJING are much larger than those
measured in the data, consistent with the fact that the model lacks
collective flow.

In addition, we compare our data points to the results from
the analysis of events from three different versions of AMPT in
Fig. 4. The AMPT model consists of two different configurations:
the default and the string melting. Both are based on HIJING to de-
scribe the initial conditions. The partonic evolution is described by
the Zhang’s parton cascade (ZPC) [29]. In the default AMPT model,
partons are recombined with their parent strings when they stop
interacting, and the resulting strings are converted to hadrons us-
ing the Lund string fragmentation model. In the string melting con-
figuration a quark coalescence model is used instead to combine
partons into hadrons. The final part of the whole process, common
between the two configurations, consists of the hadronic rescatter-
ing which also includes the decay of resonances.

The filled green squares represent the results of the analysis of
the string melting AMPT events with parameters tuned [30] to re-
produce the measured elliptic flow (v2) values of non-identified
particles at the LHC [3]. The width of the balance functions when
studied in terms of the relative pseudorapidity exhibit little cen-
trality dependence despite the fact that the produced system ex-
hibits significant collective behavior [30]. However, the width of
the balance function in �ϕ is in qualitative agreement with the
centrality dependence of the experimental points. This is consis-
tent with the expectation that the balance function when studied
as a function of �ϕ can be used as a measure of radial flow of
the system, as suggested in [12,17]. We also studied the same
AMPT configuration, i.e. the string melting, this time switching off
the last part where the hadronic rescattering takes place, without
altering the decay of resonances. The resulting points, indicated
with the orange filled stars in Fig. 4, demonstrate a similar quali-
tative behavior as in the previous case: no centrality dependence
of 〈�η〉 and a significant decrease of 〈�ϕ〉 for central collisions.
On a quantitative level though, the widths in both projections are
larger than the ones obtained in the case where hadronic rescat-
tering is included. This can be explained by the fact that within
this model, a significant part of radial flow of the system is built
during this very last stage of the system’s evolution. Therefore,
the results are consistent with the picture of having the balanc-
ing charges more focused under the influence of this collective
motion, which is reflected in a narrower balance function distri-
bution. In addition, we analyzed AMPT events produced using the
default configuration, which results in smaller vn flow coefficients
but harder spectra than the string melting. The extracted widths of
the balance functions are represented by the open brown squares
and exhibit similar behavior as the results from the string melting
configuration. In particular, the width in �η shows little central-
ity dependence while the values are in agreement with the ones
calculated from the string melting. The width in �ϕ shows similar
(within the statistical uncertainties) quantitative centrality depen-
dence as the experimental data points. This latter effect is con-
sistent with the observation of having a system exhibiting larger
radial flow with the default version.3

Finally, we fit the experimentally measured values with a ther-
mal blast-wave model [31,32]. This model, assumes that the radial
expansion velocity is proportional to the distance from the cen-
ter of the system and takes into account the resonance production
and decay. It also incorporates the local charge conservation, by
generating ensembles of particles with zero total charge. Each par-
ticle of an ensemble is emitted by a fluid element with a common

3 We recently confirmed that AMPT does not conserve the charge. The influ-
ence of this effect to our measurement cannot be easily quantified. However we
still consider interesting and worthwhile to point out that this model describes
in a qualitative (and to some extent quantitative) way the centrality dependence
of 〈�ϕ〉.
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Table 2
The values of ση and σϕ extracted by fitting the centrality dependence of both 〈�η〉
and 〈�ϕ〉 with the blast-wave parameterization of [31,32].

Results from the fit with the blast-wave model

Centrality ση σϕ

0–5% 0.28 ± 0.05 0.30 ± 0.10
5–10% 0.32 ± 0.05 0.35 ± 0.07

10–20% 0.31 ± 0.05 0.36 ± 0.08
20–30% 0.36 ± 0.03 0.43 ± 0.05
30–40% 0.43 ± 0.04 0.52 ± 0.05
40–50% 0.42 ± 0.04 0.54 ± 0.06
50–60% 0.44 ± 0.07 0.64 ± 0.06
60–70% 0.52 ± 0.07 0.76 ± 0.01

Fig. 5. (Color online.) The balance functions for the 5% most central Pb–Pb collisions
measured by ALICE as a function of the relative pseudorapidity (a) and the rela-
tive azimuthal angle (b). The experimental points are compared to predictions from
HIJING [27], AMPT [28] and from a thermal blast wave [31,32].

collective velocity following the single-particle blast-wave param-
eterization with the additional constraint of being emitted with a
separation at kinetic freeze-out from the neighboring particle sam-
pled from a Gaussian with a width denoted as ση and σϕ in the
pseudorapidity space and the azimuthal angle, respectively. The
procedure that we followed started from tuning the input param-
eters of the model to match the average pT values extracted from
the analysis of identified particle spectra [35] as well as the v2
values for non-identified particles reported by ALICE [3]. We then
adjust the widths of the parameters ση and σϕ to match the ex-
perimentally measured widths of the balance function, 〈�η〉 and
〈�ϕ〉. The resulting values of ση and σϕ are listed in Table 2. We
find that ση starts from 0.28±0.05 for the most central Pb–Pb col-
lisions reaching 0.52±0.07 for the most peripheral, while σϕ starts
from 0.30 ± 0.10 evolving to 0.76 ± 0.01 for the 60–70% centrality
bin.

Fig. 5 presents the detailed comparison of the model results
with the measured balance functions as a function of �η (a) and
�ϕ (b) for the 5% most central Pb–Pb collisions. The data points

Fig. 6. (Color online.) The centrality dependence of the balance function width 〈�η〉
(a) and 〈�ϕ〉 (b). The ALICE points are compared to results from STAR [16]. The
STAR results have been corrected for the finite acceptance as suggested in [33].

are represented by the full markers and are compared with HI-
JING (dashed black line), AMPT string melting (full green line) and
the thermal blast-wave (full black line). The distributions for HI-
JING and AMPT are normalized to the same integral to facilitate
the direct comparison of the shapes and the widths. It is seen
that for correlations in the relative pseudorapidity, both HIJING
and AMPT result in similarly wider distributions. As mentioned be-
fore, the blast-wave model is tuned to reproduce the experimental
points, so it is not surprising that the relevant curve not only re-
produces the same narrow distribution but describes fairly well
also its shape. For the correlations in �ϕ the HIJING curve clearly
results in a wider balance function distribution. On the other hand,
there is a very good agreement between the AMPT curve and the
measured points, with the exception of the first bins (i.e. small
relative azimuthal angles) where the magnitude of B+−(�ϕ) is
significantly larger in real data. This suggests that there are ad-
ditional correlations present in these small ranges of �ϕ in data
than what the model predicts.

5.2. Energy dependence

Fig. 6 presents the comparison of our results for the central-
ity dependence (i.e. as a function of the centrality percentile)
of the width of the balance function, 〈�η〉 (Fig. 6(a) and 〈�ϕ〉
(Fig. 6(b), with results from STAR [16] in Au–Au collisions at√

sN N = 200 GeV (stars). The ALICE points have been corrected for
acceptance and detector effects, using the correction factors fab ,
discussed in the introduction. To make a proper comparison with
the STAR measurement, where such a correction was not applied,
we employ the procedure suggested in [33] to the RHIC points.
Based on the assumption of a boost-invariant system the balance
function studied in a given pseudorapidity window B+−(�η|ηmax)

can be related to the balance function for an infinite interval ac-
cording to the formula of Eq. (4)

B+−(�η|ηmax) = B+−(�η|∞) ·
(

1 − �η

ηmax

)
. (4)
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Fig. 7. (Color online.) The centrality dependence of the relative decrease of the width
of the balance function in the relative pseudorapidity (a) and relative azimuthal
angle (b). The ALICE points are compared to results for the highest SPS [8] and
RHIC [16] energies.

This procedure results in similar corrections as to the case where
the fab are used, if the acceptance is flat in η (which is a reason-
able assumption for the acceptance of STAR).4

While the centrality dependence is similar for both measure-
ments, the widths are seen to be significantly narrower at the
LHC energies. This is consistent with the idea of having a sys-
tem exhibiting larger radial flow at the LHC with respect to RHIC
[3] while having a longer-lived QGP phase [34] with the conse-
quence of a smaller separation between charge pairs when created
at hadronization. However, it is seen that the relative decrease of
the width between central and peripheral collisions seems to be
similar between the two energies. This observation could challenge
the interpretation of the narrowing of the width in �η as primar-
ily due to the late stage creation of balancing charges.

To further quantify the previous observation, Fig. 7 presents the
relative decrease of 〈�η〉 (a) and 〈�ϕ〉 (b) from peripheral to cen-
tral collisions as a function of the mean number of participating
nucleons, 〈Npart〉, for the highest SPS5 [8] and RHIC [16] ener-
gies, compared to the values reported in this Letter. In this figure,
central (peripheral) collisions correspond to high (low) number of
〈Npart〉. The choice of the representation as a function of 〈Npart〉
is mainly driven by the apparent better scaling compared to the
centrality percentile. It is seen that in terms of correlations in rel-
ative pseudorapidity the data points at the different energies are
in fairly good agreement within the uncertainties, resulting though
into an additional, marginal decrease for the 0–5% most central
collisions of ≈ (9.5±2.0 (stat)±2.5 (syst))% compared to the RHIC
point. On the other hand, 〈�ϕ〉/〈�ϕ〉peripheral exhibits a decrease

4 We do not compare our results to the data from the NA49 experiment at SPS in
this figure, for two reasons. Firstly, the balance function in that experiment was not
measured at mid-rapidity. Secondly, the non-uniform acceptance in pseudorapidity
makes the simplified correction of Eq. (4) invalid.

5 We include the NA49 points in this representation since the ratio to the periph-
eral results should cancel out the acceptance effects to first order.

of ≈ (14.0 ± 1.3 (stat) ± 1.9 (syst))% between the most central Au–
Au collisions at

√
sN N = 200 GeV and the results reported in this

Letter. This could be attributed to the additional increase in radial
flow between central and peripheral collisions at the LHC com-
pared to RHIC energies. Another contribution might come from the
bigger influence from jet-like structures at the LHC with respect
to RHIC that results in particles being emitted preferentially in
cones with small opening angles. Contrary to 〈�ϕ〉/〈�ϕ〉peripheral ,
this strikingly marginal decrease of 〈�η〉/〈�η〉peripheral between
the three colliding energy regimes that differ more than an or-
der of magnitude, cannot be easily understood solely within the
framework of the late stage creation of charges.

6. Summary

This Letter reported the first measurements of the balance func-
tion for charged particles in Pb–Pb collisions at the LHC using the
ALICE detector. The balance function was studied both, in relative
pseudorapidity (�η) and azimuthal angle (�ϕ). The widths of the
balance functions, 〈�η〉 and 〈�ϕ〉, are found to decrease when
moving from peripheral to central collisions. The results are con-
sistent with the picture of a system exhibiting larger radial flow
in central collisions but also whose charges are created at a later
stage of the collision. While HIJING is not able to reproduce the
observed centrality dependence of the width in either projection,
AMPT tuned to describe the v2 values reported by ALICE seems
to agree qualitatively with the centrality dependence of 〈�ϕ〉 but
fails to reproduce the dependence of 〈�η〉. A thermal blast-wave
model incorporating the principle of local charge conservation was
fitted to the centrality dependence of 〈�η〉 and 〈�ϕ〉. The re-
sulting values of the charge separation at freeze-out can be used
to constrain models describing the hadronization processes. The
comparison of the results with those from lower energies showed
that the centrality dependence of the width, in both the relative
pseudorapidity and azimuthal angle, when scaled by the most pe-
ripheral widths, exhibits minor differences between RHIC and LHC.

These studies will soon be complemented by and extended to
the correlations of identified particles in an attempt to probe the
chemical evolution of the produced system, to quantify the influ-
ence of radial flow to the narrowing of the balance function width
in more central collisions and to further constrain the parameters
of the models used to describe heavy-ion collisions.
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E. Cruz Alaniz bh, R. Cruz Albino k, E. Cuautle bg, L. Cunqueiro bp, A. Dainese ab,cu, H.H. Dalsgaard bx,
A. Danu bb, S. Das d, D. Das cq, K. Das cq, I. Das at, S. Dash ar, A. Dash dj, S. De dr, G.O.V. de Barros di,
A. De Caro ac,l, G. de Cataldo cz, J. de Cuveland am, A. De Falco w, D. De Gruttola ac,l, H. Delagrange dc,
A. Deloff bu, N. De Marco cx, E. Dénes dv, S. De Pasquale ac, A. Deppman di, G. D Erasmo ae, R. de Rooij aw,
M.A. Diaz Corchero j, D. Di Bari ae, T. Dietel bf, C. Di Giglio ae, S. Di Liberto cv, A. Di Mauro ag,
P. Di Nezza bp, R. Divià ag, Ø. Djuvsland r, A. Dobrin du,af, T. Dobrowolski bu, B. Dönigus cm, O. Dordic u,
O. Driga dc, A.K. Dubey dr, A. Dubla aw, L. Ducroux dk, P. Dupieux bn, A.K. Dutta Majumdar cq, D. Elia cz,
D. Emschermann bf, H. Engel bc, B. Erazmus ag,dc, H.A. Erdal ai, B. Espagnon at, M. Estienne dc, S. Esumi dp,
D. Evans cr, G. Eyyubova u, D. Fabris ab,cu, J. Faivre bo, D. Falchieri aa, A. Fantoni bp, M. Fasel cm,ci,
R. Fearick cf, D. Fehlker r, L. Feldkamp bf, D. Felea bb, A. Feliciello cx, B. Fenton-Olsen br, G. Feofilov ds,
A. Fernández Téllez b, A. Ferretti v, A. Festanti ab, J. Figiel df, M.A.S. Figueredo di, S. Filchagin co,
D. Finogeev av, F.M. Fionda ae, E.M. Fiore ae, E. Floratos ce, M. Floris ag, S. Foertsch cf, P. Foka cm, S. Fokin cp,
E. Fragiacomo cy, A. Francescon ag,ab, U. Frankenfeld cm, U. Fuchs ag, C. Furget bo, M. Fusco Girard ac,
J.J. Gaardhøje bx, M. Gagliardi v, A. Gago cs, M. Gallio v, D.R. Gangadharan s, P. Ganoti ca, C. Garabatos cm,
E. Garcia-Solis m, C. Gargiulo ag, I. Garishvili bs, J. Gerhard am, M. Germain dc, C. Geuna n, A. Gheata ag,
M. Gheata bb,ag, B. Ghidini ae, P. Ghosh dr, P. Gianotti bp, M.R. Girard dt, P. Giubellino ag,
E. Gladysz-Dziadus df, P. Glässel ci, R. Gomez dh,k, E.G. Ferreiro p, L.H. González-Trueba bh,
P. González-Zamora j, S. Gorbunov am, A. Goswami ch, S. Gotovac de, L.K. Graczykowski dt, R. Grajcarek ci,
A. Grelli aw, C. Grigoras ag, A. Grigoras ag, V. Grigoriev bt, A. Grigoryan a, S. Grigoryan bj, B. Grinyov c,
N. Grion cy, P. Gros af, J.F. Grosse-Oetringhaus ag, J.-Y. Grossiord dk, R. Grosso ag, F. Guber av, R. Guernane bo,
B. Guerzoni aa, M. Guilbaud dk, K. Gulbrandsen bx, H. Gulkanyan a, T. Gunji do, A. Gupta cg, R. Gupta cg,
R. Haake bf, Ø. Haaland r, C. Hadjidakis at, M. Haiduc bb, H. Hamagaki do, G. Hamar dv, B.H. Han t,
L.D. Hanratty cr, A. Hansen bx, Z. Harmanová-Tóthová al, J.W. Harris dw, M. Hartig bd, A. Harton m,
D. Hatzifotiadou ct, S. Hayashi do, A. Hayrapetyan ag,a, S.T. Heckel bd, M. Heide bf, H. Helstrup ai,
A. Herghelegiu bv, G. Herrera Corral k, N. Herrmann ci, B.A. Hess dq, K.F. Hetland ai, B. Hicks dw,
B. Hippolyte bi, Y. Hori do, P. Hristov ag, I. Hřivnáčová at, M. Huang r, T.J. Humanic s, D.S. Hwang t,
R. Ichou bn, R. Ilkaev co, I. Ilkiv bu, M. Inaba dp, E. Incani w, P.G. Innocenti ag, G.M. Innocenti v,
M. Ippolitov cp, M. Irfan q, C. Ivan cm, V. Ivanov cb, A. Ivanov ds, M. Ivanov cm, O. Ivanytskyi c,
A. Jachołkowski z, P.M. Jacobs br, H.J. Jang bl, M.A. Janik dt, R. Janik aj, P.H.S.Y. Jayarathna dl, S. Jena ar,
D.M. Jha du, R.T. Jimenez Bustamante bg, P.G. Jones cr, H. Jung an, A. Jusko cr, A.B. Kaidalov ax, S. Kalcher am,
P. Kaliňák ay, T. Kalliokoski ap, A. Kalweit be,ag, J.H. Kang dy, V. Kaplin bt, A. Karasu Uysal ag,dx,bm,
O. Karavichev av, T. Karavicheva av, E. Karpechev av, A. Kazantsev cp, U. Kebschull bc, R. Keidel dz, P. Khan cq,
S.A. Khan dr, M.M. Khan q, K.H. Khan o, A. Khanzadeev cb, Y. Kharlov au, B. Kileng ai, T. Kim dy, S. Kim t,
M. Kim dy, B. Kim dy, M. Kim an, J.S. Kim an, J.H. Kim t, D.J. Kim ap, D.W. Kim an,bl, S. Kirsch am, I. Kisel am,
S. Kiselev ax, A. Kisiel dt, J.L. Klay f, J. Klein ci, C. Klein-Bösing bf, M. Kliemant bd, A. Kluge ag,
M.L. Knichel cm, A.G. Knospe dg, M.K. Köhler cm, T. Kollegger am, A. Kolojvari ds, M. Kompaniets ds,
V. Kondratiev ds, N. Kondratyeva bt, A. Konevskikh av, V. Kovalenko ds, M. Kowalski df, S. Kox bo,
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G. Koyithatta Meethaleveedu ar, J. Kral ap, I. Králik ay, F. Kramer bd, A. Kravčáková al, T. Krawutschke ci,ah,
M. Krelina ak, M. Kretz am, M. Krivda cr,ay, F. Krizek ap, M. Krus ak, E. Kryshen cb, M. Krzewicki cm,
Y. Kucheriaev cp, T. Kugathasan ag, C. Kuhn bi, P.G. Kuijer by, I. Kulakov bd, J. Kumar ar, P. Kurashvili bu,
A.B. Kurepin av, A. Kurepin av, A. Kuryakin co, V. Kushpil bz, S. Kushpil bz, H. Kvaerno u, M.J. Kweon ci,
Y. Kwon dy, P. Ladrón de Guevara bg, I. Lakomov at, R. Langoy r, S.L. La Pointe aw, C. Lara bc, A. Lardeux dc,
P. La Rocca z, R. Lea x, M. Lechman ag, K.S. Lee an, S.C. Lee an, G.R. Lee cr, I. Legrand ag, J. Lehnert bd,
M. Lenhardt cm, V. Lenti cz, H. León bh, I. León Monzón dh, H. León Vargas bd, P. Lévai dv, S. Li g, J. Lien r,
R. Lietava cr, S. Lindal u, V. Lindenstruth am, C. Lippmann cm,ag, M.A. Lisa s, H.M. Ljunggren af,
D.F. Lodato aw, P.I. Loenne r, V.R. Loggins du, V. Loginov bt, D. Lohner ci, C. Loizides br, K.K. Loo ap,
X. Lopez bn, E. López Torres i, G. Løvhøiden u, X.-G. Lu ci, P. Luettig bd, M. Lunardon ab, J. Luo g,
G. Luparello aw, C. Luzzi ag, R. Ma dw, K. Ma g, D.M. Madagodahettige-Don dl, A. Maevskaya av,
M. Mager be,ag, D.P. Mahapatra az, A. Maire ci, M. Malaev cb, I. Maldonado Cervantes bg, L. Malinina bj,1,
D. Mal’Kevich ax, P. Malzacher cm, A. Mamonov co, L. Manceau cx, L. Mangotra cg, V. Manko cp, F. Manso bn,
V. Manzari cz, Y. Mao g, M. Marchisone bn,v, J. Mareš ba, G.V. Margagliotti x,cy, A. Margotti ct, A. Marín cm,
C. Markert dg, M. Marquard bd, I. Martashvili dn, N.A. Martin cm, P. Martinengo ag, M.I. Martínez b,
A. Martínez Davalos bh, G. Martínez García dc, Y. Martynov c, A. Mas dc, S. Masciocchi cm, M. Masera v,
A. Masoni cw, L. Massacrier dc, A. Mastroserio ae, A. Matyja df, C. Mayer df, J. Mazer dn, M.A. Mazzoni cv,
F. Meddi y, A. Menchaca-Rocha bh, J. Mercado Pérez ci, M. Meres aj, Y. Miake dp, L. Milano v, J. Milosevic u,2,
A. Mischke aw, A.N. Mishra ch,as, D. Miśkowiec cm, C. Mitu bb, S. Mizuno dp, J. Mlynarz du, B. Mohanty dr,bw,
L. Molnar dv,ag,bi, L. Montaño Zetina k, M. Monteno cx, E. Montes j, T. Moon dy, M. Morando ab,
D.A. Moreira De Godoy di, S. Moretto ab, A. Morreale ap, A. Morsch ag, V. Muccifora bp, E. Mudnic de,
S. Muhuri dr, M. Mukherjee dr, H. Müller ag, M.G. Munhoz di, S. Murray cf, L. Musa ag, J. Musinsky ay,
A. Musso cx, B.K. Nandi ar, R. Nania ct, E. Nappi cz, C. Nattrass dn, T.K. Nayak dr, S. Nazarenko co,
A. Nedosekin ax, M. Nicassio ae,cm, M. Niculescu bb,ag, B.S. Nielsen bx, T. Niida dp, S. Nikolaev cp,
V. Nikolic cn, S. Nikulin cp, V. Nikulin cb, B.S. Nilsen cc, M.S. Nilsson u, F. Noferini ct,l, P. Nomokonov bj,
G. Nooren aw, N. Novitzky ap, A. Nyanin cp, A. Nyatha ar, C. Nygaard bx, J. Nystrand r, A. Ochirov ds,
H. Oeschler be,ag, S. Oh dw, S.K. Oh an, J. Oleniacz dt, A.C. Oliveira Da Silva di, C. Oppedisano cx,
A. Ortiz Velasquez af,bg, A. Oskarsson af, P. Ostrowski dt, J. Otwinowski cm, K. Oyama ci, K. Ozawa do,
Y. Pachmayer ci, M. Pachr ak, F. Padilla v, P. Pagano ac, G. Paić bg, F. Painke am, C. Pajares p, S.K. Pal dr,
A. Palaha cr, A. Palmeri da, V. Papikyan a, G.S. Pappalardo da, W.J. Park cm, A. Passfeld bf, D.I. Patalakha au,
V. Paticchio cz, B. Paul cq, A. Pavlinov du, T. Pawlak dt, T. Peitzmann aw, H. Pereira Da Costa n,
E. Pereira De Oliveira Filho di, D. Peresunko cp, C.E. Pérez Lara by, D. Perini ag, D. Perrino ae, W. Peryt dt,3,
A. Pesci ct, V. Peskov ag,bg, Y. Pestov e, V. Petráček ak, M. Petran ak, M. Petris bv, P. Petrov cr, M. Petrovici bv,
C. Petta z, S. Piano cy, M. Pikna aj, P. Pillot dc, O. Pinazza ag, L. Pinsky dl, N. Pitz bd, D.B. Piyarathna dl,
M. Planinic cn, M. Płoskoń br, J. Pluta dt, T. Pocheptsov bj, S. Pochybova dv, P.L.M. Podesta-Lerma dh,
M.G. Poghosyan ag, K. Polák ba, B. Polichtchouk au, A. Pop bv, S. Porteboeuf-Houssais bn, V. Pospíšil ak,
B. Potukuchi cg, S.K. Prasad du, R. Preghenella ct,l, F. Prino cx, C.A. Pruneau du, I. Pshenichnov av, G. Puddu w,
V. Punin co, M. Putiš al, J. Putschke du, E. Quercigh ag, H. Qvigstad u, A. Rachevski cy, A. Rademakers ag,
T.S. Räihä ap, J. Rak ap, A. Rakotozafindrabe n, L. Ramello ad, A. Ramírez Reyes k, R. Raniwala ch,
S. Raniwala ch, S.S. Räsänen ap, B.T. Rascanu bd, D. Rathee cd, K.F. Read dn, J.S. Real bo, K. Redlich bu,4,
R.J. Reed dw, A. Rehman r, P. Reichelt bd, M. Reicher aw, F. Reidt ci, R. Renfordt bd, A.R. Reolon bp,
A. Reshetin av, F. Rettig am, J.-P. Revol ag, K. Reygers ci, L. Riccati cx, R.A. Ricci bq, T. Richert af, M. Richter u,
P. Riedler ag, W. Riegler ag, F. Riggi z,da, M. Rodríguez Cahuantzi b, A. Rodriguez Manso by, K. Røed r,u,
D. Rohr am, D. Röhrich r, R. Romita cm,db, F. Ronchetti bp, P. Rosnet bn, S. Rossegger ag, A. Rossi ag,ab,
P. Roy cq, C. Roy bi, A.J. Rubio Montero j, R. Rui x, R. Russo v, E. Ryabinkin cp, A. Rybicki df, S. Sadovsky au,
K. Šafařík ag, R. Sahoo as, P.K. Sahu az, J. Saini dr, H. Sakaguchi aq, S. Sakai br, D. Sakata dp, C.A. Salgado p,
J. Salzwedel s, S. Sambyal cg, V. Samsonov cb, X. Sanchez Castro bi, L. Šándor ay, A. Sandoval bh, M. Sano dp,
G. Santagati z, R. Santoro ag,l, J. Sarkamo ap, E. Scapparone ct, F. Scarlassara ab, R.P. Scharenberg ck,
C. Schiaua bv, R. Schicker ci, H.R. Schmidt dq, C. Schmidt cm, S. Schuchmann bd, J. Schukraft ag,
T. Schuster dw, Y. Schutz ag,dc, K. Schwarz cm, K. Schweda cm, G. Scioli aa, E. Scomparin cx, R. Scott dn,
P.A. Scott cr, G. Segato ab, I. Selyuzhenkov cm, S. Senyukov bi, J. Seo cl, S. Serci w, E. Serradilla j,bh,
A. Sevcenco bb, A. Shabetai dc, G. Shabratova bj, R. Shahoyan ag, N. Sharma cd,dn, S. Sharma cg, S. Rohni cg,
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K. Shigaki aq, K. Shtejer i, Y. Sibiriak cp, E. Sicking bf, S. Siddhanta cw, T. Siemiarczuk bu, D. Silvermyr ca,
C. Silvestre bo, G. Simatovic bg,cn, G. Simonetti ag, R. Singaraju dr, R. Singh cg, S. Singha dr,bw, V. Singhal dr,
T. Sinha cq, B.C. Sinha dr, B. Sitar aj, M. Sitta ad, T.B. Skaali u, K. Skjerdal r, R. Smakal ak, N. Smirnov dw,
R.J.M. Snellings aw, C. Søgaard bx,af, R. Soltz bs, H. Son t, J. Song cl, M. Song dy, C. Soos ag, F. Soramel ab,
I. Sputowska df, M. Spyropoulou-Stassinaki ce, B.K. Srivastava ck, J. Stachel ci, I. Stan bb, G. Stefanek bu,
M. Steinpreis s, E. Stenlund af, G. Steyn cf, J.H. Stiller ci, D. Stocco dc, M. Stolpovskiy au, P. Strmen aj,
A.A.P. Suaide di, M.A. Subieta Vásquez v, T. Sugitate aq, C. Suire at, R. Sultanov ax, M. Šumbera bz, T. Susa cn,
T.J.M. Symons br, A. Szanto de Toledo di, I. Szarka aj, A. Szczepankiewicz df,ag, M. Szymański dt,
J. Takahashi dj, M.A. Tangaro ae, J.D. Tapia Takaki at, A. Tarantola Peloni bd, A. Tarazona Martinez ag,
A. Tauro ag, G. Tejeda Muñoz b, A. Telesca ag, A. Ter Minasyan bt,cp, C. Terrevoli ae, J. Thäder cm,
D. Thomas aw, R. Tieulent dk, A.R. Timmins dl, D. Tlusty ak, A. Toia am,ab,cu, H. Torii do, L. Toscano cx,
V. Trubnikov c, D. Truesdale s, W.H. Trzaska ap, T. Tsuji do, A. Tumkin co, R. Turrisi cu, T.S. Tveter u,
J. Ulery bd, K. Ullaland r, J. Ulrich bk,bc, A. Uras dk, J. Urbán al, G.M. Urciuoli cv, G.L. Usai w, M. Vajzer ak,bz,
M. Vala bj,ay, L. Valencia Palomo at, S. Vallero ci, P. Vande Vyvre ag, M. van Leeuwen aw, L. Vannucci bq,
A. Vargas b, R. Varma ar, M. Vasileiou ce, A. Vasiliev cp, V. Vechernin ds, M. Veldhoen aw, M. Venaruzzo x,
E. Vercellin v, S. Vergara b, R. Vernet h, M. Verweij aw, L. Vickovic de, G. Viesti ab, J. Viinikainen ap,
Z. Vilakazi cf, O. Villalobos Baillie cr, Y. Vinogradov co, A. Vinogradov cp, L. Vinogradov ds, T. Virgili ac,
Y.P. Viyogi dr, A. Vodopyanov bj, K. Voloshin ax, S. Voloshin du, G. Volpe ag, B. von Haller ag, I. Vorobyev ds,
D. Vranic cm, J. Vrláková al, B. Vulpescu bn, A. Vyushin co, V. Wagner ak, B. Wagner r, R. Wan g, D. Wang g,
Y. Wang ci, M. Wang g, Y. Wang g, K. Watanabe dp, M. Weber dl,∗, J.P. Wessels ag,bf, U. Westerhoff bf,
J. Wiechula dq, J. Wikne u, M. Wilde bf, G. Wilk bu, A. Wilk bf, M.C.S. Williams ct, B. Windelband ci,
M. Winn ci, L. Xaplanteris Karampatsos dg, C.G. Yaldo du, Y. Yamaguchi do, S. Yang r, H. Yang n,aw,
S. Yasnopolskiy cp, J. Yi cl, Z. Yin g, I.-K. Yoo cl, J. Yoon dy, W. Yu bd, X. Yuan g, I. Yushmanov cp,
V. Zaccolo bx, C. Zach ak, C. Zampolli ct, S. Zaporozhets bj, A. Zarochentsev ds, P. Závada ba, N. Zaviyalov co,
H. Zbroszczyk dt, P. Zelnicek bc, I.S. Zgura bb, M. Zhalov cb, X. Zhang br,bn,g, H. Zhang g, F. Zhou g,
Y. Zhou aw, D. Zhou g, J. Zhu g, J. Zhu g, X. Zhu g, H. Zhu g, A. Zichichi aa,l, A. Zimmermann ci, G. Zinovjev c,
Y. Zoccarato dk, M. Zynovyev c, M. Zyzak bd
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